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Abstract: Heavy-duty electric powertrains provide a potential solution to the high emissions and
low fuel economy of trucks, buses, and other heavy-duty vehicles. However, the cost, weight,
and lifespan of electric vehicle batteries limit the implementation of such vehicles. This paper
proposes supplementing the battery with on-board photovoltaic modules. In this paper, a bus
model is created to analyze the impact of on-board photovoltaics on electric bus range and battery
lifespan. Photovoltaic systems that cover the bus roof and bus sides are considered. The bus model
is simulated on a suburban bus drive cycle on a bus route in Davis, CA, USA for a representative
sample of yearly weather conditions. Roof-mounted panels increased vehicle driving range by
4.7% on average annually, while roof and side modules together increased driving range by 8.9%.
However, variations in weather conditions meant that this additional range was not reliably available.
For constant vehicle range, rooftop photovoltaic modules extended battery cycle life by up to 10%
while modules on both the roof and sides extended battery cycle life by up to 19%. Although
side-mounted photovoltaics increased cycle life and range, they were less weight- and cost-effective
compared to the roof-mounted panels.
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1. Introduction

The internal combustion engine is a major contributor to greenhouse gas emissions and
hydrocarbon pollution across the globe. Motor vehicles account for a major portion of pollutants such
as carbon monoxide, nitrogen oxide, and volatile organic compounds [1]. Furthermore, heavy-duty
motor vehicles such as trucks and buses are responsible for 30% of all U.S. transportation-related
NOx emissions and 60% of particulate matter emissions [2]. Electric and hybrid-electric powertrains
are potential technological solutions to reduce vehicle emissions and improve vehicle fuel efficiency.
However, heavy-duty electric powertrains require large amounts of stored energy, which can be cost
and weight prohibitive [3].

A possible method to reduce battery cost is to supplement the energy storage system with
photovoltaic (PV) modules, so that additional power can be generated while the vehicle is on the road.
Flexible PV panels allow for vehicle integration without aerodynamic losses or major infrastructural
costs [4]. Interest in solar-powered vehicles has been long standing: The first solar-powered “car”
dates back to 1955 when General Motors (Detroit, MI, USA) introduced the Sunmobile, a 15-inch long
solar-powered vehicle. Various solar-powered or PV-augmented vehicle prototypes were introduced
in the following decades [5]. Contemporary research for on-board PV (OBPV) can generally be broken
into two groups: integrated PV for consumer vehicles and integrated PV for commercial vehicles.
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As consumer vehicles are often parked throughout the day, much of the literature regarding
consumer vehicles focuses on analyzing and maximizing collected solar energy for parked vehicles.
References [6,7], for instance, analyzed the day-to-day energy collected from parked vehicles
to determine the driving distances for PV-augmented hybrid vehicles that minimize both fuel
consumption and wasted solar energy. In [8], the relationship between vehicle usage and the impact of
OBPV was considered with regards to well-to-wheel vehicle efficiencies and the life-cycle cost of PV
cells. Other literature more generally considers the impact of OBPV on fuel consumption and vehicle
emissions in an attempt to determine when PV modules will be efficient and inexpensive enough for
widespread on-board use [9,10].

In contrast, commercial vehicles are generally operated constantly throughout the day so analysis
of OBPV on commerical vehicles tends to focus on powering vehicle components and on the long-term
benefits of OBPV. For instance, PV modules have been integrated into health emergency vehicles in
order to power medical equipment while the engine is not running and to help guarantee a charge
when the vehicle must be started [11]. In another application, OBPV were shown to provide enough
energy to power the refrigeration unit on a delivery vehicle [12]. Meanwhile, reference [4] examined
the energy collected from roof-mounted PV modules on a diesel-powered bus operating in Poland,
noting that such a system “does not require extensive modification to the vehicle electrical system”.
Experimental results indicated that the free solar energy, used to power auxiliary electrical loads, would
quickly provide a positive return on investment. Reference [13] evaluated the economic feasibility
and environmental impact of OBPV for diesel-powered trucks an buses, showing that OBPV could
substantially reduce the carbon footprint of heavy-duty vehicles with a payback time of only two to
four years.

Still, the majority of the literature for OBPV with commercial vehicles does not consider all-electric
powertrains. A small amount of literature exists for light- and medium-duty commercial electric
vehicles: for instance, References [14,15] each investigated OBPV for agricultural electric vehicles.
The authors have also previously considered OBPV for an electric bus in [16], showing that OBPV
could potentially extend battery life or allow for battery size reduction, based on simulation results on a
single clear day—this paper represents an expanded version of that analysis. However, the authors are
unaware of any other studies directly pertaining to on-board collection of solar energy for heavy-duty
electric vehicles.

Given this lack of research, this paper chooses to investigate PV modules integrated on an electric
bus for two reasons: one, the large, flat roof and sides of a bus provide ample space on which to attach
PV modules and collect solar energy; two, the low speeds and frequent idle time of the bus allow the PV
modules to provide a larger share of the traction load compared to, for instance, a truck operating on
the highway. This solar energy could be used to extend vehicle driving range. Alternatively, the energy
collected from OBPV could be stored instead because buses operate on fixed routes and may not need
range extension. The stored solar energy will reduce the depth of discharge of the battery, potentially
increasing the battery cycle life and reducing the lifetime cost of the vehicle.

In this paper, both the range-extension and battery cycle life effects of OBPV on electric buses are
investigated through a numerical experiment. In Section 2, the models of the various components
of the electric bus powertrain and PV system are introduced. In Section 3, a case study of electric
buses with and without OBPV is presented. In Section 4, the results from the case study are discussed.
Section 5 offers conclusions on this research.

2. Model Formulation

This paper is interested in how PV mounted on-board an electric bus affect that bus’s stored
energy consumption and the vehicle battery’s lifespan. Because of the cost to implement and test
the proposed system and the time needed to run the battery to the end of its life, simulation is used
to assess the performance of OBPV on an electric bus. In this section, the modeling methods and
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assumptions are described for the vehicle model, motor and power electronics model, battery model,
and solar radiation and photovoltaics model.

2.1. Vehicle Model

The goal of the vehicle model is to capture the primary forces on the vehicle while maintaining
model simplicity. To that end, a backwards-facing quasi-static vehicle model is used to simulate the
vehicle dynamics [17]. It is assumed that the driver accurately follows the reference velocity of the drive
cycle. This assumption eliminates the need for a driver model and, because the drive cycle is known,
allows the time history of electrical load placed on the electric motor to be calculated in advance.

The vehicle model considers inertial forces on the vehicle and losses due to aerodynamic drag,
rolling resistance, and gravitational forces. Other sources of power loss, such as gearbox friction,
are neglected. A diagram of the vehicle model and the forces it considers are illustrated in Figure 1.
The aerodynamic drag Fdrag is dependent on air density ρ, frontal area A f , drag coefficient CD, and
vehicle velocity vv, as described in Equation (1). The rolling resistance Froll is dependent on total mass
M, gravitational acceleration g, road incline θ, and rolling resistance coefficient CR, as described in
Equation (2). The gravitational force Fgravity also depends of total mass, gravitational acceleration,
and road incline, as described in Equation (3):

Fdrag =
1
2

ρA f CD(vv)
2 (1)

Froll = MgCR cos θ (2)

Fgravity = Mg sin θ (3)
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Figure 1. Vehicle model diagram.

In a forward-facing dynamic vehicle model, the drag, rolling resistance, gravitational force,
and tractive force from the electric motor would be used to find the inertial force on the vehicle,
which would be integrated to find the vehicle velocity [17]. This vehicle model is backwards-facing,
so the process is reversed: the inertial force on the vehicle, Finertial , is determined from the vehicle
acceleration and the vehicle mass:

Finertial = M
dvv

dt
(4)

Then, the inertial force as well as the drag, rolling resistance, and gravitational forces are used to
obtain the traction force:

Ftraction = Fdrag + Froll + Fgravity + Finertial (5)
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The transmission is assumed to have an efficiency ηtrans, represented as torque losses. Then,
the motor operating speed ωm and the motor torque output τm are related to the vehicle velocity and
traction force by ηtrans, the gearbox ratio Ngb, final drive ratio N f d, and wheel radius Rw:

τm =
1

ηtrans

(
Rw

N f dNgb
Ftraction

)
(6)

ωm =
N f dNgb

Rw
vv (7)

Then, the power needed to drive the vehicle Pm,mech can be expressed in terms of the motor torque
and angular velocity:

Pm,mech = τm ×ωm (8)

Pm,mech indicates mechanical load placed on the electric machine. Positive Pm,mech indicates
power consumption during acceleration, while negative Pm,mech indicates power generation during
regenerative braking.

This paper considers various battery and PV module configurations, each with different masses.
The total mass of the vehicle M is set by a base electric bus mass Mv, constant throughout the
experiment, and the battery mass Mbatt and PV module mass Mpv, which are allowed to vary with the
size of the battery and size of the OBPV modules. Additionally, the rotational inertia of the bus wheels
Jw is accounted for by treating them as equivalent masses [18]:

M = Mv + Mpv + Mbatt + 4Jw

(
1

Rw

)2
+ Jm

(N f dNgb

Rw

)2

(9)

The parameters of the vehicle model are provided in Table 1. Vehicle parameters are estimated
from existing literature on transit bus simulation [19–21] and from manufacturer specifications for
an electric transit bus [22].

Table 1. Vehicle model parameters.

Parameter Variable Value

Vehicle Mass Mv 15,500 kg
Frontal Area A f 8.02 m2

Aerodynamic Drag Coefficient CD 0.55
Rolling Resistance Coefficient CR 0.008

Wheel Inertia Jw 20.52 kg-m2

Motor Inertia Jm 0.277 kg-m2

Wheel Radius Rw 0.48 m
Final Drive Ratio N f d 5.5:1

Gearbox Ratio Ngb 5:1
Transmission Efficiency ηtrans 96%

2.2. Motor and Power Electronics Model

The electrical power consumption or generation of the electric machine, denoted Pm,elec,
is calculated from an efficiency parameter ηmotor and the mechanical load placed on the electric
machine. ηmotor is always less than 1, so the electrical load is found by dividing the mechanical load
by the efficiency when motoring and multiplying by the efficiency when generating, as indicated in
Equation (10):

Pm,elec =

{
Pm,mech/ηmotor, τm ≥ 0
Pm,mech × ηmotor, τm < 0

(10)
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Therefore, power is always lost through the motor. The motor efficiency is a function of the motor
torque and speed, as described in Equations (6) and (7), and is determined from a static efficiency map:

ηmotor = f (τm, ωm) (11)

The efficiency map is obtained from [23], and scaled to the appropriate size using the scaling
method in [18]. The modeled vehicle utilizes a 240 kW alternating current (AC) induction motor.
The power supplied to the electric machine is provided by the power from the PV panels, Ppv, and the
battery pack, Pbatt. In the case of regeneration, power from the electric machine and the PV modules
charges to the battery pack. Additionally, there is an auxiliary load which includes loads such as the
power for the bus’s heating and air conditioning system, assumed to be a constant 3 kW:

Pm,elec = Pbatt + Ppv − Paux (12)

Positive motor power indicates an energy expenditure, while negative power indicates
regeneration. Similarly, positive battery power indicates discharge while negative battery power
indicates recharging. The busbar operates on direct current (DC). There is assumed to be lossless
DC–DC conversion of the PV power and AC–DC conversion of the electric machine load to the voltage
of the DC bus. This is depicted for a bus with Rooftop PV modules in Figure 2. PV modules attached
to the side of the bus each have their own DC–DC converter and are connected to the DC bus in a
similar manner to the rooftop modules.

Battery

Solar

Module

DC

DC

DC

AC

Motor

Vehicle

Load

Auxiliary

Load

DC Bus

Figure 2. Diagram of battery, photovoltaic (PV) panel, and motor connections.

2.3. Battery Model

2.3.1. Battery Circuit Model

An equivalent-circuit battery model is utilized to simulate the battery performance. The Thévenin
equivalent circuit [18] shown in Figure 3 models the battery as a voltage source and resistor and
uses empirical data for parameter values. This battery model offers a good balance between model
complexity and model accuracy [24]. Parameters are obtained for individual battery cells, which are
then stacked in series and parallel to obtain the complete battery pack. The cells are assumed to
be identical.

In Figure 3, Vcell is the open-circuit voltage (OCV) of a single battery cell, while Rcell represents
the combined effects of ohmic resistances, diffusion resistances, and charge-transfer resistances [18].
Both the OCV and the internal resistance vary with the battery’s state of charge (SOC), temperature,
and current. The relationship between OCV, SOC, and current are obtained from manufacturer
datasheets for a lithium-iron-phosphate battery [25]. Although Rcell has current and SOC dependencies,
it can be treated as constant and still produce suitably accurate results for vehicle simulations [26,27].
This paper takes the cell equivalent resistance Rcell to be a constant value of 6 Ω. The resistance and
open-circuit voltage also vary with battery temperature, but battery temperature is not considered in
this model. Instead, in order to maintain model simplicity, it is assumed that the battery management
system keeps the battery at a constant temperature.



Energies 2017, 10, 943 6 of 31

R

cell

V

cell

V

T,cell

+

‾

+

‾

+

‾

+

‾

+

‾

+

‾

+

‾

+

‾

+

‾

+

‾

Battery Cell Battery Pack

V

T

+

‾

Figure 3. Battery cell and battery pack equivalent circuit.

The equivalent resistance of the complete battery pack, Req, is a function of the single-cell
equivalent resistance and the number of cells in series, Ns, and in parallel, Np:

Req = Rcell ×
Ns

Np
(13)

The open circuit voltage of the vehicle battery pack, Vocv, is dependent on the open circuit voltage
of a single cell and the number of series connections in the battery pack:

Vocv = Ns ×Vcell (14)

The terminal voltage, VT , and the battery current from the battery pack, Ibatt, are determined from
the open circuit voltage of the battery pack, equivalent resistance of the battery pack, and the power
needed for motoring or gained from regeneration:

Ibatt = Pbatt/VT (15)

VT = Vocv − Ibatt × Req (16)

The terminal voltage is obtained by substituting Equation (15) into Equation (16) solving with the
quadratic equation:

V2
T = Vocv ×VT − Pbatt × Req (17)

VT = 1/2
(

Vocv +
√

V2
ocv − 4× Pbatt × Req

)
(18)

The largest possible battery discharge load is 240 kW, per the rated motor power. The solution to
Equation (18) will always be real for loads up to 240 kW and for the OCV and equivalent resistance
used in this model. With the terminal voltage known, Equation (15) can then be used to determine the
current flow from the battery pack.

The instantaneous stored charge, Q, is obtained using the Coulomb counting method [18],
where Q0 is the initial battery charge:

Q(t) = Q0 −
∫ t

0
Ibatt(t)dt (19)

The initial maximum battery capacity is determined by the rated capacity per cell, Qcell ,
and number of parallel connections:

Qmax,0 = Np ×Qcell (20)

However, the maximum capacity degrades over time as the battery is used. The instantaneous
maximum capacity is denoted Qmax. The modeled relationship between the initial and instantaneous
maximum capacities are discussed in Section 2.3.2 Battery Health Model.
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The state of charge of the battery is an expression of the instantaneous charge as a percent of the
instantaneous maximum capacity:

SOC(t) = 100%× Q(t)
Qmax

(21)

Similarly, the depth of discharge is an expression of the percentage of total capacity that has
been discharged:

DOD(t) = 100%× Qmax −Q(t)
Qmax

(22)

The C-rate of a battery is a normalized measure of current, such that the complete discharge of the
battery over one hour is considered 1 C, and is found by dividing the current by the battery capacity
in ampere-hours:

C-rate =
Ibatt

Qmax
(23)

The amount of stored energy used by the battery is found by integrating the power from the
battery and the battery losses through the resistor:

Econsumed(t) =
∫ t

0

(
Pbatt + I2

battReq

)
dt (24)

Battery weight is determined from the number of cells and the weight per cell. Weight per cell
includes the weight of the battery management system, estimated from [28]:

Mbatt = Np × Ns ×Mcell (25)

An electric vehicle should have an open-circuit voltage between 300 V and 400 V [29], which is
achieved through series connections. Parallel connections can then be used to reach the desired energy
storage. The bus in this paper uses a lithium iron phosphate battery cell with nominal OCV, charge,
and energy storage of 3.2 V, 2.5 Ah, and 8 Wh, respectively. Battery cells are combined in series and
in parallel to achieve a net 962.5 Ah, 338.8 kWh battery pack with a rated OCV of 352 V. The actual
OCV ranges from 220 to 374 V depending on operating conditions. This battery size is chosen so that
the bus can complete 200 km of driving on a suburban bus drive cycle even when the capacity of the
battery has faded by 20%. The parameters of the vehicle model are provided in Table 2.

Table 2. Battery model parameters.

Parameter Variable Value

Open-Circuit Voltage per Cell Vcell 2.0 to 3.4 V
Rated Energy Capacity per Cell Ecell 8 Wh
Rated Charge Capacity per Cell Qcell 2.5 Ah

Battery Cell Equivalent Resistance Rcell 6 mΩ
Battery Cells in Parallel Np 385 cells

Parallel Sets in Series Ns 110 sets
Battery Weight per Cell Mcell 94 g

2.3.2. Battery Health Model

Modeling battery degradation is needed to forecast the long-term performance of the battery and
long-term impact that the OBPV have on battery health. The literature typically considers a battery to
have reached the end of its life when its maximum capacity has faded to 80% of its original value [30].
The term “cycle life” refers to the number of discharge-and-charge cycles until the battery reaches the
end of its life. In this paper, one cycle consists of one day of driving.
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Aging of lithium-ion batteries is thought to be caused by formation of cracks in the electrode
materials from repeated stress cycles and from the formation of substrates in the chemical reaction
pathways [31]. These aging mechanisms are accelerated by high charge and discharge rates, extreme
battery temperatures, and deep depths of discharge [32]. However, models of the cell chemistry
that include the thermal and stress/strain relationships used to describe aging are computationally
intensive and are ill-suited for the analysis considered in this paper [31,33].

A simple aging model is formed by first eliminating aging factors that are not expected to
be significant in the experiment. It is assumed that the battery temperature is well-regulated by
a battery management system, so the temperature effects of aging are not included in the aging
model. Additionally, it will be shown in Section 4.3 that the average charge and discharge rates on
the simulated bus are low, and the charge or discharge rates between bus configurations with and
without solar power are mostly the same. The impact of large currents on aging are therefore assumed
to be negligible as well. On the other hand, enough solar power is collected over the course a day
of operation to impact the depth of discharge, so depth of discharge must be considered. Overall,
an aging model that only considers depth of discharge is sufficient for this analysis.

This paper uses the cycle life data [34] for the same battery used in the battery equivalent circuit
model. The functional relationship between cycle life (CL) and depth of discharge (DOD) is logarithmic
in nature [35] and is found by fitting a curve to the manufacturer data. The curve fit proposed in [35]
and given in Equation (26) is found to provide the best fit to available data:

CL = β0 × DOD−β1 × exp (β2(1− DOD)) (26)

Using a least-squares regression, it is found that β0 = 2731.7, β1 = 0.679 and β2 = 1.614 best fits
the provided cycle life data. The curve fit results are shown in Figure 4.
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Figure 4. Depth of discharge versus cycle life of the lithium-ion battery.

Several studies have shown that the Palmgren–Miner (PM) rule, common in fatigue life analysis
of mechanical systems, can effectively approximate the battery health over non-uniform charge and
discharge cycles [33,36]. The PM rule is a linear damage accumulation model in which each charge
and discharge cycle is considered to damage the battery by an amount related to the cycle life at that
cycle’s depth of discharge. That is to say, for a given charge and discharge cycle k, the battery will
have been discharged to a depth DODk, measured when the bus has finished driving for the day.
If continuously charged and discharged to depth DODk, the battery would be able to support Nk
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cycles before reaching the end of its life, as indicated in Figure 4. Under the PM rule, the damage Dk of
that single cycle is assumed to be:

Dk =
1

Nk
(27)

The cumulative damage Dtot is an expression of the fraction of a battery’s lifespan that has been
used. That is, cumulative damage equal to zero indicates that the battery is at its original health while
cumulative damage of one indicates the battery has reached the end of its life. The cumulative
damage is measured by summing the damage of individual cycles from the battery’s first use.
Thus, the cumulative damage at the completion of cycle k is given by:

Dtot(k) =
k

∑
i=1

1
Ni

(28)

In this paper, it is assumed that the maximum capacity is linearly related to the cumulative
damage. Then, the maximum capacity after cycle k is determined from the original maximum capacity
and the cumulative damage after cycle k. Given that 20% capacity fade indicates end-of-life:

Qmax(k) = Qmax,0 × (1− 0.2Dtot(k)) (29)

After each simulation cycle, the maximum capacity is updated. The next cycle then measures its
state-of-charge and depth of discharge with regards to the new maximum capacity.

It should be noted that this health model relies on regular charge/discharge cycles. That is,
it is assumed that the battery is discharged from its initial charge to final charge, without significant
charging in between. Similarly, it is assumed that the battery is charged from its final charge back to
the original charge without significant discharging in between. Should the charging or discharging
become irregular, such as by partially recharging the battery throughout the day, a more complex
model of aging would needed [37].

2.4. Solar Radiation and Photovoltaics Model

Accurate assessment of the impact of OBPV requires simulating a representative sample of the
weather patterns that a real bus would experience. Additionally, simulation of side-mounted panels
requires accurate modeling of different types of radiation in order to model the energy from a panel on
the side of the bus facing away from the sun.

PV modules collect three types of radiation: Direct radiation, diffuse radiation, and reflected
radiation. Direct radiation travels in a straight line from the sun to the PV module, while diffuse
radiation has been scattered by atmospheric particles and approaches from many different directions.
On a clear, sunny day, direct radiation makes up the vast majority of the radiation experienced by
a PV panel. On the other hand, on a heavily clouded day, the total radiation experienced by a PV
panel is entirely diffuse [38]. Reflected radiation is radiation that strikes the PV module after having
been reflected off some other surface, such as an asphalt road. The three types of solar radiation are
illustrated in Figure 5. Reflected radiation is not considered in this paper.

Although models exist to obtain an estimate of direct radiation on a clear day based on temporal
variables and spatial coordinates [39], these models cannot predict the diffuse radiation, due to
its dependency on, and the uncertainty of, local weather conditions. Instead, one can use typical
meteorological year (TMY) data collected by the National Renewable Energy Lab (NREL) for locations
throughout the United States [40]. As its name suggests, TMY data is made of 365 days of weather
data selected to cover a range of typical weather phenomena while still matching a region’s monthly
and annual average meteorological data. TMY data sets include measurements of the direct normal
irradiance (DNI) and the diffuse horizontal irradiance (DHI). DNI is the radiation experienced by
a surface held perpendicular to the incoming radiation, while DHI is the radiation that reaches
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horizontal surface on an indirect path from the sun. The DNI and DHI time-histories from TMY data
are used in the experiment for a PV-augmented bus.

Figure 5. Types of solar radiation.

In the following subsections, sizing of the OBPV modules is discussed first, followed by modeling
of direct radiation on a moving surface and diffuse radiation on a non-horizontal surface. Finally,
the model for conversion of solar power to electrical power is presented.

2.4.1. Module Sizing

Two PV system configurations are considered in this paper: one where modules are mounted
only on the roof of the vehicle, and another where modules are mounted on the sides and back of the
bus as well. The sizing of the modules on the roof and each of the sides is described below.

The size of the PV modules are estimated from the bus geometry and are used to estimate the
rating of the roof and side PV systems [41]. The bus is approximated as a box that is 12.9 m long,
2.6 m wide, and 3.4 m tall, with dimensions estimated from manufacturer specifications for an electric
transit bus [22]. In order to maximize the impact of OBPV, all possible surfaces should be exploited.
It is estimated that the roof-mounted panels, used by both configurations, can cover 60% of the bus
roof area Atop. The right and left side modules each cover the same area of their respective sides,
and are estimated to cover 40% of the side area Aside, while 75% of the area of the back of the bus Aback
is covered in PV panels. These areas are denoted Apv,top, Apv,right, Apv,le f t, and Apv,back, respectively:

Apv,top = 60%× Atop (30)

Apv,right = 40%× Aside (31)

Apv,le f t = 40%× Aside (32)

Apv,back = 75%× Aback (33)

Each of these areas is then multiplied by the surface power density, SPD, under standard
reporting conditions (SRC), which are an operating temperature of TSRC = 25 ◦C and radiation
of GSRC = 1000 W/m2 [42]. The SRC are the laboratory test conditions under which commercial and
research PV modules are rated. This produces the rated power, Prated, of the module under SRC as
described in Equation (34). To avoid writing redundant equations, the bus surfaces are indexed by
a subscript i, with i = top, right, le f t, back referring to each surface of the bus. Then:

Prated,i = Apv,i × SPD (34)

The surface power density is based on manufacturer data [43] for monocrystalline silicone PV
cells, which are chosen for their high performance and low aerodynamic profile [4]. Based on these
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calculations, a bus roof can fit a PV system rated for 3300 W, the right and left sides can each fit a system
rated for 2900 W, and the back a system rated for 1100 W.

Similarly, the mass of each PV module is determined from the module area and the area density
AD of a PV module, again based on manufacturer data [43]:

Mpv,i = Apv,i × AD (35)

The PV mass is then used in Equation (9) to determine the total vehicle mass.
The parameters of the PV model are provided in Table 3.

Table 3. Photovoltaic (PV) model parameters.

Parameter Variable Value

Vehicle Roof Area Atop 33.2 m2

Vehicle Side Area Aside 44.1 m2

Vehicle Back Area Aback 8.81 m2

Surface Power Density SPD 165 W/m2

Area Density AD 1.89 kg/m2

Peak Power Temperature Coefficient Kmpp −0.43%/◦C

2.4.2. Direct Radiation Model

The direct radiation, sometimes called the beam radiation, represents the radiation that travels on
a direct path from the sun to the PV panel. When the direct radiation strikes a PV panel tilted away
from the direct radiation’s path, only the component of the direct radiation that is perpendicular to
the panel is converted into electrical energy. For direct normal irradiance with magnitude DNI and
an angle of incidence θI , the panel experiences beam radiation Gb according to:

Gb = DNI cos θI (36)

Alternatively, the direct radiation could be defined as a vector I pointing towards the PV module
in a 3D coordinate system. Then, a unit surface normal vector N could be defined for the PV module.
This paper uses a convention for the normal vector such that a horizontal panel has a normal vector
pointing directly up and a panel that is perpendicular to the direct radiation has a normal vector
pointing towards the sun. Then, the incident beam radiation Gb could be obtained by taking the
negative dot product of I and N, with the caveat that if the panel is facing away from the direct
radiation, the radiation is zero, rather than negative:

Gb = max(0, 〈−I, N〉) (37)

This method is illustrated in Figure 6.

I
I

N

Figure 6. Direct radiation.
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The PV modules under consideration in this paper are pitching and turning as the bus pitches
and turns, changing the angle of incidence on each surface of the bus at each time-step. In order to
obtain the incident beam radiation on moving surfaces, the following method is proposed: the direct
radiation is first placed into a global coordinate system and then transformed into a local coordinate
system oriented with the moving bus. Meanwhile, surface normal vectors are defined in the local
coordinate system for each PV module on the bus. Then, the incident beam radiation on each surface
is obtained using Equation (37). This process allows the incident beam radiation on each surface of the
vehicle to be obtained at each time-step of the simulation.

The global coordinate system assigns the east/west direction to the x-axis, the north/south
direction to the y-axis, and the vertical direction to the z-axis. The azimuth angle θA is the angle of
the sun along the horizon, where an angle of zero indicates north. The zenith angle θZ is the angle of
the sun off of the vertical axis. The direct radiation vector in this coordinate system is IG, where the
subscript G indicates the global frame. The global coordinate system is illustrated in Figure 7.

The azimuth angle and zenith angle are obtained based on the latitude, longitude, time of day, and
time of year at each time-step of the simulation. The process for finding the azimuth and zenith angles is
given in [44]. For direct normal irradiance with magnitude DNI, obtained from TMY data, and azimuth
and zenith angles θA and θZ, the direct radiation is put into vector form in the global coordinate system
such that the direct radiation vector points towards the earth, according to Equation (38):

IG = DNI ·

 − sin θA · sin θZ
− cos θA · sin θZ
− cos θZ

 (38)

Here, the variable DNI indicates the magnitude of the direct normal irradiance. The negative signs in
Equation (38) result from IG being defined as traveling from the sun to the bus.

Figure 7. Global coordinate system.

Next, the vehicle coordinate system is defined such that the first coordinate indicates the lateral
direction, the second coordinate indicates the longitudinal direction, and the third coordinate indicates
the vertical direction. For each axis, the rightward, forward, and upward directions are positive,
as shown in Figure 8.
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Figure 8. Bus coordinate system.

Then, for heading ψ and pitch angle θp, where ψ = 0 indicates north and θp = 0 indicates
a horizontal surface, IG is rotated as shown in Figure 9a,b. These rotations are carried out using the two
rotation matrices Rψ and Rθ, given in Equations (39) and (40), to obtain the direct radiation vector in
the vehicle coordinate system, IV. II denotes the direct radiation vector in the intermediate coordinate
system between the global and vehicle coordinate systems:

II =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


︸ ︷︷ ︸

Rψ

IG (39)

IV =

 1 0 0
0 cos θp − sin θp

0 sin θp cos θp


︸ ︷︷ ︸

Rθ

II (40)

IV = RψRθIG (41)
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Figure 9. (a) Heading rotation; and (b) pitch rotation.

The unit normal vectors for the PV module surfaces are then defined for each surface of the bus.
The unit normal vector for the top surface is a unit vector pointing straight up, the unit normal vector
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for the right-side surface is a unit vector pointing directly to the right, and so on. These unit normal
vectors are given by Equations (42)–(45):

Ntop =
[

0 0 1
]T

(42)

Nright =
[

1 0 0
]T

(43)

Nleft =
[
−1 0 0

]T
(44)

Nback =
[

0 −1 0
]T

(45)

Although this model only uses surfaces with normal vectors along the coordinate system axes,
this method could be used for surfaces facing any arbitrary direction.

Then, per Equation (37), the incident beam radiation on each surface is given by:

Gb,i = max(0, 〈−IV, Ni〉) (46)

However, some amount of the direct radiation on the vehicle is expected to be blocked by things
such as buildings or overhead trees. An additional efficiency factor ηshade is introduced to represent
losses from shading of the PV modules:

Gb,i = ηshade ×max(0, 〈−IV, Ni〉) (47)

Based on experimental results in [4], it is estimated that ηshade = 75%. In other words, 25% of all
direct radiation is considered lost to shading. Although estimating ηshade as constant will reduce the
model accuracy on small time scales, it is sufficient for measuring the total radiation over longer time
scales, such as an hour or a day.

2.4.3. Diffuse Radiation Model

TMY data provide diffuse radiation as diffuse radiation on a horizontal surface. However,
this paper considers PV modules mounted on the sides and back of a bus, which are decidedly not
horizontal. Additionally, the pitch motion of the bus is considered, so the roof- and back-mounted PV
panels experience further tilt. A way to convert diffuse horizontal radiation into diffuse radiation on
a tilted surface is needed.

Reference [45] compared the accuracy of several diffuse radiation models. Among them is the
isotropic sky diffuse model, which models diffuse radiation as uniformly distributed across the sky.
Under this modeling assumption, the diffuse radiation on a tilted surface is given by:

Gd =
1
2

DHI(1+ cos θt) (48)

where DHI denotes the magnitude of the direct horizontal irradiance and θt denotes the tilt angle.
This is the simplest of sky diffuse models and the foundation upon which other models are built.
More complex models include effects such as horizon and circumsolar brightening but often use
empirical lookup tables that add to the model’s computational load and rely on additional parameters
such as the angle of incidence and zenith angle. The simplicity of the isotropic model makes it much
more suitable for a vehicle simulation.

This model is applied to each surface. By using the isotropic model, only pitch angle is needed to
determine the diffuse radiation on each module. Knowledge of the bus heading or the sun’s position
in the sky is not necessary. The top panel is tilted only with respect to the pitch angle. The side panels
each remain vertical for the entire experiment, as it is assumed that the roll angle is constant and equal
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to zero. The back panel is tilted by 90◦ to start, and is subject to additional tilt based on the pitch angle.
This shown in Figure 10 and described in Equations (49)–(52):

Gd,top =
1
2

DHI(1+ cos θp) (49)

Gd,right =
1
2

DHI(1+ cos 90◦) =
1
2

DHI (50)

Gd,le f t =
1
2

DHI(1+ cos 90◦) =
1
2

DHI (51)

Gd,back =
1
2

DHI(1+ cos(90◦ + θp)) =
1
2

DHI(1− sin θp) (52)

Figure 10. Tilt angle of Rooftop and Back PV modules.

2.4.4. Efficiency Modeling

Once the incident beam and diffuse radiations on each surface have been found, the total radiation
on each surface is obtained by adding them together:

Gt,i = Gb,i + Gd,i (53)

With the total radiation on each surface known, a model must be formed to relate the solar
radiation to the electrical power extracted from each module.

The fundamental behavior of a PV cell can be modeled as a circuit with a current source, an ideal
diode, and series and shunt resistances, as shown in Figure 11 [46]. Solving for the terminal voltage VT
and current Iload using the method described in [47] produces an I–V curve with a shape typified by
Figure 12. For any given operating condition, PV modules have an ideal operating point, known as
the maximum power point (MPP). The power, voltage, and current at the MPP can vary considerably
with temperature and radiation. However, extensive literature exists showing how the MPP can be
tracked in order to maximize PV performance under variable conditions. Reference [48], for instance,
reviewed 19 distinct methods of MPP tracking that have been studied in academic literature.

Figure 11. PV module equivalent circuit.
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Figure 12. Typical PV module I–V curve.

In order to ensure as much solar energy as possible is utilized, it is assumed that the MPP is
tracked on each PV module. Although this is a strong assumption given the difficulties in tracking the
MPP for a system that may be partially shaded [49], the shading efficiency in Equation (47) is expected
to encompass any losses from failing to track the MPP accurately. The DC–DC converters described in
Section 2.2 and shown for the rooftop module in Figure 2 are used to track the MPP of the top and side
modules. By assuming the MPP is tracked accurately, it is only necessary to model the behavior of the
peak power value rather than the behavior of the PV module as a whole. In this paper, the temperature
and radiation dependencies of the maximum power are considered.

It can be assumed that the peak power value varies linearly with temperature according to a peak
power temperature coefficient, Kmpp [42]. Kmpp represents the fractional change in performance of the
module as the actual cell operating temperature T deviates from the SRC temperature. In this paper,
cell operating temperature is described by the thermal model presented in [42]. This thermal model
estimates the operating temperature T from the current total radiation Gt and air temperature Tair
as well as the nominal operating cell temperature (NOCT) under a nominal thermal environment:
radiation of 800 W/m2 and ambient air temperature of 20 ◦C:

Ti = Tair +
Gt,i

800W/m2 × (NOCT− 20 ◦C) (54)

It should be noted that while SRC represents standard lab conditions, the nominal thermal
environment in [42] represents the conditions that the PV module is typically subjected to once
installed outside. The ambient air temperature is acquired from TMY data. Kmpp is taken to be
−0.43%/◦C and the NOCT is taken to be 48 ◦C , based on literature regarding mono-crystalline silicon
PV cells [50,51]. Manufacturer datasheets may provide this information as well.

The peak power value is modeled as varying linearly with radiation exposure. This is a first-order
accurate model, per [42], and is seen by the authors as a suitable trade-off between complexity and
accuracy. As discussed previously, the PV system is rated at test conditions of GSRC = 1000 W/m2.
Thus, the electrical power produced at TSRC is given by the rated PV power times the ratio of the
current total radiation and the SRC radiation.

The temperature effects described previously are then incorporated to form Equation (55),
which describes the electrical power Ppv produced by a PV system subject to variations in temperature
and radiation exposure:

Ppv,i = Prated,i ×
Gt,i

GSRC
× (1 + Kmpp(Ti − TSRC)) (55)

The shading factor in Equation (47) is expected to account for some potential losses like the MPP
tracker finding a local (rather than global) optimal operating point. Additional sources of module
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inefficiency, such as soiling or degradation of the modules, are not considered in this study but will be
the subject of future work.

3. Case Study

In this section, a case study is laid out to assess the impact of PV on the electrical energy
consumption of the bus and the aging of the bus battery. The following subsections describe the
different bus configurations, the simulated geographic location, drive cycle, bus route, and time of
operation examined in the case study.

3.1. Bus Configurations

As discussed in the Section 2, two different configurations of OBPV were simulated.
One configuration, hereby referred to as the “Rooftop PV” configuration, has PV modules mounted to
the roof of the bus only. The other configuration, hereby referred to as the “Full-Body PV” configuration,
has PV modules mounted to both the roof, sides, and back of the bus. These configurations are listed
in Table 4.

Simulation with these two configurations would reveal how integrated PV power can improve
battery life and extend vehicle range. However, it is also true that battery cycle life and vehicle range
could be extended by simply using a larger battery. In order to assess how the benefits of integrated
PV hold up against the benefits of increased battery capacity, two additional bus configurations
are proposed.

The first additional configuration has no PV modules, but the battery pack has been enlarged
to have a total energy capacity of 341.9 kWh by adding an additional set of battery cells in series
(Np = 385, Ns = 111). This corresponds to adding batteries equal in weight to the weight of the
Rooftop PV module. This configuration is hereby referred to as the “Equal Weight” configuration.

The second additional configuration has no PV modules, but the battery pack has been enlarged to
have a total energy capacity of 356.6 kWh by adding six battery cells to each parallel set and by adding
four additional battery sets in series (Np = 391, Ns = 114). This corresponds to adding batteries whose
cost is approximately equal in to the cost of roof PV module. The cost of lithium-ion batteries and PV
modules are estimated from industrial average prices [52,53]. This configuration is hereby referred to
as the “Equal Cost” configuration.

Simulation of these additional configurations allow the benefits of PV to be compared fairly to
batteries. A nominal bus with no PV and with the original battery pack is simulated as well.

Table 4. Bus configurations.

Configuration PV Modules Battery Size

Nominal None 338.8 kWh
Rooftop PV Top Only 338.8 kWh

Full-Body PV Top, Sides, and Back 338.8 kWh
Equal Weight None 341.9 kWh

Equal Cost None 356.6 kWh

3.2. Simulation Location

The impact of OBPV on an electric bus depends on the local weather conditions and the geographic
location of the bus’s route. Clearer locations, locations closer to the equator, and locations with a higher
elevation are exposed to more solar radiation, resulting in a greater impact on the vehicle’s energy
consumption. Additionally, the performance PV panels mounted on the side or back of the bus depend
on the chosen route. For instance, side-mounted panels operating on a bus near the equator will collect
more energy if the route is primarily in the north/south direction, perpendicular to the direction of
travel of the sun and therefore exposed to more solar radiation.
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This paper considers a PV-augmented bus in Davis, CA, USA. Davis experiences hot, clear
summers and cool, rainy winters. It is at roughly sea level and, at 38◦33′14′′ N 121◦44′17′′ W,
is slightly south of the average latitude of the contiguous United States. The annual solar insolation on
an optimally tilted plane in Davis is approximately 2100 kWh/m2 [54]. The TMY data for Sacramento
International Airport (approximately 18 km away from Davis) is used to estimate a full 365 days of
weather [55].

3.3. Drive Cycle

The electric bus was simulated on the orange county transit authority (OCTA) drive cycle [56].
This drive cycle is an experimentally gathered velocity profile for a suburban bus in Orange County,
CA, USA. The velocity profile is shown in Figure 13. This cycle was repeated several times until the
desired route length was reached.
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Figure 13. Orange county transit authority (OCTA) suburban bus drive cycle.

3.4. Route

The electric bus is set to follow the UC Davis Unitrans O-Route bus route, at a pace set by the
OCTA drive cycle. Depicted in Figure 14, the route spends roughly equal time heading north, south,
east, and west. The elevation was assumed to be constant. With the assumption of constant elevation
(and therefore road grade/pitch angle set to zero for the duration of the experiment), the choice of
route does not impact the results for the bus with roof-mounted panels only. However, the route choice
still impacts the performance of the side- and back- mounted panels.
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Figure 14. Davis Unitrans O-Route.
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The degree of impact of OBPV was expected to vary with the usage patterns of the bus: different
daily driving distances have different depths of discharge, resulting in different aging of the battery.
In order to fully evaluate the impact of OBPV, each configuration of the bus was simulated for daily
driving distances ranging from 120 to 200 km. On the OCTA drive cycle, this corresponds to daily
driving durations of 6 to 10 h. The longest daily route length, 200 km, corresponds to the furthest the
nominal bus can drive once its battery has reached the end of its life—when its capacity has faded
by 20%.

3.5. Simulation Timespan

The simulated bus begins its route each day at 7:00 a.m. Repeated simulations were carried out to
find the battery cycle life for each configuration operating and daily driving distance. In the case of the
Rooftop PV and Full-Body PV configurations, the daily weather conditions from TMY data was used
chronologically. The repeated simulations were also used to measure the electrical energy collected by
the PV modules on each day of the typical meteorological year.

4. Results and Analysis

The results of the case study are organized as follows: first, the range extension provided by the
electric bus is estimated. Next, the results are used to measure the amount of electrical energy that was
collected per year from an OBPV system, compared to the annual consumption of electric energy by
the bus. Third, the results are used to determine the impact of OBPV on battery aging, as compared to
other methods of increasing battery life.

4.1. Range Extension

During the experiment, the nominal bus configuration used 129.6 kWh/100 km on average.
The Rooftop PV configuration also used 129.8 kWh/100 km while the Full-Body PV configuration
used 130.2 kWh/100 km, the Equal Weight configuration used 129.8 kWh/100 km, and the Equal Cost
configuration used 130.8 kWh/100 km. However, the Rooftop PV and Full-Body PV configurations
met the bus power request using both battery stored energy and power from the PV modules.
The battery stored energy consumed per 100 km was 123.8 kWh/100 km on average for the Rooftop PV
configuration and 118.9 kWh/100 km on average for the Full-Body PV configuration, although these
values varied with the amount of usable sunlight. Figure 15 shows the consumption of battery stored
energy per 100 km for each configuration as it varied by month.
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Figure 15. Simulated bus energy usage per configuration and time of year.
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Using these data, the range extension provided by either PV configuration compared to the
nominal bus was estimated. Results are presented as additional range per 100 km driven by the
nominal bus. On an average day, Rooftop PV could extend driving range on by 4.7 km per 100 km
driven, while PV modules on the roof and sides could extend driving range by 8.9 km per 100 km
driven. However, the amount of solar energy collected daily varied considerably with time of year
and weather conditions—the Rooftop PV could provide as little as 1.5 kWh or as much as 19.2 kWh
of electrical energy, while a bus with both roof and side modules could get as little as 3.0 kWh or as
much as 33.4 kWh. In the worst case (an overcast winter day), Rooftop PV could extend the range
by only 0.3 km per 100 km driven, while PV modules on the roof and sides could extend range by
0.6 km per 100 km driven. On the other hand, in best-case conditions (a clear summer day), range
could be extended by 7.6 km per 100 km driven for Rooftop PV and by 13.4 km per 100 km driven
for roof and side PV. A histogram of the range extension provided by OBPV is shown in Figure 16.
The implementation of OBPV had the clear potential to extend vehicle driving range, as on the majority
of days the bus range can be extended by several kilometers. However, the minimal energy collected
in the worst-case weather conditions, and the number of days that OBPV provides only a negligible
increase in range, indicate that OBPV was not a robust means to extend range every day of the year.
The inclusion of side-mounted PV panels helps mitigate this somewhat, but still has some days with
negligible range extension.
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Figure 16. Histogram of range extension provided by on-board PV (OBPV).

4.2. Photovoltaic Energy

The intensities of solar radiation reaching the bus roof and bus sides were compared in terms of
daily irradiance and monthly insolation. Figure 17a shows the simulated radiation that reaches the bus
on a fairly typical day. The side PV modules experienced more variation than the roof PV modules due
to the changing bus orientation and also experienced a decrease in radiation during midday, when the
sun was close to directly overhead. The side modules experienced less radiation in general because
they could not always be exposed to direct radiation. However, near sunrise and sunset when the
sun was low in the sky, sunlight reached the side modules at a more direct angle, such that the side
modules experienced more radiation than the roof module. Figure 17b shows the total solar insolation
that reached the panels each month. In Figure 17b, the total radiation on the side modules is found by
taking a weighted average of the total radiation on the right, left, and back modules:

Gt,sides =
Gt,right Apv,right + Gt,le f t Apv,le f t + Gt,back Apv,back

Apv,right + Apv,le f t + Apv,back
(56)
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The insolation is found by integrating the radiation with respect to time. Because the bus traveled
north, south, east, and west roughly equally, the insolations on the right, left, and back PV modules
were approximately equal to each other regardless of time of year.
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Figure 17. Intensities of solar radiation reaching the bus: (a) on a typical clear day; and (b) over the
course of each month.

The sun is lower in the sky in winter months compared to summer months, so solar radiation
approached the side modules at a more direct angle. In addition, greater cloud cover in the winter
months meant that the diffuse radiation made up a larger portion of the total radiation. This resulted
in less discrepancy between the Rooftop PV modules and side PV modules during winter months
compared to summer months. The total yearly solar insolation was 1480 kWh/m2 on the roof module
and 640 kWh/m2 on the side modules.

Assuming the PV modules could continue to collect energy and charge the battery while the
bus was not in operation, the roof-mounted panels collected a total of 4560 kWh of electrical energy
over one year, while the side-mounted panels collected a total of 4321 kWh of energy. Figure 18
shows the electrical energy from PV modules by month. The electrical energy is found by integrating
Equation (55), where the solar radiation and ambient temperature for each day of the year are obtained
from the NREL’s TMY data [55]. Because the side modules covered a larger area than the rooftop
modules, they produced a comparable amount of electrical energy to the rooftop modules despite their
lower annual insolation.

Using the fuel economy results presented earlier, one can estimate the portion of the annual
electrical energy consumption of the bus that the PV modules can provide for various daily route
lengths. For instance, if a bus is driven 150 km each day, Rooftop PV modules could provide up to
6.4% of the electrical energy, while modules on the roof and sides could together provide up to 12.5%.
The relation between this percentage and the average daily driving distance is illustrated in Figure 19.

An interesting finding was that although the side-mounted PV panels provided less power in
summer months, they provided as much or more power than the Rooftop PV modules during the
winter months. This was because, in winter months, the earth is tilted away from the sun, resulting in
the radiation having a more direct path to the side modules than in summer months. Although the
side PV modules were less efficient on a per-area basis, they reduced the variability in daily energy
collected between summer and winter months.



Energies 2017, 10, 943 22 of 31

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

100

200

300

400

500

600

E
ne

rg
y 

(k
W

h)

Electrical Energy from PV Modules by Month

Roof PV Modules
Side PV Modules

(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

20

40

60

80

100

120

140

160

180

200

E
ne

rg
y 

(k
W

h)

Electrical Energy from PV Modules by Month

Right PV Modules
Left PV Modules
Back PV Modules

(b)

Figure 18. Monthly electric energy collected from (a) roof and side PV modules; and (b) right, left, and
back PV modules.
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The payback time can be computed for the top and side PV modules using the commercial
off-peak cost of energy in Davis, $0.23 per kWh [57]. Using the industrial average price per watt of
solar panels, it is estimated that the rooftop module would cost $6247, while the side modules would
cost $13,139 [53]. Then, the rooftop panels are expected have a payback time of six years, while the
side panels are expected to have a payback time of 13 years and three months. These payback times
are longer than the amount estimated in [4,13] due to the lower price of electric energy compared to
diesel fuel. For payback times of this length, it is questionable whether a manufacturer would want
to go ahead with PV integration. However, these payback times do not account for any incentives
that local government might offer for solar installation, nor do they account for the value added from
extending the battery cycle life, which will be discussed in Section 4.3.

4.3. Battery Aging

Repeated simulations were carried out for each configuration to find the battery cycle life
associated with each configuration and route duration. In this section, one “cycle” refers to one day of
driving. The nominal, equal weight, and equal cost configurations did not have any weather-dependent
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parameters, so the only variation from one simulation to the next was the maximum battery capacity.
On the other hand, the Rooftop PV and Full-Body PV configurations had weather conditions that
changed daily in addition to the changing maximum battery capacity. These experiments were carried
out using chronological TMY data.

Before proceeding to the battery aging results, some of the aging modeling assumptions are
verified. The battery aging model assumed that the charge and discharge rates, as well as the difference
in charge and discharge rates between configurations, would be small enough that the aging model
would only need to consider the depth-of-discharge per cycle. It was observed from the results that
the average absolute C-rate for the nominal bus was 0.169 C, while it was 0.166 C for the Rooftop
PV configuration and 0.165 C for the Full-Body configuration. These rates are low and near 0.5 C,
the C-rate of the test data in [34]. Additionally, the maximum discharging C-rates were 0.777 C,
0.768 C, and 0.764 C, respectively, while the maximum charging C-rates were 0.968 C, 0.977 C, and
0.992 C. Because the C-rates were low and near the C-rate of the empirical cycle life data, and because
the differences in C-rate between the configurations were minimal, the assumption that charge and
discharge rates could be neglected from the aging model was considered valid.

Figure 20 shows the aging of the five different configurations for a 160 km daily bus route.
The battery for the nominal configuration aged the fastest, reaching its end-of-life after approximately
6000 charge-and-discharge cycles—or rather, approximately 6000 days of driving. The Full-Body PV
configuration aged the slowest, followed by Rooftop PV and then the two extra-battery configuration.
For each configuration, as the maximum storage capacity of the battery decreased with each day of
driving, it was discharged to greater depths, which, in turn, caused each cycle to do more damage.
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Figure 20. Battery capacity fade on the 160 km bus route.

Figure 21a shows the cycle life for each configuration as it varies with route length, while
Figure 21b shows the increase in cycle life of each configuration over the nominal configuration at
each route length. Although the marginal cycle life for each configuration increased with decreasing
route length, the percentage increase in cycle life was greater for longer routes. The Full-Body PV
configuration increased the battery cycle life the most, followed by the Rooftop PV, then the Equal
Cost, and finally the Equal Weight configuration.
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Figure 21. (a) Battery cycle life; and (b) increase in battery cycle per configuration.

Increased cycle life on its own is not necessarily a good metric for each configuration’s
performance. Each configuration would have different drawbacks, such as added mass, size,
or installation cost. The additional benefits of each configuration should therefore be compared
to the additional penalty incurred by implementing that configuration.

This paper first considers the marginal mass of each configuration. If the added PV modules or
battery cells add too much weight, it might require the manufacturer to redesign other components of
the bus or reduce the allowable number of passengers. The marginal mass of each configuration is
summarized in Table 5.

Additionally, each configuration was looked at in terms of the effort required to implement
that configuration. “Effort to implement” might include cost to install each configuration, ongoing
maintenance costs, or additional hardware, such as a larger battery management system. This paper
considers the estimated marginal cost of the configuration, in terms of the industrial average price
per watt of PV panels and price per kilowatt-hour of lithium-ion batteries, to be a reasonable proxy
variable for “effort to implement”. The price per kilowatt-hour for lithium-ion batteries is provided
by [52], while the price per watt of PV systems is from [53]. The marginal cost of each configuration is
summarized in Table 5.

Table 5. Marginal mass and cost of bus configurations.

Configuration Marginal Mass Marginal Cost

Rooftop PV 37.6 kg $6247
Full-Body PV 116.6 kg $19,386
Equal Weight 36.2 kg $1220

Equal Cost 209.3 kg $6227

Figure 22a shows the marginal cycle life per marginal mass for each configuration and route
length. Although the Full-Body PV configuration yielded the most additional cycles, the Rooftop PV
configuration was a more effective use of mass. In general, adding PV modules to the bus was a more
effective use of weight than increasing battery size.

Figure 22b shows the marginal cycle life per marginal cost for each configuration and route length.
Due to the low amount of radiation that the side modules experienced, the Full-Body PV configuration
was the most inefficient use of funds. Although the Equal Weight configuration added the fewest
cycles, its marginal cycle life was achieved at very little expense. Both added-battery configurations
outperformed the Full-Body PV configuration, but the Rooftop PV configuration was clearly the
most cost-effective.
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Figure 22. Marginal cycle life (a) per marginal mass; and (b) per marginal cost.

These relationships are visualized with the radar charts shown in Figure 23a–d. It should be noted
that these plots use the inverse of marginal cost and marginal mass. This is done so that a large value
corresponds to a desirable trait: large “per cost” indicates an inexpensive option, while large “per mass”
indicates a low-weight option. The axes of these plots are scaled so that the largest marginal cycle
life, inverse marginal cost, and inverse marginal mass across the four cases are all the same distance
from the origin. Although the Rooftop PV and Equal Cost configurations had the same initial cost,
the Rooftop PV configuration provided moderately longer cycle life and was a much more effective
use of weight. The Full-Body PV provided the largest extension to battery life, but was neither as
cost or weight effective as PV modules on the bus roof only. The Equal Weight configuration was
both low-cost and low-weight, but provided little in the way of additional battery lifespan. Overall,
the Rooftop PV configuration offered the best balance of extending battery cycle life while keeping
weight and cost low.

Alternatively, one could define a non-dimensional cost or reward function to compare the four
configurations with a single metric. For example, Equation (57) is a reward function that increases
with larger cycle life improvements and decreases with larger costs at rates defined by the weighting
parameters B∆CL, B∆M, and B∆Cost, where ∆CL is the average marginal cycle life, ∆M is the marginal
mass, and ∆Cost is the marginal cost:

R(∆CL, ∆M, ∆Cost) = B∆CL∆CL− B∆M∆M− B∆Cost∆Cost (57)

One could select B∆CL = 2, B∆M = 4.59, and B∆Cost = 0.0495, which normalizes the three
variables so that, among the four configurations, the reward due to the maximum mean marginal
cycle life is equal to the combined penalty of the maximum marginal mass and maximum marginal
cost. The resulting reward/penalty of each configuration for this function and weighting are shown
in Figure 24. Once again, the Rooftop PV configuration strikes the best balance between added cycle
life and added cost and weight. The higher weight lower marginal cycle life of the larger-battery
configurations result in a net penalty rather than reward, indicating that OBPV is a better choice to
extend battery lifespan. Of course, these results are heavily dependent on the choice of reward function.
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Figure 23. Radar plots of the performance metrics for (a) rooftop PV; (b) full-body PV; (c) equal weight;
and (d) equal cost.
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Figure 24. Evaluation of each configuration using a reward function.

A final metric for assessing the value of each configuration is the return on investment from an
increase in cycle life. The nominal configuration was estimated to cost $118,580. Then, the cost per
cycle of the nominal configuration can be estimated by dividing the estimated cost by the nominal
configuration cycle life CLnom:

Cost per Cycle =
$118, 580

CLnom
(58)
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The value of the cycles added by each configuration can then be found by multiplying the nominal
cost per cycle by the marginal cycle life ∆CL of a given configuration:

Cycle Life Value =
$118, 580

CLnom
× ∆CL (59)

The net profit or loss is found by subtracting the marginal cost ∆Cost of a given configuration:

Net Profit/Loss =
$118, 580

CLnom
× ∆CL− ∆Cost (60)

Return on investment (ROI) is then found by normalizing by the marginal cost of that same
configuration and expressing the result as a percent:

ROI = 100%×
(

$118, 580
CLnom

× ∆CL− ∆Cost
)
× 1

∆Cost
(61)

Here, ROI = 0% indicates the break-even point, while ROI = 100% indicates that the value of
the added cycle life is twice the estimated cost of the configuration.

The ROI for each configuration and daily driving distance are shown in Figure 25. For all
configurations, the ROI is greater with longer daily driving distances—or, rather, for routes where the
battery is discharged to a greater depth. The Rooftop PV configuration is seen to provide a positive
ROI for all route lengths, while the Full-Body PV configuration is a net loss until the daily driving
distance reaches 160 km. The added-battery configurations are beneficial, but not to the extent of the
Rooftop PV configuration.
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Figure 25. Return on investment of OBPV and increased battery size.

5. Conclusions

This paper proposed modifying an electric bus to have OBPV power generation. PV modules
mounted on both the vehicle roof and vehicle sides were considered. A modeling framework of
an electric bus was developed so that the impact of the OBPV could be assessed for different locations,
bus routes, and bus componentry. In particular, a method was developed to model the solar irradiance
on a moving surface. Daily operation of an electric bus on a suburban bus route in Davis, CA, USA
was simulated as a case study.

The results of the numerical experiment showed that, on average, the collected power could
extend range by approximately 4.7 km per 100 km driven with rooftop panels and 8.9 km per 100 km
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driven with rooftop and side panels. However, high variance in the daily power collected meant that
OBPV were not a robust means of range extension.

The PV modules could supply up to 8881 kWh of energy annually when mounted on both the
roof and sides of the bus, or up to 4560 kWh of energy annually when mounted on the roof only.
Although the side modules occupied approximately twice the area of the rooftop module, over the
course of a year, they produced 5% less energy than the roof modules, indicating that side-mounted
modules were not as effective but could still prove beneficial after all of the rooftop area has been
exploited. The payback time for the roof-mounted panels was estimated to be six years, while the
payback time of the side-mounted panels was estimated to be 13 years and three months. However,
this payback time did not consider the value added by increasing battery cycle life.

The results were also used to assess the impact of OBPV on battery lifespan. For constant vehicle
range, Rooftop PV modules could extend battery cycle life by up to 10%, while PV modules on both
the roof and sides could extend it by up to 19%. Rooftop PV modules were shown to be both a more
weight-effective and cost-effective means of increasing battery cycle life than expanding the size of
the battery. Adding PV modules to both the roof and sides of the bus extended battery life the most
and was more weight-effective than increasing battery size, but was the least cost-effective method.
The additional lifespan added by the Rooftop PV was a positive return on investment, while the return
on investment for a system with modules on both the roof and sides was negative unless the battery
was discharged deeply each day.

Future work will include experimental validation of both the photovoltaics model and the battery
aging model. In particular, the modeling assumptions for shading losses on a moving vehicle must be
verified for the bus route under consideration.
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DC Direct Current
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