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Abstract: In this paper, considering real time wind power uncertainties, the strategic behaviors of 
wind power producers adopting two different bidding modes in day-ahead electricity market is 
modeled and experimentally compared. These two different bidding modes only provide a wind 
power output plan and a bidding curve consisting of bidding price and power output, respectively. 
On the one hand, to significantly improve wind power accommodation, a robust market clearing 
model is employed for day-ahead market clearing implemented by an independent system 
operator. On the other hand, since the Least Squares Continuous Actor-Critic algorithm is 
demonstrated as an effective method in dealing with Markov decision-making problems with 
continuous state and action sets, we propose the Least Squares Continuous Actor-Critic-based 
approaches to model and simulate the dynamic bidding interaction processes of many wind power 
producers adopting two different bidding modes in the day-head electricity market under robust 
market clearing conditions, respectively. Simulations are implemented on the IEEE 30-bus test 
system with five strategic wind power producers, which verify the rationality of our proposed 
approaches. Moreover, the quantitative analysis and comparisons conducted in our simulations 
put forward some suggestions about leading wind power producers to reasonably bid in market 
and bidding mode selections. 

Keywords: day-ahead electricity market; wind power producer; wind power uncertainty; robust 
market clearing; Least Squares Continuous Actor-Critic algorithm 

 

1. Introduction 

The day-ahead electricity market (EM) is a crucial component in the EM system [1]. In recent 
years, wind power resources have experienced an unprecedented growth in the day-ahead EMs 
worldwide. Studies on wind power bidding in the day-ahead EM with wind power penetration are 
too numerous to enumerate one by one. References [2–4] etc., for reasons such as low marginal cost 
of wind power producer (WPP) etc., hold that the bidding mode (BM) of a WPP is to only send the 
independent system operator (ISO) its power output plan for each period of the next day (namely, 
BM 1). The ISO ensures the wind power accommodation according to every WPP’s day-ahead 
power output plan, but a WPP should be financially punished when its real time power output 
deviates from the day-ahead bidding one [3]. References [5–9] etc., based on actual EMs such as PJM 
(Pennsylvania-New Jersey-Maryland) etc., point out that the BM of a WPP is to provide ISO a 
bidding curve for each period of the next day (namely, BM 2). A bidding curve consists of bidding 
price and power output. According to these day-ahead bidding curves provided by WPPs, ISO, 
within a certain range of forecasted power outputs corresponding to each WPP, can dispatch the 
power outputs of WPPs in the day-ahead EM. However, a WPP should also be financially punished 
when its real time power output deviates from the day-ahead scheduled one [9]. In this work, we 
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believed that different BMs adopted by WPPs may lead to different market results such as profits, 
clearing prices and operation cost of the power system. Hence, one motivation of this work is to 
experimentally compare those two BMs adopted by WPPs in day-ahead EM.  

In addition, owning to the inherent intermittence, fluctuation, and low predictability of wind 
power output, uncertainties grow significantly with the increasing penetration of wind power 
resources, which pose major challenges to wind power accommodation in the EM [10]. Therefore, 
many references propose that the wind power accommodation can be improved by modifying the 
market clearing model (MCM) corresponding to ISO in day-ahead EM. References [9,11–13] applied 
the stochastic optimization (SO) method in the market clearing procedure. The SO-MCM 
significantly increases the number of constraints in MCM by generating real time wind power 
output stochastic scenarios (WPOSSs) based on real time wind power output probability 
distributions. The market clearing results (scheduled power results and clearing price of every node) 
can be obtained by optimizing the expected value of the objective function in SO-MCM [9]. This 
approach takes into account different security constraints of power system under different WPOSSs, 
and improves, to a certain extent, the wind power accommodation capacity of power system. 
However, SO-MCM still has the following shortcomings, thereby greatly reducing the feasibility and 
rationality of this method [14,15]: (1) in practice, the probability distribution of real time wind power 
output is difficult to obtain; (2) a small number of real time WPOSSs may lead to a reduction of the 
ability of the power system to resist random real time wind power output deviations from its 
day-ahead (bidding or scheduled) one; (3) a large number of WPOSSs may significantly increase the 
computational complexity of the model, thereby resulting in solving difficulties. In order to 
overcome these abovementioned shortcomings, recently, robust optimization (RO) methods are 
applied to the construction of power system dispatch models by many studies. Reference [16] 
proposed a two-stage robust security constraint unit-commitment (SCUC) model. The key idea of 
this two-stage robust SCUC model is to determine the optimal unit-commitment (UC) solution in the 
first stage which leads to the least operation cost for the worst wind power output scenario (WPOS) 
in the second stage. However, this approach is very conservative due to the optimization for the 
operation cost of the worst WPOS in the second stage. In Reference [17] the authors combined the 
stochastic and robust approaches using a weight factor in the objective function to address the 
conservativeness issue. Reference [18] employed the Affine Policy (AP) to formulate and solve the 
robust security constraint economic dispatch (SCED) model. Reference [19] proposed a robust 
optimization framework for robust SCUC and robust SCED which repeatedly calculates the UC and 
ED solutions in the first stage to optimize the operation cost of the basic WPOS but to pass the 
security test in the second stage. RO-based power system dispatch models do not need the 
probability distribution of real time wind power output. The number of constraints need not be 
significantly increased with the increase of the size of uncertainty set [19]. The optimal robust UC 
and ED solutions can satisfy every unit-wise and system-wise constraint under the worst WPOS [19], 
which means RO-based power system dispatch models can not only improve wind power 
accommodation but also maintain low computational complexity so as to promote the application of 
these models in practice. However, the approaches in [16–19] cannot be introduced directly for 
modification of MCM in day-ahead EM because it is not mentioned in those studies how to price the 
power outputs, loads, reserves and deviations (uncertainties). Recently, in study of Ye et al. [20], this 
shortcoming is made up by combining cost causation principle and locational marginal price (LMP) 
in robust SCUC and robust SCED modeling approaches so as to successfully modify the MCM in 
day-ahead EM by using a RO method. Therefore, inspired by [20], in this work, no matter which BM 
WPPs adopt in day-ahead EM bidding, the MCM corresponding to ISO will be modified by using a 
RO-method in order to make the power system accommodate any deviation caused by real time 
wind power uncertainties within a certain range. 

Finally, a WPP participating in EM bidding aims at profit maximization. In a day-ahead EM, 
there are many participants competing with each other. In addition to real time wind power 
uncertainties, WPPs, like other conventional generation companies (GenCOs), are faced with 
complex market environment conditions, such as imperfect and incomplete information. Hence, 
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there are many similarities between EM modeling approaches with and without WPPs participating 
in market bidding. EM modeling approaches proposed in [21–25] are based on game theory. EM 
modeling approaches proposed in [26–31] are based on machine learning algorithms. Recently, 
many relevant studies take renewable energy (i.e., wind power) bidding into account. Reference [32] 
supposed that a WPP strategically bids with BM 2 in day-ahead EM, and put forward a closed-form 
analysis on WPP’s strategic behavior based on the Stackelberg game model. Reference [33] proposed 
an autoregressive integrated moving average (ARIMA) model to obtain the optimal bidding strategy 
for a WPP who bids with BM 2 in day-ahead EM. The authors of [34] studied the behaviors of 
strategic WPPs bidding in EM with BM 1 based on Cournot game model. In Reference [35] an 
imbalance cost minimization bidding strategy for a BM 1 adopted WPP through forecasting the real 
time wind power probability distribution functions was proposed. Reference [36] analyzed the 
strategic behavior of a BM 1 adopted WPP in day-ahead EM based on Roth-Erev reinforcement 
learning algorithm. In [37], a stochastic programming problem was proposed for obtaining the 
optimal offering and operating strategy for a large wind-storage system adopting BM 2. Reference 
[38] considered the uncertainty on electricity price through a set of exogenous scenarios and solved 
the bidding problem of a BM 1 adopted thermal-wind power producer by using a stochastic 
mixed-integer linear programming approach. The authors in reference [39] proposed a two-stage 
stochastic bidding model based on kernel density estimation (KDE) for a BM 2 adopted WPP to 
obtain the optimal day-ahead bidding strategy. The approaches in [24,25,33,35,37–39] resulted in 
repeatedly solving multi-level mathematical programming models for every participant, the 
computational complexities of which limit their applications in more realistic situations. The 
methods proposed in [21–23,32,34] produced sets of nonlinear equations which are difficult to solve 
or have no solutions. The approaches in [26–31,36] belong to the agent-based EM modeling 
approaches, in which every bidding participant is considered as an agent who has the ability of 
adaptive learning so as to improve its profit during process of repeated bidding in market. 
Table-based reinforcement learning (TBRL) algorithms are usually proposed in depicting agents’ 
adaptive learning approaches in EM bidding, such as the Q-learning-based approach proposed in 
[26,27], simulated annealing Q-learning-based approach proposed in [28], Roth-Erev reinforcement 
learning-based EM test bed (called Multi-Agent Simulator of Competitive Electricity Markets or 
MASCEM) proposed in [29,36], SARSA (state-action-reward-state-action)-based approach proposed 
in [30], fuzzy Q-learning-based approach proposed in [31], etc. By using agent-based EM modeling 
approaches, it is neither necessary to repeatedly solve multi-level mathematical programming 
models for every agent, nor to establish sets of nonlinear equations which are difficult to solve or 
have no solutions. Low computational complexity and low reliance on common knowledge make 
these approaches more applicable in EM modeling [26]. However, in TBRL algorithms, both an 
agent’s action (i.e., bidding strategy) and state (i.e., market environment) sets must be assumed as 
discrete, otherwise it will cause the problem of “curse of dimensionality”, which does not conform to 
the actual situation of the day-ahead EM and hinders a strategic WPP to obtain its globally optimal 
bidding strategies no matter which BM it adopts. So far as we know, there is no reasonable way to 
solve this issue in the published literature studying wind power and other renewable energy 
bidding in EMs. Recently, [40] proposed a modified reinforcement learning (RL) algorithm called 
Least Squares Continuous Actor-Critic (LSCAC) algorithm which can make both the action and state 
sets continuous without causing the problem of “curse of dimensionality”. Therefore, another 
motivation of this work was to apply for the first time the LSCAC algorithm for modeling the 
strategic bidding behaviors of WPPs in day-ahead EMs. On the one hand, this approach properly 
solved the contradiction of making every agent’s action and state sets continuous and causing the 
“curse of dimensionality” problem. On the other hand, it can provide a reasonable EM test bed to 
simulate and experimentally compare those two BMs adopted by WPPs in a day-ahead EM. 

Therefore, the main novelty of this paper can be summarized as to firstly propose the 
LSCAC-based day-ahead EM modeling approach for strategic WPPs under robust market clearing 
conditions. The purpose for employing robust MCM is to improve wind power accommodation by 
reconstructing the market clearing mechanism. The motivation of proposing the LSCAC-based EM 
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modeling approach is to assist strategic WPPs to make more appropriate bidding decisions so as to 
improve both the WPPs’ profits and the economic efficiency of the whole market compared with 
TBRL-based approaches. Moreover, comparison between different BMs can offer some suggestions 
about improving wind power resources development and market economic efficiency. 

The rest of this paper is organized as follows: in Section 2, the concrete mathematic 
formulations of WPPs’ different BMs and the robust day-head MCM are proposed. Section 3 puts 
forward the proposed LSCAC-based day-ahead EM modeling approach for WPPs. Section 4 
conducts the simulations and comparisons. Section 5 concludes the paper. 

2. Problem Description 

2.1. Model Assumptions 

According to [41], the day-ahead EM is actually a dynamic complex system in which dynamic 
(direct and indirect) interactions exist among all participants. When considering WPPs’ strategic 
behaviors in the day-ahead EM, on one hand, the MCM of the ISO should be modified in order to 
accommodate the deviations caused by real time wind power output uncertainties [10,19,20], while 
on the other hand, EM modeling approaches should be proposed to help with obtaining WPPs’ 
reasonable strategies under different BMs. 

In this section, strategic WPPs’ different BMs and the robust day-head MCM are 
mathematically formulated. For the sake of simplicity and without loss of generality, we make 
some assumptions listed as follows before conducting any further research: 

• Like [9], in our study, the problem of SCUC is assumed to have been solved exogenously in 
advance, and consequently, the UC constraints (i.e., ramping rates, startup costs/times, 
minimum down-times) are not considered. However, the proposed single period EM modeling 
approach containing single period robust MCM can be extended to a multi-period one. 
Moreover, network loss is ignored, and the shift factor matrix is constant. 

• Because we mainly consider the strategic behaviors of WPPs in a day-ahead EM, the bidding 
strategy of any other conventional generators is neglected [9,32,33]. We also assume that load 
in any bus is inelastic without load shedding [9]. 

• Uncertainties are only caused by WPPs, The uncertainty-set can be truly formulated by the ISO 
[10,19,20]. The marginal cost of every WPP is neglected [3,31]. Hence, when a WPP is in BM 2, 
there is only one bidding price in this WPP’s bidding curve. 

2.2. Different BMs of WPP 

Real-time wind power output cannot be accurately predicted from the day-ahead horizon, 
which forces WPPs and the ISO to carefully consider these strong uncertainties when bidding and 
implementing the day-ahead market clearing, respectively. However, the ISO (WPP) can predict the 
real time wind power output interval of a certain WPP more accurately than the real time wind 
power output prediction. If the number of WPPs in a power system is NW, consistent with [10,19,20], 
the uncertainty set corresponding to those NW WPPs’ real time power outputs can be modeled as: 
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where, i is the index for WPP, iPw  represents the actual power output of the i-th WPP, ilw , iuw  

( 0 i ilw uw≤ ≤ ) represent the lower and upper bounds of iPw , Λ  is the budget parameter and 

assumed as an integer [20]. Moreover, accurate prediction of ilw  and iuw  can provide a valuable 
reference for WPPi’s bidding decision-making. Therefore: 
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• When BM 1 is adopted by WPPi, the only bidding parameter is its power output plan (bidding 
power output) b

iPw  which must satisfy Equation (2): 

,b
i i ilw Pw uw i≤ ≤ ∀  (2) 

Under this BM, the bidding strategy of WPPi is to adjust the value of b
iPw . 

• When BM 2 is adopted by WPPi, it provides to ISO the bidding curve which is as follows: 

, ,( ) , ,b b b b
i i i i i low i i upp iPw    lw Pw uw= ≤ ≤ ≤ ≤ρ ρ ρ ρ ρ  (3) 

where, b
iρ  is WPPi’s bidding price. ,low iρ , ,upp iρ  ( , ,0 low i upp i≤ ≤ρ ρ ) represent the lower and 

upper limits of b
iρ . Under this BM, the bidding strategy of WPPi is to adjust the value of b

iρ . 

2.3. Robust Market Clearing Models under Different BMs of WPPs 

According to Section 2.1, because the problem of SCUC is assumed to have been solved 
exogenously in advance, we propose a single period day-head robust MCM which is mainly 
focused on an ED procedure. The purpose of doing so is to make the power system accommodate 
any wind power deviation caused by real time wind power output uncertainty within a certain 
uncertainty set. With this robust MCM, the ISO, based on the day-ahead biddings (curves) of all 
participants, desires to get the optimal robust ED solution in the base-case scenario [19]. Under the 
optimal robust ED solution, the ISO can re-dispatch the flexible resources, such as adjustable 
conventional generators with fast ramping capabilities, etc., to follow the load when a deviation 
occurs. The method of obtaining an optimal robust ED solution in the base-case scenario is 
significantly less conservative than that in the worst-case scenario [16]. Moreover, this robust MCM 
can reasonably generate prices for power outputs, loads, reserves and deviations which are the 
byproducts of the optimal robust ED solution [10,20]. 

The mathematical formulation of this robust MCM can be described as follows:  

, , , 1 1

(Problem) min
G W

disp
j i

N N
b disp

j j i i
P Pw j i j i

    c P Pw
∀ = =

+ ρ  (4) 

1 1 1

. .
G W busN N N

disp
j i m

j i m

s t      P Pw  = d     
= = =

+    (5) 

max
j jP  P , j≤ ∀  (6) 

min
j jP  P , j− ≤ − ∀  (7) 

,
1 , ( )

( ) ,
busN

disp
l m j i m l

m i j m

P Pw d F l
= ∈Θ

Γ + − ≤ ∀   (8) 

,
1 , ( )

( ) ,
busN

disp
l m j i m l

m i j m

P Pw d F l
= ∈Θ

− Γ + − ≤ ∀   (9) 

and 1 2 1 2{ ( ,..., , , ,..., ,..., ):
G W

disp disp disp disp
GW j N i NP,P ,...,P P Pw Pw Pw Pw= =PΩ  

1 2, ( ,..., )  such that
Gj NP , P ,..., P P   ∀ ∈ ∃Δ = Δ Δ Δ ΔPw U P  

1 1

( - ) 0
G WN N

disp
j i i

j i

P Pw Pw =   
= =

Δ +   

(10) 



Energies 2017, 10, 924 6 of 27 

 

max
j j jP P P , j+Δ ≤ ∀  (11) 

min
j j jP P P , j − −Δ ≤− ∀  (12) 

,u
j jP r jΔ ≤ ∀  (13) 

,d
j jP r j−Δ ≤ ∀  (14) 

,
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where, j and NG represent the index and number of conventional generators that are determined as 
being the state of start-up in advance, respectively. Because it is assumed that the UC solution is 
fixed exogenously, NG can also be considered as the number of conventional generators in power 
system for simplicity. jP  is the dispatched power output for the j-th generator, jc  is the cost 

coefficient of the j-th generator, m and Nbus represent the index and number of buses in power 
system. In the basic-case scenario, Equation (5) indicates power balance of the system,  
Equations (6) and (7) show the power limits of generators, Equations (8) and (9) stand for the 
transmission constraints of all lines in system. In case of wind power deviations, Equation (10) 
indicates power balance of the system in re-dispatch, Equations (11) and (12) show the power limits 
of generators in re-dispatch, Equations (13) and (14) are constraints for power re-dispatch variables 

jPΔ s, Equations (15) and (16) stand for the transmission constraints of all lines in system in 

re-dispatch. 

• If BM 1 is adopted by WPPs, then: 

0,b
i i= ∀ρ  (17) 

,disp b
i iPw Pw i= ∀  (18) 

( ) ( ) ( ) ( ){ }Equations 4 9 , 17 18, − ∪ Ω  constitute the day-ahead robust MCM for ISO under BM 1 

(namely, RMCM 1). 
• If BM 2 is adopted by WPPs, ISO dispatches WPPs’ day-ahead power output schedules which 

should at least satisfy [9]: 

,disp
i iPw uw i≤ ∀  (19) 

,disp
i iPw lw i− ≤ ∀  (20) 

( ) ( ) ( ) ( ){ }Equations 4 9 , 19 , 20 − ∪ Ω  constitute the day-ahead robust MCM for ISO under BM 2 

(namely, RMCM 2). 

2.4. Robust MCM Reformulation 

By solving RMCM 1 or RMCM 2, the obtained optimal robust ED solution GW ∈P Ω  is 
immunized against any uncertainty ∀ ∈P w U  [19]. When uncertainty P w  occurs, deviations 
caused by P w  can be accommodated by the power re-dispatch Δ P . However, it should be 
noted that both RMCM 1 and RMCM 2 cannot be directly solved. Similar to [19,20], reformulation is 
adopted to solve the two RMCMs. In order to facilitate the description, reformulation of 
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( ) ( ){ }Equations 4 9 − ∪ Ω  which contains a master problem (MP) and a sub-problem (SP) will first 

be established as follows: 
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where, κ  is the index set for worst uncertainty points kPw s which are dynamically generated in 
(SP) during the solution procedure. 

If BM 1 isadopted by WPPs, Equations (17) and (18) should be added to (MP). If BM 2 is 
adopted by WPPs, Equations (19) and (20) should be added to (MP). According to  
References [19,20], the objective function in (SP) contains the summation of non-negative slack 
variables is

+ s and is
− s, which evaluates the violation associated with the solution from (MP). is

+ s 

and is
− s can be explained as un-followed uncertainties (i.e., generation shedding etc.) due to 

system limitations. Hence, to solve (SP) is to find the worst point kPw  in U given ED solutions. 
The solution procedure is [19]: 

(1) 1, ,k  ← , ← ←+∞κ φ Ψ  define feasibility tolerance Δ ; 
(2) while ≥ ΔΨ  do 
(3) Solve (MP), obtain optimal , , ,disp

j iP Pw j i∀ ; 

(4) Solve (SP) with , , ,disp
j iP Pw j i∀ , get solution ( , )kΨ Pw ; 

(5) , 1k  k k← ∪ ← +κ κ ; 
(6) end while. 

2.5. Clearing Price Mechanism 

After the convergence of the abovementioned solution procedure, the optimal robust ED 
solution can be obtained by solving (MP) for the last time. We set λ , 1jβ ( j∀ ), 2jβ ( j∀ ),  

1lη ( l∀ ), 2lη ( l∀ ) to represent the generalized Lagrange multipliers (GLMs) for Equations (5)–(9), 

respectively, 1iμ ( i∀ ), 2iμ ( i∀ ) to represent the GLMs for Equations (19) and (20), respectively, 

and kλ , 1j kβ ( j∀ , k∀ ∈ κ ), 2j kβ ( j∀ , k∀ ∈ κ ), 1j kζ ( j∀ , k∀ ∈ κ ), 2j kζ ( j∀ , k∀ ∈ κ ),  

1l kη ( l∀ , k∀ ∈ κ ), 2l kη ( l∀ , k∀ ∈ κ ) to represent the GLMs for Equations (22)–(28), 
respectively. Consistent with the cost causation principle and LMP calculation method mentioned 
in [10,20], when solving (MP) for the last time, the clearing price mechanism of our proposed 
RMCMs can be described as follows: 

• No matter which BM WPPs adopt, the day-ahead LMP for energy credit and load payment at 
bus m can be calculated as: 

, 1 2 , 1 2

( , , , , , ) ( , , , , , )

( ) ( )
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m m

l m l l l m l k l k
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d d
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λ
 (35) 

where, ( , , , , , )GWL Δ λ βP P ηζ  is the generalized lagrange function (GMF) for (MP) under BM 

1 adopted by WPPs, ( , , , , , )GWL ,Δ λ β ζP P μ η  is the GMF for (MP) under BM 2 adopted by 
WPPs. 

• Defining uncertainty marginal price (UMP) as [20]: the marginal cost of immunizing the next 
unit increment of uncertainty, then no matter which BM WPPs adopt, for the deviation 

disp
k −Pw Pw  corresponding to a worst point kPw , the UMP for reserve credit and deviation 

payment at bus m is: 
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where, 
( )

( )disp
mk i ik

i m

ε Pw Pw
∈Θ

= − . Moreover, when 0mk >π , it can be illustrated that the 

direction of power re-dispatch corresponding to worst point kPw  at bus m is upward 

( 0, ( )jkP j mΔ ≥ ∀ ∈Θ ), and when 0mk <π , it can be illustrated that direction of power 

re-dispatch corresponding to worst point kPw  at bus m is downward ( 0, ( )jkP j mΔ ≤ ∀ ∈Θ ). 

Moreover, the structural differences between RMCM 1 and RMCM 2 may make the primal 
solutions ( , ,disp

GW ΔP Pw P ) and the dual solutions ( , ,( ) ,,λ β μ α η) obtained by solving RMCM 1 
and RMCM 2 differ from each other. Therefore, although the clearing price formulas under 2 BMs 
have no difference according to Equations (35) and (36), different primal-dual solutions obtained by 
solving RMCM 1 and RMCM 2 still make the obtained clearing prices ( mπ , mkπ ) under 2 BMs 
different. 

In summary, no matter which BM is adopted by WPPs, the estimated profit of WPPi( i∀ ) in 
one day-ahead bidding can be calculated as: 

( ), ( )disp disp
i m i mk i ik

k

R Pw Pw Pw    i mπ π
∈

= − − ∈ Θ
κ

 (37) 

Hence, the objective of WPPi( i∀ ) bidding in day-ahead EM is to maximize iR . 

3. LSCAC-Based Day-Ahead EM Modeling Approach for WPPs 

3.1. Definitions 

Although the BM and MCM in a day-ahead EM can be specified by relevant regulators in 
advance, a strategic WPP in EM still has limited information about other rivals. Owning to this fact 
of incomplete and imperfect information in the day-ahead EM [41], strategic WPPs must 
dynamically improve their profits through repeatedly bidding in day-ahead EM, which is actually a 
dynamic multi-participant decision-making process. This work intends to propose a LSCAC-based 
day-head EM modeling approach to simulate this dynamic multi-WPP decision-making process. 
Hence, similar to Reference [41], some necessary definitions are organized as follows: 

• Agent: we consider every WPP as an agent who, for the purpose of improving its profit, has 
the adaptive learning ability to dynamically adjust its bidding strategy according to its 
accumulated experiences through repeated bidding. Hence, the multi-WPP decision-making 
process can be also considered as multi-agent decision-making process. In our work, LSCAC 
algorithm is applied to depict this adaptive learning ability and to assist every WPP in bidding 
decision making.  

• Iteration: since the market is assumed to be cleared in day-ahead single period basis, we 
consider each transaction day as an iteration T.  

• State variable: in iteration T, the LMP and UMPs in bus m cleared in iteration T − 1 are 
considered as the market environment states for WPPi connected in bus m ( ( )i m∈Θ ), which 

is because WPPi ( ( )i m∈Θ ) actually has no idea about other market information. Taking 

,i Tx  to represent the state variable vector for WPPi in iteration T, the relationship between 

,i Tx  and clearing prices is as follows [20]: 

, , 1 , 1 , 1( , , ),   ( )up down
i T m T m T m T i m− − −= ∈ Θx π π π  (38) 

, 1, 1

, 1 , 1 , 1 , 1;     
up down

m Tm T

up down
m T mk T m T mk T

kk −−

− − − −
∈∈

= = π π π π
κκ

  (39) 
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, 1 , 1 , 1 , 1{ : 0}; { : 0}up down
m T mk T m T mk Tk k− − − −= ≥ = <π πκ κ  (40) 

where, , 1m T −π  and , 1mk T−π  represent the LMP and the k-th UMP in bus m cleared in iteration 

T − 1, respectively. 
• Action variable: in iteration T, the bidding strategy of WPPi is considered as its action. Taking 

,i Ta  to represent the action variable for WPPi. If WPPi bids in EM under BM 1, the relationship 

between ,i Ta  and bidding strategy is as follow: 

, ,
b

i T i Ta Pw=  (41) 

where, ,
b

i TPw  is the bidding output (strategy) of WPPi in iteration T. If WPPi bids in EM 

under BM 2, the relationship between ,i Ta  and bidding strategy is as follows: 

, ,
b

i T i Ta = ρ  (42) 

where, ,
b

i Tρ  is the bidding price (strategy) of WPPi in iteration T. 

• Reward: in iteration T, WPPi’s reward is: 

, ,i T i Tr R=  (43) 

where, ,i TR  is WPPi’s estimated profit obtained from bidding in iteration T. 

3.2. LSCAC Algorithm 

In TBRL-based EM modeling approaches [26–31,36], both the state and action sets should be 
assumed as discrete, otherwise the problem of “curse of dimensionality” will be caused so as to 
significantly hinder agents from improving their profits. However, according to Section 3.1 and [41], 
in day-ahead EM with many strategic WPPs, both ,i Tx ( i∀ ) and ,i Ta ( i∀ ) are within the 

continuous, bounded and closed sets (spaces). Therefore, a modified RL algorithm must be applied 
in day-ahead EM modeling for the study of strategic behaviors of WPPs. 

In our work, we apply the LSCAC algorithm to this issue for the first time. The LSCAC 
algorithm is a modified actor-critic based RL algorithm which can rapidly tackle the dynamic 
multi-agent decision-making problem with continuous action and state sets. In the LSCAC 
algorithm, state value function and policy function of every agent are approximated by using linear 
combinations of basis functions. Linear parameters in state value functions corresponding to agents’ 
critic parts are updated online by using the temporal difference error (TD(0))-based method, the 
specific procedure of which can be found in [41]. The online updating procedure of linear 
parameters in policy functions corresponding to agents’ actor parts is described as follows [40]: by 
using a linear function, we estimate and repeatedly update in an agent’s actor part an optimal 

policy function ˆ :I →X A  defined on the continuous state space X : 

( )

1

ˆ( ) ( ) ( )
n

optimal T
h h

h

a I
=

= = = ∈    φ ωx x x x x Xφ ω  (44) 

where, : ( 1,2,..., )h h n→ =φ X R  represents the h-th basis function of state ∈x X . A  

represents the continuous action set of an agent, ( )optimala ∈x A  represents the optimal action in face 

of state x . The linear parameter vector ω  can be described as: T
1 2( , ,..., ) n

n= ∈ω ω ω Rω . 

An agent must generate a corresponding action a ∈ A  in face of any state ∈x X based on 
the policy maintained and repeatedly updated by its actor part. The policy is actually an action 
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generating model which has the ability of balancing the exploration and exploitation, and can be 
mathematically formulated as follows [40,41]: 

2
2

1 1
( , ) exp ( ( ) )

22
Tpro a a = − − 

 σπσ
x xφ ω  (45) 

where, σ  > 0 is a standard deviation parameter which represents the exploring ability of the 
LSCAC algorithm. 

Hence, the MSE function of ω  is defined as [40,41]: 

( ) 21
( ) ( ) [ ( , )][ ( ) ]

2
pro T

a A

MSE P sig a a dad
∈ ∈

= −  δ
x X

ω x x x ω xφ  (46) 

where, ( ) ( )proP x  is the probability distribution function of x  under policy pro, [ ( , )]sig aδ x  is 

the sigmoid function of ( , )aδ x  which means the TD(0) error of selecting action a  in face of 
state x. Its formulation is as follows [40,41]: 

( , )

1
[ ( , )] 0

1 q a
sig a q

e−= >
+ δδ xx  (47) 

In iteration T, using Tδ  to replace ( , )T Taδ x , formulation of Tδ  is as follows [40,41]: 

1( ) ( )T T
T T T T T Tr += + −x xδ γφ θ φ θ  (48) 

where, linear vector Tθ  is composed of linear parameters in value functions in iteration T [41], 

0 1γ≤ ≤  is a discount factor. 
Let the derivative of Equation (46) on ω  equal to 0, then: 

( )
( , )

1
( ) [ ( ) ] ( ) = 0

1
pro T

q a
a A

P a dad
e−

∈ ∈

−
+  δ x

x X

x x ω x xφ φ  (49) 

It should be noted that the integral formula in the left side of Equation (49) is hard to calculate. 
If the sample points from iteration 0 to iteration N are 

0 0 0 1 1 1 1 2 1( , , , ) , ( , , , ) , . . . , ( , , , )N N N Na r a r a r +x x x x x x , Equation (46) can be approximately replaced by: 

0

1
( ( ) ) ( ) 0

1 T

N
T

T T Tq
T

a
e−

=

=
+ δ x xφ ω − φ  (50) 

The reformulation of Equation (50) is: 

0 1

1 1
[ ( ) ( ) ( )

1 1T T

N N
T

T T T Tq q
T T

a
e e− −

= =

] =
+ + δ δx x xφ φ ω φ  (51) 

Define a n-order matrix AN and a n-dimensional vector bN, respectively: 

0

1
( ) ( )

1 T

N
T

N T Tq
T e −

=

=
+A δ x xφ φ  (52) 

1

1
( )

1 T

N

N T Tq
T

a
e −

=

=
+b δ xφ  (53) 

hence: 
1( )N N

−= A bω  (54) 

Because 1( )N
−A  may not exist, 1( )N

−A  can be approximately replaced by 1( )N
−+A IΠ  based 

on the method of ridge regression [40], where Π  ( >0Π ) is a smaller constant, I  is an n-order 
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identity matrix. When N is large, the calculation of parameter vector ω  in Equation (54) may be 
unstable. Reference [40] has proposed a new calculation formula for parameter vector ω , which is 
as follows: 

11 1
[ ( )] ( )N NN N

−= +A I bΠω  (55) 

3.3. The Step-by-Step Procedure of the Proposed Approach 

In summary, the step-by-step procedure of LSCAC-based day-ahead EM modeling approach 
for WPPs (under two BMs) can be described as follows: 

(1) Input: basis function vector φ :
n→X R , step length factor series { }, 0i T T

∞

=
α  where 

,
0

i T
T

∞

=

= ∞α , 2
,

0

( )i T
T

∞

=

< ∞ α , and values of , ,qσ γ  (for WPPi( i∀ )). 

(2) T = 0, N = 0, set the iterative termination condition such as the maximum iterations (Tmax). 

(3) set , ,0i T i=θ θ  and , ,0i T i=ω ω , , ,0 ,  0i N i i i= = >A A IΠ Π  and , ,0i N i= =b b 0  (for 

WPPi( i∀ )). 

(4) set , ,0i T i=x x  (for WPPi( i∀ )). 

(5) In iteration T, generate 2
, , ,~ ( ( ) , )T

i T i T i Ta N x σωφ  where ,i Ta  represents ,
b
i TPw  or ,

b
i Tρ  

(for WPPi( i∀ )) and then ISO implements the robust MCM represented by RMCM 1 or 
RMCM 2. 

(6) After market clearing, WPPi( i∀ ) obtains the immediate reword ri,T using Equation (37) and a 

new market state , 1i T+x  which can be generated by the ISO using  

Equations (35), (36), (38)–(40). 

(7) , , , 1 , , ,( ) ( ) ,T T
i T i T i T i T i T i Tr i+= + − ∀ δ γ x xφ θ φ θ . 

(8) , 1 , , , ,( ),i T i T i T i T wi T i+ = + ∀  α δ xθ θ φ . 

(9) 
,, 1 , , ,

1
( ) ( ) ,

1 i T

T
i N i N i T i Tq i

e
+ −= + ∀

+
A A   δ x xφ φ . 

(10) 
,, 1 , , ,

1
( ),

1 i Ti N i N i T i Tq a i
e

+ −= + ∀
+

b b   δ xφ . 

(11) 
, 1 , 1

1
, 1

1 1
[ ( )] ( ),

1 1i N i Ni T i
N N+ +

−
+ = ∀

+ +
A b   ω . 

(12) T = T + 1, N = N + 1. 
(13) Checking the iterative termination condition, if our procedure achieved the iterative 

termination condition, go on to step (14), otherwise, return to step (5). 

(14) Output: * *
, ,,i i T i i T= =θ θ ω ω  (for WPPi( i∀ )), based on which WPPi( i∀ ) can select the 

optimal bidding strategy (under BM 1 or 2) in face of whichever market state is. 

Moreover, According to [40], we choose a Gaussian radial basis function as ( )xφ . 

4. Simulations and Discussions 

4.1. System Data 

In this section, by implementing the robust MCM mentioned in Section 2, our proposed 
day-ahead EM modeling approaches under different BMs are simulated on the IEEE 30-bus test 
system with five strategic WPPs [9]. Matlab R2014a is utilized to conduct our simulations. Figure 1 
shows the schematic structure of the test system. Table 1 depicts the predicted single period loads 
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distributed in different buses [42]. Consistent with the assumptions in Section 2, any uncertainties 
in this test system are not caused by loads. Parameters of conventional generators can be seen in 
Table 2, and the predicted power output intervals of the five WPPs which are the crucial 
components of the uncertainty set, are listed in Table 3. For the sake of simplicity and without 
losing generality, we assume the power output interval of WPPi( i∀ ) predicted by ISO is the same 
as that predicted by WPPi( i∀ ) itself.  

1 2 5 7 28

3 4 6 8

9 11

13 12 16

10

18 17 27

22 21
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20 30

19 23 24 25 29

26
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generator
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Wind power 
producer

WP

Transmission 
line

Load

 

Figure 1. Diagram of the test system (Note: For the sake of simplicity, here it is assumed that the 
maximum congestion constraints in all transmission lines are 30 MW). 

Table 1. Values of un-elastic single period loads. 

Bus Number 2 3 4 7 8 
Load (MW) 26.7 7.4 12.6 27.8 35 

Bus 10 12 14 15 16 
Load (MW) 10.8 16.2 11.2 13.2 8.5 
Bus number 17 18 19 20 21 
Load (MW) 14 8.2 14.5 7.2 22.5 

Bus 23 24 26 29 30 
Load (MW) 8.2 13.7 8.5 7.4 15.6 

Table 2. Parameters of conventional generators. 

Bus Generators cj (103 $/MWh) Pmin (MW) Pmax (MW) ,maxupramp  (MW) ,maxdownramp  (MW) 

1 G1 36 0 80 24 24 
2 G2 31.5 0 80 24 24 

13 G3 41.25 0 50 12 12 
22 G4 37.087 0 55 12 12 
23 G5 37.5 0 40 10 10 
27 G6 40 0 40 10 10 
Note: Because the bidding strategies of conventional generators are neglected, the value of cj ( j∀ ) in 

Table 2 is obtained by using marginal cost of the j-th conventional generator when its power output 
reaches Pjmax. Moreover, parameters of every conventional generator’s marginal cost can be seen in 
Reference [43]. 
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Table 3. Predicted power output intervals of WPPs. 

Bus WPP Lw (MW) Uw (MW)
3 WPP1 5 20 

10 WPP2 10 25 
12 WPP3 10 25 
15 WPP4 20 30 
25 WPP5 5 20 

4.2. Robust MCM Testing 

The value of budget parameter Λ  is related to the size of the uncertainty set. The smaller Λ  
is, the smaller is the size of uncertainty set estimated by ISO. That is to say the day-ahead market 
clearing procedure of ISO tends to be more deterministic with the decrease of the value of Λ   
( 0≥Λ ). When = 0Λ , it means the predicted power output of every WPP is deemed by ISO as a 
definite value which, according to Equation (1) and [10,19,20], is equal to the intermediate value of 
its power output interval, and the day-ahead MCM of ISO is completely turned into a conventional 
deterministic MCM similar to [30]. However, uncertainties exist objectively in a power system with 
WPPs. If the market clearing procedure were implemented by ISO without considering enough 
uncertainties, the reserve capacity of the system dispatched in day-ahead might find it hard to 
accommodate deviations caused by WPPs’ power output uncertainties in real time, which can 
seriously affect the security of the system and cause huge extra costs such as wind-abandonment, 
etc. Therefore, market clearing results under different Λ  values must be compared so as to verify 
the necessity of proposing robust MCM in day-ahead EM with wind power penetrations. 

In this section, in order to facilitate the market clearing comparison, we assume every WPP is 
under BM 1 and sends the ISO the intermediate value of its power output interval. In fact, the same 
key conclusions obtained from market clearing comparisons can also be generated with other BM 
and strategies. Moreover, no matter what the ISO thinks the value of Λ  is, the actual value of Λ  
which represents the objective existence of uncertainty is fixed, by us, to the number of WPPs in the 
system ( Λ  = 5). Table 4 shows the market clearing results under different Λ  values. 

Table 4. Market clearing results under different Λ  values. 

Λ  
Value 

Operation Cost 
(103 $) 

Uncertainty that Cannot be 
Accommodated 

Number of Uncertainty Poles that Cannot 
be Accommodated 

0 5.8955 yes 22 
1 6.0087 yes 14 
2 6.1023 yes 9 
3 6.1851 yes 3 
4 6.2078 no 0 
5 6.2078 no 0 

In Table 4, because the marginal cost of every WPP is neglected [3,31], the “operation cost” in 

column 2 can be calculated by using 
1

GN

j j
j

c P
=
  when the optimal ED solution is obtained. 

Moreover, the “uncertainty that cannot be accommodated” in column 3 means whether there exist 
uncertainty points in ( )Λ  =  5U  that cannot be accommodated when the optimal ED solution is 
obtained. The “number of uncertainty poles that cannot be accommodated” in column 4 denotes the 
number of poles in ( )Λ = 5U  that cannot be accommodated when the optimal ED solution is 
obtained. From Table 4, it can be concluded that: 

• The total operation cost increases with the increase of Λ . However, uncertainties that cannot 
be accommodated tend to be eliminated by increasing Λ . On one hand, it means the 
conservatism of ISO is improved with the increase of Λ , which reduces the economic 
efficiency of scheduling to a certain extent. On the other hand, the operation cost is calculated 
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based on the basic scenario (WPPs’ day-ahead bids), in which extra cost caused by 
uncertainties that cannot be accommodated is not taken into account. Although that extra cost 
is hard to be specifically calculated due to many reasons such as missing information about the 
real-time occurrence of uncertainty from day-ahead horizon etc., it can be considerable once 
any uncertainty that cannot be accommodated occurs in practice. Therefore, it is necessary to 
eliminate uncertainties that cannot be accommodated by reasonably increasing the value of 
Λ . 

• When = 0Λ , it means the ISO clears the market using the conventional deterministic MCM. 
The number of uncertainty poles that cannot be accommodated in case = 0Λ  is 22 which is 
significantly more than any other cases listed in Table 4 (actually number of uncertainties that 
cannot be accommodated in case = 0Λ  is infinite). That is to say it is necessary to employ a 
modified MCM, such as our proposed robust MCM, in day-ahead EM with considerable 
uncertainties (i.e., WPPs). 

• Comparing cases of =4Λ  and = 5Λ , on one hand, there are no uncertainties that cannot be 
accommodated in both of the two cases; on the other hand, operation cost in case Λ  =  4  is 
equal to that in case = 5Λ . Moreover, increasing Λ  means to increase the computational 
complexity of solving the robust MCM [15,16,19,20]. Hence, the proposed robust MCM with 

=4Λ  is applied for market clearing in our subsequent simulations. 

4.3. LSCAC-Based EM Modeling Approach Testing 

In this section and our subsequent simulations, no matter under which BM, every WPP (agent) 
will start with experiencing a training process of 3000 iterations. During this training process, all 
WPPs consider the balance of exploration and exploitation when selecting bidding strategies 
(actions) in each iteration [41]. After the training process, decision making process of 500 iterations 
will be implemented by every WPP, in which only greedy policy will be adopted when selecting 
actions in face of any state of the market. Moreover, we randomly set the action for every WPP at 
the beginning of the first training iteration because every WPP starts with limited experience in 
strategy selecting. 

Testing and verifying whether our proposed LSCAC-based day-head EM approach under  
BM 1 reaches to dynamic stability or not after 3000 training iterations can be shown in Figures 2–4. 
Moreover, Testing and verifying whether our proposed LSCAC-based day-head EM approach 
under BM 2 reaches to dynamic stability or not after 3000 training iterations can be shown in  
Figures 5–7. In Figures 4 and 7, summed UMP at bus m in each iteration can be calculated by using 
Equation (39). 

 

Figure 2. Dynamic adjustment process of estimated profit corresponding to every WPP under BM 1. 
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Figure 3. Dynamic adjustment process of LMP corresponding to every WPP under BM 1. 

 
Figure 4. Dynamic adjustment process of summed UMP corresponding to every WPP under BM 1. 

 

Figure 5. Dynamic adjustment process of estimated profit corresponding to every WPP under BM 2. 
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Figure 6. Dynamic adjustment process of LMP corresponding to every WPP under BM 2. 

 

Figure 7. Dynamic adjustment process of summed UMP corresponding to every WPP under BM 2. 

Before we analyze BMs and strategies for WPPs by using our proposed LSCAC-based 
day-head EM modeling approach, it should be tested first whether our proposed approaches under 
different BMs converge to dynamic stabilities after every WPP experiences enough iterations of on 
line training. If the convergence was verified, the market state and obtained action of every WPP 
would no longer change after enough training iterations. It should be noted that in the existing 
TBRL-based approaches [26–31,36], the action set of every agent is discrete and finite, and the 
optimality of an agent’s final obtained action can be easily verified by using method mentioned in 
[31], which is to compare profits brought from all actions in this agent’s action set while fixing the 
actions of other agents. However, in our proposed LSCAC-based approach, the action set of every 
agent is continuous. It is impossible to directly test the optimality of an agent’s final obtained action 
because there are infinite actions other than this final obtained one. Therefore, we propose the 
following three steps to further test the performance of the LSCAC-based day-head EM modeling 
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• To test the optimality of a WPP’s final obtained strategy in TBRL-based (i.e., Q-Learning 
algorithm [26,27]) day-head EM modeling approaches after converging to dynamic stabilities 
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strategies. The specific optimality test method can be seen in [31]. 
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• To test whether a WPP can obtain more profit by using LSCAC algorithm than TBRL 
algorithm (Q-Learning algorithm [26,27]) or not, after converging to dynamic stabilities. 

• To test whether the whole market can reach lower operation cost in our proposed 
LSCAC-based approach than TBRL-based (Q-Learning algorithm [26,27]) one or not, after 
converging to dynamic stabilities. 

The related parameters of our LSCAC-based day-head EM modeling approach are listed in 
Table 5. 

Table 5. Related parameters in LSCAC-based day-head EM modeling approach. 

Under BM 1

LSCAC-Based Agents 
EM State Set ($/MWh)

Action Set γ  α  σ  q 
X1 X2

WPP1 [0, 100] [−50, 50] [5, 20] MW 0.5 0.1 4.5 1 
WPP2 [0, 100] [−50, 50] [10, 25] MW 0.5 0.1 4.5 1 
WPP3 [0, 100] [−50, 50] [10, 25] MW 0.5 0.1 4.5 1 
WPP5 [0, 100] [−50, 50] [20, 30] MW 0.5 0.1 3 1 
WPP5 [0, 100] [−50, 50] [5, 20] MW 0.5 0.1 4.5 1 

Under BM 2

LSCAC-Based Agents 
EM State Set ($/MWh)

Action Set γ  α  σ  q 
X1 X2

WPP1 [0, 100] [−50, 50] [30, 50] $/MWh 0.5 0.1 4.5 1 
WPP2 [0, 100] [−50, 50] [30, 50] $/MWh 0.5 0.1 4.5 1 
WPP3 [0, 100] [−50, 50] [30, 50] $/MWh 0.5 0.1 4.5 1 
WPP5 [0, 100] [−50, 50] [30, 50] $/MWh 0.5 0.1 3 1 
WPP5 [0, 100] [−50, 50] [30, 50] $/MWh 0.5 0.1 4.5 1 

Central point sets in the Gauss radial basis 
function corresponding with X1 and X2 

X1 {0, 5, 10, 15, …, 100} 
X2 {−50, −45, −40, …, 50} 

From Figures 2–4, it can be seen that, after randomly fluctuating in 3000 training iterations, the 
adjustment processes of estimated profit, LMP and summed UMP of every WPP remain constant 
during 500 decision-making iterations. Actually, other adjustment processes such as that of 
operation cost, every WPP’s bidding strategy, etc. also become constant after 3000 training 
iterations. Therefore, our proposed approach under BM 1 can converge to dynamic stability after 
every WPP experiences 3000 iterations of online training. 

From Figures 5–7, it can be seen that, after randomly fluctuating in 3000 training iterations, the 
adjustment processes of estimated profit, LMP and summed UMP of every WPP remain constant 
during 500 decision-making iterations. Actually, other adjustment processes such as that of 
operation cost, every WPP’s bidding strategy, etc. also become constant after 3000 training 
iterations. Therefore, our proposed approach under BM 2 can converge to dynamic stability after 
every WPP experiences 3000 iterations of online training. 

The main reason about the fluctuating trends in the 3000 training iterations in Figures 2–7 is 
that in order to balance the exploration and exploitation during these 3000 training iterations, every 
WPP must maintain the ability of exploration which is to randomly select bidding strategies 
according to the repeatedly updated Equation (45), all WPPs’ insufficient experiences and unstable 
action selecting policies make the dynamic training process of EM fluctuate randomly. The main 
reason about the constant trends in 500 decision-making iterations in Figures 2–7 is that after 
accumulating enough experiences, every WPP adopts the greedy policy which is to only select its 
considered optimal bidding strategy in face of any observed EM state in each of the 500 
decision-making iterations, all WPPs’ sufficient experiences and stable action selecting policies 
make the dynamic decision-making process of EM converge to stability. Therefore, it may be 
concluded that enough training iterations considering the balance of exploration and exploitation, 
as well as the greedy action selecting policy adopted in decision-making iterations are two main 
factors resulting in EM dynamic stability. Taking EM approach under BM 1 for example, Figure 8 
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shows the dynamic adjusting process of WPP1’s estimated profit when every WPP experiences 1000 
training iterations and 500 decision-making iterations, and Figure 9 shows the dynamic adjustment 
process of WPP1’s estimated profit when every WPP experiences 3500 training iterations without 
greedy action selecting policy.  

 
Figure 8. Dynamic adjusting process of WPP1’s estimated profit under BM 1 when every WPP 
experiences 1000 training iterations and 500 decision-making iterations. 

 

Figure 9. Dynamic adjustment process of WPP1’s estimated profit under BM 1 when every WPP 
experiences 3500 training iterations without greedy action selecting policy. 

From Figure 8, it is shown that although the greedy action selecting policies are adopted by 
WPPs in decision-making iterations, insufficient training iterations, which mean insufficient 
experiences accumulated, still make WPP1’s estimated profit fluctuate during decision-making 
process. Actually, the dynamic adjustment processes of other WPPs’ estimated profits also fluctuate 
during decision-making iterations.  

From Figure 9, it is shown that although more than 3000 training iterations considering the 
balance of exploration and exploitation are conducted, WPP1’s estimated profit still fluctuates 
during the last 500 iterations due to its lack of a greedy action selection policy. Actually, the 
dynamic adjustment processes of other WPPs’ estimated profits also fluctuate during the last 500 
iterations. Moreover, WPP1’s estimated profit in Figure 9 is much more volatile during the last 500 
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iterations than that in Figure 8, which is mainly because WPPs lacking greedy action selection 
policies tend to bid more randomly in the EM.  

Therefore, EM dynamic stability cannot be reached whether there are insufficient training 
iterations or the greedy action selecting policy is not considered, which, to a certain extent, on the 
one hand verifies our conclusions about the two main factors resulting in EM dynamic stability, and 
on the other hand, suggests that the proposed 3000 training iterations and 500 decision-making 
iterations are comparatively reasonable for our proposed LSCAC-based approach to reach EM 
dynamic stability.  

To further test the performance of our proposed approaches under different BMs, two 
Q-learning-based day-ahead EM approaches (QDEMAs) are taken for comparison. In these 
QDEMAs, some WPPs are designated as Q-learning-based agents while other undesignated WPPs 
are still the LSCAC-based ones. A Q-learning-based agent dynamically adjusts its action based on 
Q-learning algorithm which use ε-greedy policy [26] to balance exploration and exploitation in 3000 
training iterations, and greedy policy in 500 decision-making iterations. Difference among these 
QDEMAs is only reflected in the number of Q-learning-based agents. Parameters related to these 
two QDEMAs are listed in Table 6. 

Table 6. Related parameters of Q-learning-based agents in two QDEMAs. 

QDEMA 1 under BM 1

Q-Learning-Based Agents 
EM State Set ($/MWh)

Action Set (MW) ε  γ  α  X1 X2

WPP1 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {5, 6, …, 20} 0.1 0.5 0.1 
WPP2 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {10, 11, …, 25} 0.1 0.5 0.1 
WPP3 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {10, 11, …, 25} 0.1 0.5 0.1 
WPP4 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {20, 21, …, 30} 0.1 0.5 0.1 
WPP5 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {5, 6, …, 20} 0.1 0.5 0.1 

QDEMA 1 under BM 2

Q-Learning-Based Agents 
EM State Set ($/MWh)

Action Set ($/MWh) ε  γ  α  X1 X2

WPP1 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30, 31, 32, …, 50} 0.1 0.5 0.1 
WPP2 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30, 31, 32, …, 50} 0.1 0.5 0.1 
WPP3 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30, 31, 32, …, 50} 0.1 0.5 0.1 
WPP4 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30, 31, 32, …, 50} 0.1 0.5 0.1 
WPP5 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30, 31, 32, …, 50} 0.1 0.5 0.1 

QDEMA 2 under BM 1

Q-Learning-Based Agents 
EM State Set ($/MWh)

Action Set (MW) ε  γ  α  X1 X2

WPP3 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {10, 11, …, 25} 0.1 0.5 0.1 
WPP4 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {20, 21, …, 30} 0.1 0.5 0.1 
WPP5 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {5, 6, …, 20} 0.1 0.5 0.1 

QDEMA 1 under BM 2

Q-Learning-Based Agents 
EM State Set ($/MWh)

Action Set ($/MWh) ε  γ  α  X1 X2

WPP3 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30,31,32,…,50} 0.1 0.5 0.1 
WPP4 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30,31,32,…,50} 0.1 0.5 0.1 
WPP5 {0, 5, 10, …, 100} {−50, −45, −40, …, 50} {30,31,32,…,50} 0.1 0.5 0.1 

After 3000 training and 500 decision-making iterations, the obtained market results of those 
two QDEMAs and our proposed approach under BM 1 are listed in Table 7, and the obtained 
results of those two QDEMAs and our proposed approach under BM 2 are listed in Table 8. 
Moreover, like our proposed LSCAC-based approach, no matter under which BM, both these 
QDEMAs can converge to dynamic stability after every WPP experiences 3000 iterations of online 
training. That means those results listed in Tables 7 and 8 are not obtained accidentally, a 
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LSCAC-based or Q-learning-based WPP does not change its strategy when market state affected by 
all WPPs’ strategies keeps unchanged. 

Table 7. Obtained market results of those two QDEMAs and our proposed approach under  
BM 1 ( 310 $ ). 

Approaches 
Profit of

Operation Cost 
WPP1 WPP2 WPP3 WPP4 WPP5

QDEMA 1 0.6497 0.9183 0.8195 1.0683 0.6631 6.1012 
QDEMA 2 0.8034 1.0859 0.7706 0.9175 0.5989 5.9973 

LSCAC-based approach 0.7185 1.0667 0.9917 1.1578 0.7432 5.8309 

Table 8. Obtained market results of those two QDEMAs and our proposed approach under  
BM 2 ( 310 $ ). 

Approaches 
Profit of

Operation Cost 
WPP1 WPP2 WPP3 WPP4 WPP5

QDEMA 1 0.6816 0.9643 0.8740 1.1375 0.7012 6.9908 
QDEMA 2 0.8319 1.1083 0.8172 1.0864 0.6398 6.7637 

LSCAC-based approach 0.7318 1.0797 1.0316 1.2073 0.7726 6.4134 

From Tables 7 and 8, it can be conclude that: 

• By using the optimality test method in [31], no matter under which BM and in which QDEMA, 
every Q-learning-based WPP’s final obtained strategy can be verified as its optimal one in its 
discrete action set, which can bring it the most profit when other WPPs’ strategies are fixed.  

• No matter under which BM, on the one hand, estimated profits of WPP1 and WPP2 in  
QDEMA 2 are higher than those in QDEMA 1, respectively, and estimated profits of WPP3, 
WPP4 and WPP5 in our proposed LSCAC-based approach are higher than those in QDEMA 2, 
respectively, which, to some extent, indicates one can get more profit by using the LSCAC 
algorithm to bid in EM than the Q-learning one within the same conditions; on the other hand, 
the operation cost in our proposed LSCAC-based approach is lower than that in QDEMA 2, 
and the operation cost in QDEMA 2 is lower than that in QDEMA 1, which, to some extent, 
indicates that with the increase in the number of LSCAC-based agents in EM, the operation 
cost of whole system can be reduced. 

In conclusion, no matter under which BM, Q-learning-based WPPs can finally find their 
optimal bidding strategies from their discrete and finite action sets. If these WPPs are transformed 
into LSCAC-based ones, they can finally find their more applicable strategies from their continuous 
action sets, which not only bring more profits for themselves but also bring lower operation cost for 
the whole system than that based on Q-learning method. Hence, although it is hard to directly test 
the optimality of every LSCAC-based WPP’s final obtained strategy, our further test has, to some 
extent, verified the rationality and scientific basis of applying our proposed LSCAC-based approach 
in day-ahead EM modeling for strategic WPPs. 

Moreover, no matter under which BM, simulation of our proposed approach on IEEE 30 bus 
test system with five strategic WPPs takes only about 43 seconds to reach the final results (after 
3500 iterations). That is to say, the time complexity of our proposed approach is relatively low so 
that we can extend it to the modeling and simulation of more realistic and more complex EM 
system. 

4.4. BMs Analysis for WPPs 

In this section, our proposed LSCAC-based approach is applied to analyze the obtained market 
results under different BMs after 3000 training iterations and 500 decision-making iterations. 
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Moreover, it should be noted that under BM 2, in order to lead WPPi( i∀ ) to reasonably bid 

in market, we set lower and upper limits ,lowiρ  and ,upp iρ  ($/MWh) for its bidding price 
b

iρ . 

Values of ,lowiρ  and ,upp iρ ( i∀ ) may affect the obtained market results such as final obtained 

LMPs, estimated profits of all WPPs and operation cost of the system etc. after 3500 iterations. 

Hence, different values of ,lowiρ  and ,upp iρ ( i∀ ) should be taken into account when considering 

BMs. For the sake of simplicity and without losing generality, we set , ,low i low upp i upp i= = ∀ρ ρ ,ρ ρ , 

and different values of lowρ  and uppρ  are considered. 

After 3500 iterations, considering different values of lowρ  (while fixing the upper limit uppρ  

to 50 $/MWh, the same as what listed in Table 5, Table 9 is listed for the comparison of obtained 
market results under different BMs. 

Table 9. Comparison of obtained market results under different BMs by considering different values 

of lowρ . 

BMs Profit of (103$) Operation 
Cost (10−3$) 

Average LMP 
($/MWh) 

Under BM 2 

lo wρ  WPP1 WPP2 WPP3 WPP4 WPP5 
0 0.7318 1.0797 1.0316 1.2073 0.7726 6.4134 39.3228 

10 0.7318 1.0797 1.0316 1.2073 0.7726 6.4134 39.3228 
20 0.7318 1.0797 1.0316 1.2073 0.7726 6.4134 39.3228 
30 0.7318 1.0797 1.0316 1.2073 0.7726 6.4134 39.3228 

Under BM 1 0.7185 1.0667 0.9917 1.1578 0.7432 5.8309 38.7490 

After 3500 iterations, considering different values of uppρ  (while fixing the upper limit lowρ  

to 30 $/MWh, the same as what was listed in Table 5, Table 10 is provided for the comparison of 
obtained market results under different BMs. 

Table 10. Comparison of obtained market results under different BMs by considering different 

values of uppρ . 

BMs Profit of (103$) Operation 
Cost (103$) 

Average LMP 
($/MWh) 

Under BM 2 

u p pρ  WPP1 WPP2 WPP3 WPP4 WPP5 
50 0.7318 1.0797 1.0316 1.2073 0.7726 6.4134 39.3228 
60 0.7646 1.1082 1.0656 1.2322 0.7953 6.5973 39.4137 
70 0.8769 1.1231 1.0921 1.2547 0.9080 6.8231 39..8759 
80 0.9228 1.1439 1.1292 1.2861 0.9242 7.0197 40.0011 

Under BM 1 0.7185 1.0667 0.9917 1.1578 0.7432 5.8909 38.7490 

From Tables 9 and 10, it can be seen that:  

• In Table 9, when values of lowρ  are 0, 10, 20 and 30 ($/MWh), respectively, the obtained profit 
of every WPP, operation cost and average LMP of 30 buses under BM 2 remain unchanged. 

Actually, if lowρ  ≤ 30 $/MWh, the obtained bidding price (strategy) of every WPP under BM 2 

is higher than 30 ($/MWh), which means values of lowρ  lower than 30 ($/MWh) cannot affect 
every WPP’s bidding decision-making. Therefore, in our opinion, it is hard to weaken the 
market power of every WPP by only reducing the value of lower limit of every WPP’s bidding 
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price while WPPs provide ISO their bidding curves consisting of bidding prices and power 
outputs for the next day. 

• In Table 10, the obtained profit of every WPP, operation cost and average LMP of 30 buses 

under BM 2 increases with the increase of the value of uppρ . That may be mainly because the 

more the value of uppρ  is, the greater market power WPPs have. Therefore, in our opinion, 

the upper limit of every WPP’s bidding price should not be set too high while WPPs provide 
ISO their bidding curves consisting of bidding prices and power outputs for the next day. 

• In most cases of lowρ  and uppρ , WPPs under BM 2 can get more profits than under BM 1, 

which may be because WPPs under BM 2 can obtain greater market power by directly 
adjusting their bidding prices so as to further improve their profits compared with WPPs 
under BM 1. However, from the perspective of the whole market, both the obtained operation 
cost and average LMP under BM 2 are higher than that under BM 1, which, to some extent, 
indicates WPPs adopting BM 2 cause lower economic efficiency in the whole market than 
adopting BM 1. Therefore, in our opinion, if the purpose of permitting WPPs to bid is to 
promote the development of wind power resources by improving WPPs’ profits, providing 
ISO their bidding curves is more applicable, and if the purpose of permitting WPPs to bid is to 
improve the economic efficiency of the whole market, only sending their power output plans is 
more applicable. 

5. Conclusions 

In this paper, we present a LSCAC-based day-head EM modeling approach with a robust 
market clearing mechanism embedded in it, and strategic behaviors of WPPs under two different 
BMs are successively mimicked and compared by using our proposed approach. With employing 
the robust MCM, day-head ED solution of the market can be immunized against any uncertainty 
within the real time wind power uncertainty set estimated by ISO, which not only ensures the 
ability of wind power accommodation in EM, but also reasonably generates LMPs for energy credit 
and load payment as well as UMPs for reserve credit and deviation payment. By employing the 
LSACA algorithm, every WPP can significantly improve its profit and the operation cost of the 
system can also be remarkably decreased compared with employing the TBRL (i.e., Q-learning) 
algorithms. Low computational time (taking only about 43 seconds for our simulation on IEEE 30 
bus test system to reach the final results) makes that our proposed approach easily extendible to 
provide a reasonable test bed for simulation of more realistic and more complex EM systems. 
Moreover, by conducting comparisons on market results under different BMs in simulation, some 
suggestions leading WPPs to reasonably bid in market and BM selections are put forward for the 
purposes of promoting the development of wind power resources and improving the economic 
efficiency of the whole market. 
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Nomenclature 

Acronym 
EM Electricity market 
WPP Wind power producer 
BM Bidding mode 
ISO Independent system operator 
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MCM Market clearing model 
SO Stochastic optimization  
WPOSS/WPOS Wind power output stochastic scenario/wind power output scenario 
RO Robust optimization 
SCUC/UC security constraint unit-commitment/unit-commitment 
SCED/ED security constraint economic-dispatch/economic-dispatch 
AP Affine policy 
GenCO generation company 
ARIMA Autoregressive integrated moving average 
SARSA State-action-reward-state-action 
KDE Kernel density estimation 
TBRL Table-based reinforcement learning 
MASCEM Multi-agent simulator of competitive electricity market 
LSCAC Least square continuous actor-critic 
RMCM Robust market clearing model 
MP/SP Master problem/sub-problem 
LMP Locational marginal price 
UMP Uncertainty marginal price 
GLM/F Generalized lagrange multiplier/fuction 
TD Time difference 
QDEMA Q-learning-based day-ahead EM approach 
Index 
i, j, m Indices for WPP, conventional generator and bus 
k index of the worst point for uncertainty (element in κ ) 
l Index for transmission line 
T, N Indices for iteration in LSCAC-based EM approach 
h Index for the dimension of basis function vector 
Set and Function 
U  Real-time wind power output uncertainty set 

Ω  
Robust feasible region for every day-ahead ED solution which is immunized against any 
real-time uncertainties within U  

( )mΘ  Set of WPPs, conventional generators and loads connected in bus m 

κ  Index set for worst uncertainty points 

, 1
up
mT−κ , 

, 1
down
m T −κ  Set of indices k for upward and downward UMPs at bus m iteration T − 1 

X / A  State space/action space 

( )⋅ρ  
WPP’s bidding function (curve) under BM 2, which is assumed to be identically equal to a 
certain bidding price b

iρ  no matter what its bidding power output b
iPw  is  

( )L ⋅  Generalized lagrange function 
ˆ ( )I ⋅  Optimal action selecting policy function 

( )h ⋅φ / ( )⋅φ  h-th basic function/basic function vector 

(, )pro ⋅ ⋅  Probability density function for selecting action a under state x (representing action selecting 
policy during training iterations) 

( )MSE ⋅  Mean square function 
( ) ( )proP ⋅  Probability distribution function of state x under policy pro 

( )sig ⋅  Sigmoid function 
( , )⋅ ⋅δ  TD error function for selecting action a under state x 

Constant 
Nw, NG, Nbus The numbers of WPPs, conventional generators and buses 

ilw ,
iuw  lower and upper bounds for i-th WPP’s real-time wind power output 

,low iρ ,
,upp iρ  lower and upper limits for i-th WPP’s bidding price 

Λ  Budget parameter relating to the size of uncertainty set  
cj cost coefficient of j-th conventional generator 
dm Aggregated equivalent load at bus m 
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max
jP , 

min
jP  Maximum and minimum generation outputs 

,l mΓ  Shift factor for line l with respect to bus m 

lF  Transmission line flow limit for line l 
u
jr , d

jr  j-th conventional generator’s ramping-up/down limits for uncertainty accommodation 

Δ  Feasibility tolerance  
n dimension number of basis function vector 
q Coefficient in sigmoid function 

Π  
Small positive constant for calculating the linear parameter vector ω  in ˆ( )I x  based on 
ridge regression 

α  Step length factor 
σ  Standard deviation 
γ Discount factor 
Parametric Variable 

b
iPw  i-th WPP’s bidding power output parameter 

b
iρ  i-th WPP’s bidding price parameter 

θ  Linear parameter vector in TD error function (and value function) 
ω  Linear parameter vector in optimal action selecting policy function 

*θ  Convergence value of θ  
*ω  Convergence value of ω  

AN/bN 
Intermediate parameter matrix/vector in LSCAC iterations for obtaining convergence value 
of ω  

Variable 

Pw /
iP w  

Random variable vector representing the uncertainty of WPPs’ joint real-time power 
outputs/random variable representing the uncertainty of i-th WPP’s real-time power output, 
moreover, Pw /

iP w  can also be considered as part of the decision variables (vector) in SP 

kPw  k-th worst uncertainty point of WPPs’ joint real-time power outputs, moreover, kPw  also 

represents part of SP’s solutions when solving SP for the k-th time 

jP ,
disp

iPw ,

jkPΔ  

Decision variables in MP, representing day-ahead dispatched power output of j-th 
conventional generator, i-th WPP, as well as real-time power re-dispatch incremental result 
of j-th conventional generator under k-th worst uncertainty point, respectively 

GWP , dispPw , 

ΔP  

Variable vector consisting of 
jP  ( j∀ ) and 

disp
iPw ( i∀ ), variable vector consisting of  

disp
iPw ( i∀ ), variable vector consisting of jkPΔ ( j∀ , k∀ ) 

is+
, is−

, 
jPΔ  

Other decision variables in SP, is+
, is−

are non-negative slack variables, and the sum of 

which evaluate the violation associated with the solution from MP, jPΔ  represents real 

time power re-dispatch approach of j-th conventional generator for accommodating 
uncertainties within U 

Ψ  Value of SP’s objective function 
, , ,,λ β ζμ η Generalized lagrange multiplier vectors 

mkε  Deviation of the real-time power output generated by WPPs connecting in bus m under k-th 
worst uncertainty point from the day-head bidding (dispatched) one 

mπ , 
m kπ  LMP in bus m, UMP in bus m under k-th worst uncertainty point 

iR  Estimated profit of i-th WPP 
x, a, r State variable, action variable, reward 

References 

1. Prabavathi, M.; Gnanadass, R. Energy bidding strategies for restructured electricity market. Int. J. Electr. 
Power Energy Syst. 2015, 64, 956–966. 



Energies 2017, 10, 924 26 of 27 

 

2. Majumder, S.; Khaparde, S.A. Revenue and ancillary benefit maximization of multiple non-collocated 
wind power producers considering uncertainties. IET Gener. Trans. Distrib. 2016, 10, 789–797. 

3. Li, J.; Wan, C.; Xu, Z. Robust offering strategy for a wind power producer under uncertainties. In 
Proceedings of 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), 
Sydney, Australia, 6–9 November 2016; pp. 752–757. 

4. Zhao, Q.; Shen, Y.; Li, M. Control and bidding strategy for virtual power plants with renewable generation 
and inelastic demand in electricity markets. IEEE Trans. Sustain. Energy 2016, 7, 562–575. 

5. Zugno, M.; Morales, J.M.; Pinson, P.; Madsen, H. Pool strategy of a price-maker wind power producer. 
IEEE Trans. Power Syst. 2013, 28, 3440–3450.  

6. Shafie-khah, M.; Heydarian-Forushani, E.; Golshan, M.E.H.; Moghaddam, M.P.; Sheikh-El-Eslami, M.K.; 
Catalão, J.P.S. Strategic offering for a price-maker wind power producer in oligopoly markets considering 
demand response exchange. IEEE Trans. Ind. Inf. 2015, 11, 1542–1553. 

7. Delikaraoglou, S.; Papakonstantinou, A.; Ordoudis, C.; Pinson, P. Price-maker wind power producer 
participating in a joint day-ahead and real-time market. In Proceedings of the 12th International 
Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May 2015; pp. 1–5. 

8. De la Nieta, A.A.S.; Contreras, J.; Muñoz, J.I.; O'Malley, M. Modeling the impact of a wind power producer 
as a price-maker. IEEE Trans. Power Syst. 2014, 29, 2723–2732. 

9. Lei, M.; Zhang, J.; Dong, X.; Ye, J.J. Modeling the bids of wind power producers in the day-ahead market 
with stochastic market clearing. Sustain. Energy Technol. Assessm. 2016, 16, 151–161. 

10. Ye, H.; Ge, Y.; Shahidehpour, M.; Li, Z. Pricing energy and flexibility in robust Security-Constrained Unit 
Commitment model. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting 
(PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. 

11. Morales, J.M.; Conejo, A. J.; Perez-Ruiz, J. Economic valuation of reserves in power systems with high 
penetration of wind power. IEEE Trans. Power Syst. 2009, 24, 900–910. 

12. Morales, J.M.; Conejo, A.J.; Liu, K.; Zhong, J. Pricing electricity in pools with wind producers. IEEE Trans. 
Power Syst. 2012, 27, 1366–1376. 

13. Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F. Optimal offering strategies for wind power producers 
considering uncertainty and risk. IEEE Syst. J. 2012, 6, 270–277. 

14. Zugno, M.; Conejo, A.J. A robust optimization approach to energy and reserve dispatch in electricity 
markets. Eur. J. Oper. Res. 2015, 247, 659–671. 

15. Wei, W.; Liu, F.; Mei, S. Robust and economical scheduling methodology for power systems. Part one: 
Theoretical foundations. Autom. Electr. Power Syst. 2013, 37, 37–43. 

16. Jiang, R.; Wang, J.; Guan, Y. Robust unit commitment with wind power and pumped storage hydro. IEEE 
Trans. Power Syst. 2012, 27, 800–810. 

17. Zhao, C.; Guan, Y. Unified stochastic and robust unit commitment. IEEE Trans. Power Syst. 2013, 28,  
3353–3361. 

18. Warrington, J.; Goulart, P.; Mariéthoz, S.; Morari, M. Policy-based reserves for power systems. IEEE Trans. 
Power Syst. 2013, 28, 4427–4437. 

19. Ye, H.; Wang, J.; Li, Z. MIP reformulation for max-min problems in two-stage robust SCUC. IEEE Trans. 
Power Syst. 2017, 32, 1237–1247. 

20. Ye, H.; Ge, Y.; Shahidehpour, M.; Li, Z. Uncertainty marginal price, transmission reserve, and day-ahead 
market clearing with robust unit commitment. IEEE Trans. Power Syst. 2016, 32, 1782–1795. 

21. Langary, D.; Sadati, N.; Ranjbar, A.M. Direct approach in computing robust Nash strategies for generating 
companies in electricity markets. Int. J. Electr. Power Energy Syst. 2014, 54, 442–453. 

22. Salem, Y.; Agtash, A. Supply curve bidding of electricity in constrained power networks. Energy 2010, 35, 
2886–2892. 

23. Min, C.G.; Kim, M.K.; Park, J.K.; Yoon, Y.T. Game-theory-based generation maintenance scheduling in 
electricity markets. Energy 2013, 55, 310–318. 

24. Wang, J.; Zhou, Z.; Botterud, A. An evolutionary game approach to analyzing bidding strategies in 
electricity markets with elastic demand. Energy 2011, 36, 3459–3467. 

25. Shivaie, M.; Ameli, M.T. An environmental/techno-economic approach for bidding strategy in 
security-constrained electricity markets by a bi-level harmony search algorithm. Renew. Energy 2015, 83, 
881–896. 



Energies 2017, 10, 924 27 of 27 

 

26. Rahimiyan, M.; Mashhadi, H.R. Supplier's optimal bidding strategy in electricity pay-as-bid auction: 
Comparison of the Q-learning and a model-based approach. Electr. Power Syst. Res. 2008, 78, 165–175. 

27. Xiong, G.; Hashiyama, T.; Okuma, S. An electricity supplier bidding strategy through Q-Learning. In 
Proceedings of the IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; 
pp. 1516–1521. 

28. Ziogos, N.P.; Tellidou, A.C. An agent-based FTR auction simulator. Electr. Power Syst. Res. 2011, 81,  
1239–1246. 

29. Santos, G.; Fernandes, R.; Pinto, T.; Praça, I.; Vale, Z.; Morais, H. MASCEM: EPEX SPOT Day-Ahead 
market integration and simulation. In Proceedings of the 18th International Conference on Intelligent 
System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 2015; pp. 1–5. 

30. Bach, T. Using Reinforcement Learning to Study the Features of the Participants’ Behavior in Wholesale 
Power Market. Available online: https://www.science-definition.com/whatis/Using_Reinforcement_ 
Learning_to_Study_the_Features_of_the_Participants%C2%A1%C2%AF_Behavior_in_Wholesale_Power
_Market (accessed on 29 June 2017). 

31. Salehizadeh, M.R.; Soltaniyan, S. Application of fuzzy Q-learning for electricity market modeling by 
considering renewable power penetration. Renew. Sustain. Energy Rev. 2016, 56, 1172–1181.  

32. Xiao, Y.; Wang, X.; Wang, X.; Dang, C.; Lu, M. Behavior analysis of wind power producer in electricity 
market. Appl. Energy 2016, 171, 325–335. 

33. Ravnaas, K.W.; Doorman, G.; Farahmand, H. Optimal wind farm bids under different balancing market 
arrangements. In Proceedings of the IEEE 11th International Conference on Probabilistic Methods Applied 
to Power Systems, Singapore, 14–17 June 2010; pp. 30–35. 

34. Sharma, K.C.; Bhakar, R.; Tiwari, H.P. Strategic bidding for wind power producers in electricity markets. 
Energy Conv. Manag. 2014, 86, 259–267. 

35. Matevosyan, J.; Soder, L. Minimization of imbalance cost trading wind power on the short term power 
market. IEEE Trans. Power Syst. 2005, 21, 1–7. 

36. Soares, T.; Santos, G.; Pinto, T.; Morais, H.; Pinson, P.; Vale, Z. Analysis of strategic wind power 
participation in energy market using MASCEM simulator. In Proceedings of the 2015 18th International 
Conference on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 
2015; pp. 1–6. 

37. Ding, H.; Pinson, P.; Hu, Z.; Wang, J.; Song, Y. Optimal offering and operating strategy for a large 
wind-storage system as a price maker. IEEE Trans. Power Syst. 2017, PP, 1–1. 

38. Laia, R.; Pousinho, H.M.I.; Melíco, R.; Mendes, V.M.F. Bidding strategy of wind-thermal energy 
producers. Renew. Energy 2016, 99, 673–681. 

39. Vilim, M.; Botterud, A. Wind power bidding in electricity markets with high wind penetration. Appl. 
Energy 2014, 118, 141–155. 

40. Chen, G. Research on Value Function Approximation Methods in Reinforcement Learning. Master’s 
Thesis, Soochow University, Jiangsu, China, 2014. 

41. Zhao, H.; Wang, Y.; Guo, S.; Zhao, M.; Zhang, C. Application of gradient descent continuous actor-critic 
algorithm for double-side day-ahead electricity market modeling. Energies 2016, 9, 725. 

42. Index of /Data. Available online: http://motor.ece.iit.edu/Data/ (accessed on 29 June 2017). 
43. Buygi, M.O.; Zareipour, H.; Rosehart, W.D. Impacts of large-scale integration of intermittent resources on 

electricity markets: A supply function equilibrium approach. IEEE Syst. J. 2012, 6, 220–232. 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access  
article distributed under the terms and conditions of the Creative Commons Attribution  
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


