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Abstract: In wind turbine control, maximum power point tracking (MPPT) control is the main control
mode for partial-load regimes. Efficiency potentiation of energy conversion and power smoothing are
both two important control objectives in partial-load regime. However, on the one hand, low power
fluctuation signifies inefficiency of energy conversion. On the other hand, enhancing efficiency may
increase output power fluctuation as well. Thus the two objectives are contradictory and difficult
to balance. This paper proposes a flexible MPPT control framework to improve the performance of
both conversion efficiency and power smoothing, by adaptively compensating the torque reference
value. The compensation was determined by a proposed model predictive control (MPC) method
with dynamic weights in the cost function, which improved control performance. The computational
burden of the MPC solver was reduced by transforming the cost function representation. Theoretical
analysis proved the good stability and robustness. Simulation results showed that the proposed
method not only kept efficiency at a high level, but also reduced power fluctuations as much as
possible. Therefore, the proposed method could improve wind farm profits and power grid reliability.

Keywords: wind turbine; maximum power point tracking; MPPT; conversion efficiency;
power smoothing; power fluctuation; multi-objective control; cost function

1. Introduction

With more and more attention being paid to environmental problems, wind energy has become
one of the most important renewable energy sources to develop and utilize [1,2]. Although wind
turbine control techniques have been developed for several decades, there are still many tough control
problems to be solved. Generally, wind turbine control is divided into two parts: partial-load regime
(below rated wind speed) and full-load regime (above rated wind speed). In full-load regime, power
smoothing is the main control objective, and it is unnecessary to consider energy conversion efficiency.
In partial-load regime, maximum power point tracking (MPPT) is the main operation mode [3,4]. The
control objectives in partial-load regime consist of achieving high wind energy conversion efficiency,
smoothing output power, diminishing mechanical loads, riding through fault conditions, etc. In these
objectives, efficiency potentiation and power smoothing have been studied in-depth separately [2,5,6].
However, on one hand, with the increase of turbine inertia, enhancing conversion efficiency leads to
higher fluctuations of generator power. On the other hand, power smoothing without energy storage
devices may cause efficiency loss. Although many power smoothing methods based on storage devices
are able to reduce this contradiction, the cost of energy storage devices is expensive. Therefore, it is
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essential to balance conversion efficiency and power smoothing in partial-load regime without energy
storage devices.

Balancing conversion efficiency and power smoothing is multi-objective optimization (MOO)
problem. A novel MPPT framework employing fuzzy inference system (FIS) was proposed in [3] to
consider these multiple objectives. The captured energy efficiency is enhanced, and power fluctuation
is suppressed as much as possible, but FIS requires a priori artificial experience, and it is complex
to establish fuzzy memberships. Other advanced control algorithms, such as adaptive control [7],
robust control [8] and nonlinear control [9], are also employed in wind energy conversion systems
(WECSs). Reference [7] proposed an adaptive MPPT control based on a network-based reinforcement
learning method to deal with the changes of operating environment. A robust nonlinear control is
presented in [8] to maximize energy conversion which allows maximization without exacting wind
turbine model knowledge. In [9], the dynamics aspects of the wind and aeroturbine are taken into
consideration by proposing nonlinear static and dynamic state feedback controllers. Although the
aforementioned advanced control methods are effective for MPPT control, they cannot handle the
problems with linear or nonlinear constraints. Model predictive control (MPC) is widely adopted in
engineering for multi-objective problems with linear or nonlinear constraints. It has been employed in
WECS for generator control [10,11], power converter control [12,13], wind-battery hybrid control [14]
and other multi-objective control [15]. Mechanical load and conversion efficiency are considered
in [16,17]. In [18,19], MPC is used to maximize energy conversion, mitigate drive train loads in both
partial-load and full-load regime. However, power smoothing is only considered in full-load regime.
In fact, it is essential to suppress extra fluctuations of generator power in partial-load regime. The
stability of MPC with receding horizon is guaranteed by employing a terminal quality constraint [20].
The modeling of local linearization state-space equations is important for MPC design. Mostafa [18]
presented a MPC method where the linear models are switched according to wind speed condition.
A fuzzy model- based multivariable predictive control approach is also proposed in [21] to improve
control performance. In the state-space models for the studies above, the wind speed within the
control horizon is often regarded as constant, and wind variations are omitted in the optimization
solving process. However, power fluctuations are closely related to the wind variations in current
control horizon, and reducing fluctuations requires taking wind speed variations into account. The
weights in the MPC value function play a key role in the trade-off between the multiple objectives.
Flexible weight tuning strategies can help improve control performances. A tuning approach based on
the computation of sensitivity tables is proposed for tradeoff in [22]. In [23], weights are adjusted in
response to the variable wind conditions and operational requirements by classifying different wind
speed scenarios.

In this paper, a balancing strategy for large-inertia WECSs is proposed based on a flexible
MPPT control framework employing a model predictive method. Energy conversion efficiency and
power smoothing are both considered under partial-load regime. Firstly, the relationship between
conversion efficiency, generator power smoothing and turbine inertia is analyzed. Conversion
efficiency potentiation may increase the generator power fluctuation. For a large inertia turbine,
increasing the same conversion efficiency brings much larger fluctuation than for a small inertia turbine.
Thus, it is necessary to balance and alleviate extra power fluctuation at no or very low conversion
efficiency cost. Secondly, a new control framework based on classical optimal torque control (OTC)
is presented to compensate the torque reference in order to regulate the dynamic performance of the
system by adjusting the compensation gain. For large-inertia wind turbines, different compensation
gains may lead to different conversion efficiencies, as well as power fluctuations. Then, thirdly,
to determine the compensation gain, the MPC method is proposed to solve the optimization problem
considering both conversion efficiency and power smoothing. The computational burden to solve the
optimization problem is reduced by transforming the cost function representation. Besides, dynamic
weights in the cost function are presented to improve the control performance. Benefiting from
the proposed control framework, the stability of the control system is guaranteed without any
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terminal constraints, which are usually adopted in traditional open-loop MPC control methods.
In addition, the proposed control has good robust performance, and the stability is kept despite
uncertain parameters and unmodeled dynamics in the MPC. The proposed method not only maintains
the energy conversion efficiency at a high level, but also reduces power fluctuations as much as
possible. Therefore, it can increase the economic profits of wind farm operators and improve the
reliability of power systems.

The remainder of this paper is organized as follows: Section 2 presents brief model descriptions
used for our state-space model and simulations. In Section 3, the relationship between power
fluctuations, conversion efficiency and turbine inertia is analyzed. Details of the proposed method are
discussed in Section 4, including the proposed control framework, MPC implementation, dynamic
weights and stability and robustness analysis. Finally, simulation studies are carried out to verify its
effectiveness in Section 5. Section 6 presents the conclusions that summarize the main contributions of
this paper.

2. Brief Model Description

2.1. Overall WECS Model

Figure 1 outlines a simplified WECS. The main components of a WECS consist of wind
turbine system (wind turbine model), transmission system (drive train model) and electrical system
(generator model). Firstly, wind turbine converts wind power into captured mechanical power.
Secondly, the transmission system transmits the mechanical power captured by the rotor to the
generator in the electrical system. A gearbox is included in the transmission system to increase the
rotor speed to values more suitable for driving the generator. Note that gear box will be removed in a
direct-driven wind turbine. Thirdly, the generator transforms mechanical power into electrical power.
Its electrical terminals are connected to the power system. Note that power electronics devices, which
are usually used to control generator output power, are not illustrated in Figure 1.
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Figure 1. Overall schematic of a wind energy conversion system.

2.2. Effective Wind Speed Model

Since effective wind speed contains the rotational sampling effect of the wind turbine, it can be
used for a thorough assessment of the designed controller performance. The effective wind speed can
be modeled as a sum of two components [18,24]:

Vw = Vmean + Vturb (1)
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where Vmean is an average wind speed component that varies slowly in the long-term time domain. Vturb
is a turbulent component that changes rapidly. The turbulent component is obtained by passing white
noise through three cascaded filters [25], HF(w), HSF(w) and HRSF(w). The first filter HF(w) is used to
obtain the turbulence by approximating the von Karman spectrum or the Kaimal spectrum. The filters
HSF(w) and HRSF(w) are included to take account of the rotational sampling effect on the turbulence
derived from filter HF(w). The filter HSF(w), called spatial filter, attenuates the high-frequency
components of the turbulence. The filter HRSF(w) models the effect of rotational sampling, and amplifies
those components with frequencies close to triple the turbine speed (3P frequency). Details of effective
wind speed calculation can be found in [25].

2.3. Wind Turbine Model

Wind energy is captured by the wind turbine, and the captured mechanical power Pwt can be
written as:

Pwt = 0.5ρπRw
2V3

wCp(λ, β) (2)

where ρ is the air density, Rw is the radius of the turbine rotor and Vw is the wind speed. Cp is a power
coefficient that denotes the wind energy conversion efficiency. It is the function of tip-speed ratio
λ = ωrRw/Vw and pitch angle β. ωr is the rotor speed.

2.4. Drive Train Model

The drive train model illustrated in Figure 1 can be equivalent to a single-mass shaft model
coupling two parts: turbine side and generator side, as shown in Figure 2. Inertia J is the equivalent
inertia of single mass that including both turbine rotor and generator rotor inertia. Ngear is the gear ratio,
ωr is rotor speed, Tm and Te are the torques on each side of the transmission system. The equivalent
values of inertia and generator torque need to take gear ratio into account.
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Figure 2. One-mass drive train model.

According to Newton's second law of rotation, the drive train model can be expressed as:

J
.

ωr = Tm − Ngear · Te (3)

where J is the equivalence of the entire inertia, Ngear is the gear ratio, Tm is the mechanical torque, Te

is the generator torque,
.

ωr is the angular acceleration of the turbine rotor. For a direct-drive wind
turbine, Ngear = 1.

2.5. Generator Model

To decouple active and reactive power control, a d-q synchronous reference frame is employed to
express the voltage and flux equations:
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
uds = −rsids −ωsψqs +

dψds
dt

uqs = −rsiqs + ωsψds +
dψqs

dt
udr = rridr − sωsψqr +

dψdr
dt

uqr = rriqr + sωsψdr +
dψqr

dt

(4)


ψds = −(Lsσ + Lm)ids + Lmidr
ψqs = −(Lsσ + Lm)iqs + Lmiqr

ψdr = −(Lrσ + Lm)idr + Lmids
ψqr = −(Lrσ + Lm)iqr + Lmiqs

(5)

where ωs is the synchronous speed, u is the voltage, i is the current, r is the resistance, ψ is the flux,
Lm is the mutual inductance, Lσ is the leakage inductance. Subscripts d, q denote the d-axis and q-axis,
respectively. Subscripts s and r denote the generator stator and rotor, respectively.

3. Analysis of Wind Turbine Characteristic

Multiplying both sides of Equation (3) by the rotor speed ωr, the relation between captured
mechanical power Pwt and output electric power Pe is expressed as:

Pe = Pwt − Protor (6)

where Protor = J
.

ωrωr. According to Equation (6), the captured Pwt is divided into two parts, most
of the power is converted into the generator power Pe, then higher variations of Pwt result in the
fluctuations of electric power Pe. The rest of Protor is stored as rotational kinetic energy. It can be
regulated by controlling the rotor speed ωr and angular acceleration of the rotor

.
ωr in coordination

to reduce the fluctuation of Pe [26,27]. Thus Protor supplies the capability to balance efficiency and
power smoothing.

According to Equation(6), enhancing the efficiency may increase the fluctuations of the output
power. To study the relationship between turbine inertia, power fluctuations and conversion efficiency,
studies are carried out based on the MPPT strategy in [5], which is a flexible way to change conversion
efficiency by tuning a single control parameter. The first case is to investigate the variation trend
of power fluctuations as the conversion efficiency is getting higher under the same turbine inertia
conditions. The results in Figure 3 show that a higher efficiency leads to larger power fluctuations with
the same turbine inertia. The second case is carried out to study how the power fluctuations change
with larger turbine inertia when the conversion efficiencies are kept constant. The results in Figure 4
indicate that, to achieve the same conversion efficiency, a wind turbine with larger inertia would cause
higher power fluctuations.
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The same MPPT strategy in [5] is used for these analyses. For different studies, only one control
parameter is tuned respectively to regulate the conversion efficiency. It is improved based on optimal
torque control, which is one of the most widely used MPPT control strategies in wind turbine engineering
for its simple implementation and low power fluctuations [28]. A novel proportional control loop is
added in this classical optimal torque control scheme to improve the dynamic performance of the system.
The proportional gain Kp in this control loop determines the wind energy conversion efficiency. By tuning
the single control parameter (proportional gain Kp) conversion efficiency is changed flexibly. It is not
important to determine which MPPT strategy is adopted for this study above because the variation
trends of efficiency, fluctuations and inertia are similar for different control strategies. The reason for
employing the MPPT strategy in [5] is that, this strategy is flexible to change conversion efficiency by
tuning only single control parameter. Although there may be some kinds of MPPT strategy based on
generator speed that could smooth output power utilizing large inertia, the conversion efficiency would
decrease significantly. Because rotor speed is controlled to smooth output power, and it cannot track
rapid wind variations. This defect would become more evident with larger turbine inertia. Therefore,
for the same MPPT strategy, it is hard to maintain both efficiency and fluctuation level unchanged as
turbine inertia getting larger. In general, large-inertia wind turbine brings more complex problems in
balancing both power smoothing and conversion efficiency enhancement.

4. Proposed Method

4.1. Description of the Proposed Framework

The MPPT control framework employing a model predictive method is proposed to derive
generator torque reference T∗e for a closed-loop system. As shown in Figure 5, the left side in the grey
area is the proposed method.
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The right side of Figure 5 is the decoupling control in the d-q synchronous reference frame for the
generator side converter (GSC), which is employed to control the active power and reactive power
independently. The active power is the main component of output power that influences the frequency
of the power system. In a normal operating situation, the value of reactive power is usually kept at a
low level. There are two main proportional-integral (PI) control loops in the GSC: the active power
control loop and the reactive power control loop. The active power is determined by iqs control and
the reactive power is determined by ids control. Details of decoupling control can be found in [3]. It is
noted that the generator power discussed in this paper is active power, and the reactive power is set
to zero.

The proposed method illustrated in Figure 5 consists of two parts, Part 1 and Part 2. Part 1 is a
classical OTC MPPT calculator. OTC is one of the most widely employed MPPT strategies for its good
stability, control performance [3,28] and simple implementation. The output of the OTC calculator is
expressed as:

Topt
e = Kopt ·ω2

r /Ngear (7)

where Kopt = 0.5ρπR5
wCpmax/λ3

opt. λopt is the optimum tip-speed ratio. From (7), Topt
e is a function

of rotor speed. Since large inertia leads to slow dynamic behavior of the rotor speed ωr, Topt
e varies

slowly without compensation Tcomp, and the control system does not track wind speed variation. As a
result, the conversion efficiency of OTC is reduced significantly, but the capability of power smoothing
is improved apparently.

Thus, Part 2 in Figure 5 is designed to take advantage of this and make up the disadvantages
discussed above. Compensation torque Tcomp is derived depending on rotor acceleration and
compensation gain:

Tcomp = Kw ·
.

ωr (8)

Then, the final generator reference is derived after compensation:

T∗e = Topt
e − Tcomp (9)

Since
.

ωr equals to zero when the wind turbine operates in steady state (Cp achieves a maximum
value), the compensation of Part 2 is only activated during transient processes where the system
deviates from its steady-state operation point (OP). Kw is regulated by a model predictive method
considering both conversion efficiency and power smoothing.

Figure 6 is the locus of OPs for classical OTC and proposed control framework, assuming that
wind speed steps from 7 m/s to 11 m/s. Figure 6a,b is coincident, and the only difference is that rotor
acceleration is shown in Figure 6b.

Energies 2017, 10, 939  7 of 19 

 

The right side of Figure 5 is the decoupling control in the d-q synchronous reference frame for 
the generator side converter (GSC), which is employed to control the active power and reactive 
power independently. The active power is the main component of output power that influences the 
frequency of the power system. In a normal operating situation, the value of reactive power is 
usually kept at a low level. There are two main proportional-integral (PI) control loops in the GSC: 
the active power control loop and the reactive power control loop. The active power is determined 
by iqs control and the reactive power is determined by ids control. Details of decoupling control can be 
found in [3]. It is noted that the generator power discussed in this paper is active power, and the 
reactive power is set to zero. 

The proposed method illustrated in Figure 5 consists of two parts, Part 1 and Part 2. Part 1 is a 
classical OTC MPPT calculator. OTC is one of the most widely employed MPPT strategies for its 
good stability, control performance [3,28] and simple implementation. The output of the OTC 
calculator is expressed as: 

2 /opt
e opt r gearT K N   (7) 

where 5 3
max0.5 /opt w p optK R C  . opt  is the optimum tip-speed ratio. From(7), opt

eT  is a function of 

rotor speed. Since large inertia leads to slow dynamic behavior of the rotor speed ωr, opt
eT  varies 

slowly without compensation Tcomp, and the control system does not track wind speed variation. As a 
result, the conversion efficiency of OTC is reduced significantly, but the capability of power 
smoothing is improved apparently.  

Thus, Part 2 in Figure 5 is designed to take advantage of this and make up the disadvantages 
discussed above. Compensation torque Tcomp is derived depending on rotor acceleration and 
compensation gain:  

=comp w rT K    (8) 

Then, the final generator reference is derived after compensation: 
* = opt

e e compT T T  (9) 

Since r  equals to zero when the wind turbine operates in steady state (Cp achieves a 
maximum value), the compensation of Part 2 is only activated during transient processes where the 
system deviates from its steady-state operation point (OP). Kw is regulated by a model predictive 
method considering both conversion efficiency and power smoothing.  

Figure 6 is the locus of OPs for classical OTC and proposed control framework, assuming that 
wind speed steps from 7 m/s to 11 m/s. Figure 6a,b is coincident, and the only difference is that rotor 
acceleration is shown in Figure 6b.  

 
Figure 6. Moving locus of operation points, (a) 2D view; (b) 3D view with rotor acceleration included. Figure 6. Moving locus of operation points, (a) 2D view; (b) 3D view with rotor acceleration included.



Energies 2017, 10, 939 8 of 19

The blue curve is the locus of classical OTC, the red curve is the locus of the proposed control
framework. When the wind speed changes, the operation points step from A to B1, and B2, respectively.
The rotor acceleration of B2 is much larger than that of B1. This means that the OP of the proposed
method reaches steady-state point C faster (time = 3 s) than that of classical OTC method (time = 10 s).
Therefore, the proposed control framework improves the dynamic performance of control system,
and as a result, increases the conversion efficiency of the wind turbine. This effect all depends on Kw.
A larger Kw means higher efficiency. However, it also brings higher power fluctuations. Therefore, it is
essential to regulate Kw reasonably in order to balance the efficiency enhancing and power smoothing
capabilities according to the current operating conditions. In this paper, the optimal Kw is derived by a
model predictive method.

4.2. Procedures of MPC Implement

In the proposed control framework discussed above, the model predictive solver plays a key role
in determining the value of compensation gain Kw. MPC is widely used to handle multi-objective
control problems in multi-input multi-output (MIMO) systems. The procedure of MPC design is
as follows.

• The input, output variables and control signals need to be clear. Linear dynamic state-space
model also requires to be established. Simplification of the model is necessary.

• The future output sequence within the control horizon is predicted. The optimized control
sequence U(k) = [u(k), . . . , u(k + Nc − 1)]T is derived from solving a constrained problem expressed
as a value function at each sampling time.

• The first control signal in the sequence is sent to the system. The optimization will be repeated
and updated with predictive horizon rolling.

The flow chart of this procedure is presented in Figure 7.
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In classical MPC, system stability is guaranteed by employing terminal quality constraints. The
optimization is realized by solving a quadratic programming (QP) problem on line to derive control
sequence, which brings about a great amount of calculation.

4.3. State-Space Model for Predictive Control

To reduce the computing burden, simplification of the detailed model is necessary. The generator
model can be simplified as a first-order model to represent the electrical dynamics [18]:

.
Te =

1
τe
(T∗e − Te) (10)

where T∗e is the generator torque reference, τe is the equivalent time constant. According to Equations (3)
and (10), the simplified model is nonlinear. Assuming that x = x + δx, x is the steady state under a
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certain wind speed condition, and δx is the deviation from x, linearizing the simplified Equations in
(3) and (10) yields: {

Jδ
.

ωr = ΓTwδωr − Ngear · δTe + ΓTbδβ + ΓTvδVw

τeδ
.
Te = δT∗e − δTe

(11)

where ΓTw = ∂Tm
∂ωr

∣∣∣
(vw0,β0)

, ΓTv = ∂Tm
∂Vw

∣∣∣
(ωr0,β0)

, ΓTb = ∂Tm
∂β

∣∣∣
(ωr0,Vw0)

.

Since this research focuses on the MPPT below rated wind speed, then the pitch angle is fixed, δβ

is set to zero.
The state-space model for predictive method is given as:

.
X(t) =

[
1
J ΓTw − 1

J Ngear

0 − 1
τe

]
X(t) +

[
0
1
τe

]
u(t) + 1

J ΓTvd(t)

Y(t) = [0, 1]X(t)
(12)

where X = [ωr, Te], u = T∗e , d = δVw.
Discretizing the continuous model in Equation (12), the state-space equation is expressed as:{

X(k + 1) = AX(k) + Bu(k) + Ed(k)
Y(k) = CX(k)

(13)

The cost function for the predictive method is:

Jmin = min


Nc

∑
i=1
‖er(k + i)‖2

M1︸ ︷︷ ︸
E f f iciency

+
Nc

∑
i=1
‖∆eP(k + i)‖2

M2︸ ︷︷ ︸
Fluctuations

+ ‖∆Kw(k)‖2
M3︸ ︷︷ ︸

Increment

 (14)

subject to ωmin
r ≤ ωr(k + i) ≤ ωmax

r ,
.

ω
.

ω
.

ωr(k + i) ≤
∣∣∣ .
ω

max
r

∣∣∣, 0 ≤ Te(k + i) ≤ Tmax
e , 0 ≤

Pe(k + i) ≤ Prated
e .

Here, Nc is the control horizon, ‖e‖2
M

def
= eTMe. M1, M2, M3 are weights that denote different

control objectives, respectively. Jmin is the cost function in quadratic form required to be minimized by
the MPC solver, consisting of different control objectives. The first term in the equation represents the
index of conversion efficiency, and rotor error er = ωr −ω

opt
r . The second term denotes the output

power fluctuations, ∆ePe = Pe(k)− Pe(k− 1). In the third term, the increment of control law at each
sample time is substituted by the increment of compensation Kw, ∆Kw = Kw(k)−Kw(k− 1).

Because of the proposed MPPT framework, the control law at every sample time is calculated
according to the special equation derived from Equation (9):

u(k) = (K′opt − Kw · ΓTw/J) · δωr(k) + Ngear · Kw/J · δTe(k)− Kw · ΓTv/J · δVw(k) (15)

where K′opt = 0.5ρπRw
5Cpmax/(Ngear·λ3

opt).
In the proposed control, Kw is constant within the entire control horizon. Therefore, the solving

problem is simplified into computing the single parameter Kw(k) instead of computing u(k), . . . ,
u(k + Nc − 1), which is required in traditional MPC.

Ultra-short term prediction of wind speed is also required. Considering the emphasis is the MPPT
method, wind forecasting is not studied in this paper. A wind prediction method can be found in [29],
where the approximate precision of ultra-short term forecasting is up to more than 85%. This means
the uncertain dynamics of the predicted wind is small. Note that high precision of wind prediction is
not necessary in this method, because just the information of variation trends of wind speed is just
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enough to consider the power fluctuations. The impacts of uncertain predictive wind on the control
system are also discussed in Section 4.6.

4.4. Proposed Dynamic Weights Regulation

For a large-inertia wind turbine, the energy conversion efficiency can be kept at a high level
under low wind speed fluctuations [3]. Only when the wind speed varies rapidly, the efficiency drops
significantly, and this loss of conversion efficiency cannot be ignored. Therefore, different control
objectives should be emphasized under different wind speed conditions. In this paper, a dynamic
weights adjustment method is presented, rather than other preset weights methods. As shown in
Figure 8, after uniformization, the three weights M1 + M2 + M3 = 1. Weight M3 is fixed which is
designed to avoid oversize increments of the control law. Weights M1 and M2 are adjusted dynamically,
and their sum is equal to (1 −M3). If the second weight M2 is determined, then M1 = 1 −M2 −M3.
The second weigh M2 is expressed as:

M2 =
M2 · F̂v

Fv
(16)

where Fv =
Nc
∑

j=1

[
V2

w(k + i)−V2
w(k + i− 1)

]2 denotes the statistical wind speed fluctuations within

the control horizon. F̂v is a preset threshold of wind fluctuations. M2 varies around the preset
parameter M2 depending on wind fluctuations. Ignoring wind variations, if M2 is preset higher,
the effect of power smoothing becomes more evident.
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Since conversion efficiency can be kept at a high level when the wind changes slowly, M2 is
increased to be inclined to smoothing the power. Similarly, if the wind fluctuation gets higher,
the conversion efficiency declines significantly, so M1 has to be raised to enhance the efficiency.

4.5. Stability Analysis

Classical MPC is an open loop control system. The stability of the control system is guaranteed by
terminal quality constraints. In this paper, the control law of U(k) is determined by both the proposed
control framework and MPC solver. Therefore, the control system of the proposed method can be
guaranteed so long as the control framework is stable.

The discrete system stability of control framework with different Kw is discussed. Ignoring wind
speed turbulences, Equation (15) is rewritten as:

u(k) = G · X(k) (17)

where G =
[
(K′opt − Kw · ΓTw/J), Ngear · Kw/J

]
.

Combining (13) and (17), the discrete state space equation is rewritten as:{
X(k + 1) = A′X(k)

Y(k) = CX(k)
(18)

where A′ = [A + B·G].
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Figure 9 shows the locus of system eigenvalues with Kw increasing from 0 to 70,000. All the
eigenvalues are located within the unit disk. According to the discrete system control theory [30],
the control system is stable. With the increasing Kw, the eigenvalues move to the inner boundary of the
unit disk. If the gain Kw exceeds the limiting value, the eigenvalues would get out of the unit disk, and
as a result, the stability of the control system cannot be ensured in this case and therefore, the stability
of the proposed method can be guaranteed, so long as Kw is limited within maximum value. This
requirement can be satisfied by adding a limiter to ensure the reference torque to be non-negative.
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4.6. Robustness Analysis

Uncertain parameters, including wind prediction uncertainties, and unmodeled dynamics, may
bring about uncertain deviations of MPC output Kw from the optimal value K̃w. Assume δk is the
maximal uncertain deviation of MPC output, then the bounds of MPC output is expressed as:

K±w = K̃w ± δk (19)

Therefore, the MPC output Kw at each sample time lies in the uncertain range [K−w , K+
w ].

As discussed in Section 4.5, the value Kw determines the location of closed-loop eigenvalues.
Eigenvalues are also called poles. The closed-loop eigenvalue location of within this uncertain range
[K−w , K+

w ] is illustrated in Figure 10. All the eigenvalues are distributed in the colored region. The
colored region depends on the uncertain range [K−w , K+

w ]. If the uncertain range is widened too much,
then the colored region would overflow the stability boundary. As a result, eigenvalues may be located
outside of the stability area, then the system becomes unstable. Therefore, to improve the robustness,
uncertain range [K−w , K+

w ] of MPC output requires to be limited within stable area. In practice, MPC
is capable of dealing with optimization problems with constraints. Thus uncertain range [K−w , K+

w ]
can be restricted by MPC solver, no matter how serious the uncertain parameters and unmodeled
dynamics are. In general, the proposed control has good robust performance, and the stability is kept
from uncertain parameters and unmodeled dynamics in MPC.
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Effective wind speed time series for simulations are generated by the wind model module in 
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speed is calculated as an average value of the fixed-point wind speed over the whole rotor. 

Po
w

er
 s

pe
ct

ra
 d

en
si

ty
2

((
m

/s
)

/H
z)

 
Figure 11. Power spectra density of wind speed. 

The statistical approach of fluctuations is introduced in [1]. The main parameters in the 
simulations are listed as follows, Prated = 2 MW, Rw = 40 m, Vw_rated = 11 m/s, Ngear = 83.531,  
J = 5 256.27 10 kg m  , Cpmax = 0.48, =8.1opt  [3,31]. 

  

Figure 10. Closed-loop eigenvalue location within uncertain ranges of Kw.

5. Simulation Studies

To verify the effectiveness of the proposed method, comprehensive simulation studies are
carried out based on the Wind Turbine Blockset Toolbox in Matlab/Simulink platform. The Blockset
was developed by RISØ National Laboratory and Aalborg University, and it has been used as a
general developer tool for other three simulation tools, namely: Saber, DIgSILENT and HAWC [31].
The Blockset has both mechanical and electrical model libraries that are accurate enough, especially
the generator models, for this study. Considering the focus in this paper, the power grid that generator
connects is assumed to be stable, and the power converters are regarded as average models.

Effective wind speed time series for simulations are generated by the wind model module in the
Blockset that takes the tower shadow and the rotational turbulences into account. It is developed by
RISØ National Laboratory based on the Kaimal spectra. The power spectra density for generated wind
time series is calculated as shown in Figure 11. Wind direction is assumed to be fixed, thus yaw angle
is set to zero. Wind shear is not taken into account, because the effective wind speed is calculated as an
average value of the fixed-point wind speed over the whole rotor.
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The statistical approach of fluctuations is introduced in [1]. The main parameters in the simulations
are listed as follows, Prated = 2 MW, Rw = 40 m, Vw_rated = 11 m/s, Ngear = 83.531, J = 56.27 × 105 kg·m2,
Cpmax = 0.48, λopt = 8.1 [3,31].

5.1. Case 1

The first set of simulations is designed to investigate the control performance of the proposed
method when the wind fluctuations change from high level to low level. The variations of wind
fluctuations are achieved by changing the wind turbulence intensity [32].
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As shown in Figure 12a, the wind speed is divided into two regions. At the beginning (Region I),
the wind turbulence intensity is 20%, and the fluctuation is large. In Region II, the wind turbulence
intensity drops to 8%. The proposed method is compared with a former method presented recently
which has high conversion efficiency [5]. To compare them with each other impartially, the average
conversion efficiency of two methods are tuned to be the same in Region I, as shown in Table 1.
Parameters in (16) are, M̄2 = 0.15, F̂v = 0.0045, M3 = 0.3. This simulation reveals two main aspects of
advantages. Firstly, in Region I, the proposed method has lower power fluctuations when the average
efficiencies of the two methods are almost the same. Secondly, in Region II, when wind speed varies
gently, the output power of the proposed method is much smoother, which is nearly one fifth of former
method, as shown in Table 1 and Figure 12b. However, the conversion efficiency is also kept at a
high level. Although the efficiency of the proposed method is 0.0002 smaller than former method as
shown in Table 1, this difference is so tiny that can be ignored. It is noted that the power fluctuation
of the proposed method is higher than that of the former method near time = 95 s in Figure 12b.
The reason is that the wind speed drops significantly at this time. As a result, to avoid conversion
efficiency dropping too much, control objective tends to restrain efficiency from increasing, as shown
in Figure 12d. This also indicates the proposed method has the capability to adjust to different wind
situations dynamically considering both conversion efficiency and power smoothing.
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Table 1. Statistics of efficiency and fluctuations.

Methods
Region I Region II

Average Cp Fluctuations Average Cp Fluctuations

Former 0.4783 1.884 × 1011 0.4796 1.140 × 1010

Proposed 0.4783 1.279 × 1011 0.4794 2.541 × 109

5.2. Case 2

Instead of separating the wind fluctuations into two levels as in Case 1, different wind fluctuation
conditions are all taken into account to verify the proposed method in depth. Since different parameters
in control systems lead to different control performances, it is essential to impartially compare the
control performance of those methods under the same operation conditions. Therefore, as shown in
Table 2, to compare the capability of power smoothing, controller parameters are tuned to guarantee
that two methods have almost the same conversion efficiency. Parameters in (16) are as follows,
M2 = 0.15, F̂v = 0.0045, M3 = 0.3.

Table 2. Statistics of efficiency and fluctuations.

Method Average Cp Fluctuations

Former 0.4785 5.806 × 1011

Proposed 0.4785 5.041 × 1011

The simulation results illustrated in Figure 13 show that the generator power of the proposed
method is smoother than that of the former method. The power fluctuation of the proposed method is
reduced by 13.18% compared with the former method within the entire simulation time.
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However, the conversion efficiency of the proposed method is not reduced. Figure 13c is the
enlarged view of generator power in the dashed region of Figure 13b. In general, this set of simulations
reveals that the proposed method has better power smoothing capability than that of other efficiency
enhancement methods. In addition, the parameters of the control system require no changes to adjust
to the variations of wind speed.

5.3. Case 3

The third set of simulations is designed to prove the advantages of the proposed dynamic weights
in Equation (14). The two compared methods have the same control framework proposed in this
paper. The only difference between them is that the weights of the proposed method are changed
dynamically, and the weights of the compared one are constant. We respectively name the two methods
after proposed method with dynamical weights and proposed method with constant weights in the
following analysis. The settings of weights are listed in Table 3.

Table 3. Parameters in value function.

Proposed Method Parameters

Dynamic weights F̂v = 0.004, M2 = 0.2, M3 = 0.3
Constant weights M1 = 0.5, M2 = 0.2, M3 = 0.3

As shown in Figure 14a, the wind fluctuation changes gradually from low level to high level along
with the time. According to [3], the conversion efficiency loss of a large-inertia wind turbine under low
wind fluctuation condition is small, but the loss increases significantly when the wind speed varies
rapidly. Thus, when the wind speed varies slowly, it is better to reduce Kw to utilize the large inertia to
smooth output power, and avoid extra fluctuations.
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As illustrated in Figure 14b, in the low wind fluctuation region (30–130 s), the Kw of the proposed
method with dynamic weights is smaller than that of the method with constant weights. Therefore,
the proposed method with dynamic weights obtains better power smoothing performance with almost
no efficiency losses. This advantage becomes more evident when the wind fluctuation becomes lower,
such as in the very low fluctuation region (100–130 s), where the generator power of the method with
dynamic weights is much smoother, but the efficiencies of the two methods are almost the same, as
shown in Figure 14e,f.

In the high wind fluctuation region (160–190 s), the conversion efficiency would decline
significantly. Thus, it is essential to increase M1 and reduce M2 to enhance the efficiency. As a
result, Kw of the proposed method with dynamic weights is raised, which is close to the proposed
method without dynamic weights.

The advantages above benefit from the dynamic weights within the entire simulation time.
Different from the fixed weights (M1 = 0.5, M2 = 0.2) in the proposed method with constant
weights, the weights in the proposed method change along with the time to get better control
performance. The variations of weights in the proposed method with dynamic weights are illustrated
in Figure 15. The vertical axis denotes the relative proportion of each weight at each sample time. Here,
M1 + M2 + M3 = 1, M3 = 0.3. For instance, at time 170 s, the weight M1 is 0.33, M2 is 0.37, M3 is 0.3.
Because the weight M3 is fixed, the sum of M1 and M2 is 0.7.

Note that dynamic weights may cause a few limited efficiency losses in some special situations.
For example, as shown in Figure 14d, due to the step size limitation of Kw, the efficiency of the proposed
method with dynamic weights is a little lower than that of the compared method around time = 135 s
when the wind fluctuation changes suddenly, but this also means a lower power fluctuation. This
special situation can also be alleviated by decreasing the weight M3 in Equation (14).
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In general, the two compared methods based on proposed MPC approach both have high
efficiency and low fluctuations, but the power smoothing performance of the proposed method
with dynamic weights is better than that of the method with constant weights at almost no cost of
conversion efficiency.

5.4. Computing Time

The execution time of MPC solver within one sample period is calculated to verify the capability
of real-time implementation. The environment information for the execution program is shown in
Table 4. MATLAB is set to run the program in single thread mode. As shown in Table 5, MPC solver
takes 0.1737 s at each sample time to execute the optimization problem, which is much shorter than the
sample period 1 s. This indicates that the proposed MPC is fully capable of real-time implementation.
Furthermore, the fast development of embedded processors, such as digital signal processing (DSP)
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and field-programmable gate array (FPGA), supplies a practicable computing platform for real-time
execution [33].

Table 4. Computing environment.

CPU Intel Core i3-2370M (2.4 GHz) (Single Core Mode)
RAM 4 GB

Operating system Window 7 (32 bit)
Platform MATLAB R2012a

Table 5. Computing time of MPC solver.

Parameter Value

Sample period T 1 (s)
Control horizon Nc 5

Solver Sequence Quadratic Program
Computing time 0.1737 (s)

6. Conclusions

This paper presents a flexible MPPT control method to balance captured energy efficiency and
generator power smoothing for large-inertia WECSs. A new control framework is proposed by
adaptively compensating the torque reference value. The compensation was determined by the
proposed model predictive control approach with dynamic weights in the cost function, which
improved control performance. The computational burden of the MPC solver was reduced by
transforming the cost function representation. The main contributions of this paper are summarized
as follows:

• Analysis reveals that a larger wind turbine inertia brings difficulties to balance energy conversion
efficiency and generator power smoothing. To achieve the same conversion efficiency, a larger
inertia causes higher power fluctuations.

• The proposed method not only keeps the conversion efficiency at a high level, but also reduces
power fluctuations as much as possible. Emphasis of control objectives is regulated dynamically.
Conversion efficiency is attached importance when it is about to decline too much. Power
smoothing is taken more into account if the wind varies slowly, and efficiency is kept at a
high level.

• Unlike the classical MPC used for wind turbine control, MPC in this paper is only employed to
determine the compensating gain. The system stability is totally based on the proposed control
framework, rather than the stability of MPC itself. Theoretical analysis proves that the control
system is stable, so long as the compensating gain in proposed control framework is kept within
the maximal value.

• The robustness of the system is guaranteed by the proposed control, the stability avoids uncertain
parameters and unmodeled dynamics in the MPC.

• Simulation studies are carried out to prove that the proposed method has good control
performance. The computing time of the MPC solver at each sampling time is short enough to
satisfy the requirements of real-time implementation in engineering.

In general, these good capabilities of the proposed method, such as high conversion efficiency
and low power fluctuations can increase the wind farm profits and improve power system reliability.
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MPPT Maximum power point tracking
MOO Multi-objective optimization
FIS Fuzzy inference system
WECS Wind energy conversion system
MPC Model predictive control
OTC Optimal torque control
GSC Generator side converter
PI Proportional-Integral
OP Operation point
MIMO Multi-input multi-output
QP Quadratic programming
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