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Abstract: This paper presents a single-degree-of-freedom energy optimization strategy to solve the 

energy management problem existing in power-split hybrid electric vehicles (HEVs). The 

proposed strategy is based on a quadratic performance index, which is innovatively designed to 

simultaneously restrict the fluctuation of battery state of charge (SOC) and reduce fuel 

consumption. An extended quadratic optimal control problem is formulated by approximating the 

fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal 

control law is obtained by utilizing the solution properties of the Riccati equation and adjoint 

equation. It is easy to implement in real-time and the engineering significance is explained in 

details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle 

simulation model is established based on the ADVISOR software (Version 2002, National 

Renewable Energy Laboratory, Golden, CO, USA). The simulation results show that there is only a 

little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum 

principle (PMP)-based global optimal strategy, and the proposed strategy also exhibits good 

adaptability under different initial battery SOC, cargo mass and road slope conditions. 

Keywords: hybrid electric vehicle; energy management strategy; simulation 

 

1. Introduction 

Hybrid electric vehicles (HEVs) are regarded as an important domain of the future automobile 

industry due to their superiority in reducing fuel consumption and emissions. Generally, HEVs are 

equipped with an internal combustion engine (ICE) and an energy storage system (ESS). They can be 

classified into three types, including series hybrid system, parallel hybrid system and series-parallel 

hybrid system [1]. The series-parallel hybrid system often utilizes a power-split device to split and 

combine the power produced by electric motors and ICE [2]. The prominent examples are the 

one-mode power-split in the Toyota Prius or Ford electronic-continuously variable transmission 

(e-CVT) and two-mode power-split in the general motors (GM)-Allison electric variable 

transmission (EVT), Timken EVT or Renault Infinitely Variable Transmission (IVT) [3]. 

Due to their complex electromechanical structure, designing an efficient energy management 

strategy (EMS) for power-split HEVs is a challenging task. The strategy must ensure the vehicle’s 

performance with minimum fuel consumption under different operation conditions and driver 

characteristics. Previous investigations can be basically divided into rule-based strategies and 

optimization-based strategies and all other subcategories are classified into these two main 

categories [4]. 

The major benefit of rule-based strategies is the effectiveness in real-time supervisory control, 

such as the thermostat strategy [5] and the logic threshold control strategy [6,7]. Subsequently, many 

more efforts have been made to further improve the fuel economy, for example, by extracting 
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optimization rules from global optimal control strategies [8,9], optimizing the rules combined with 

intelligent algorithms [10,11], or establishing driving pattern recognizers [12]. However, these 

strategies are mainly dependent on the results of extensive experiments or expert knowledge. The 

optimality can’t be theoretically guaranteed. Nowadays, many artificial intelligent methods have 

been successfully introduced to solve the energy management problem of HEVs. The fuzzy control 

strategies [1,13,14] have to make considerable effort to build the fuzzy logic table, and only an 

approximately optimal result can be obtained. The neutral network (NN) strategies [15,16] need 

sufficient experimental data to train all possible combinations of driving conditions. The genetic 

algorithm (GA) [17,18] is time-consuming due to the fact that it must complete a series of actions 

including crossover, mutation and elite selection. The particle swarm optimization strategy [19,20] 

provides a suboptimal solution and it will be not effective when the solution parameters are highly 

related. 

The target of optimization-based strategies is to minimize the specific cost function, which may 

include the fuel consumption, emissions, battery state of charge (SOC) or engine on/off switching 

frequency. The energy management strategies, which based on Bellman’s dynamic programming 

(DP) [21–23] or Pontryagin’s minimum principle (PMP) [24–26], have been widely investigated in 

recent years. The DP-based strategy is a global optimization method to achieve the best fuel 

economy for a given driving cycle, such as Mansour and Clodic [27] proposed a DP-controller for 

the Toyota Hybrid System-II (THS-II) and Liu et al. [28] utilized the DP-based strategy to minimize a 

combination of fuel consumption and selected emission species over a given driving cycle. Generally, 

a DP-based strategy directly produces optimal trajectories rather than control laws [29], so it is 

always used as a benchmark to evaluate other strategies or to optimize the parameters. 

The PMP-based strategy looks for the solution to satisfy necessary conditions for optimality, so 

it needs less computational time than that of the DP-based strategy [29,30]. Kim proposed that the 

PMP-based strategy could provide a near-optimal solution if the future driving conditions were 

known in advance [31]. Based on the theoretical background of PMP, the equivalent consumption 

minimization strategy (ECMS) was presented, which converted electricity into equivalent fuel 

consumption and minimized it at each control cycle [32,33]. The optimal co-state or the equivalence 

factor can be determined only when the driving conditions are known a priori. The mismatch 

between co-state and the driving cycle will result in over-charge or over-discharge of the battery. 

Considering about this problem, the adaptive equivalent consumption minimization strategy 

(A-ECMS) was presented to adjust equivalence factors based upon the SOC feedback or the 

prediction technique [34,35]. Except for the requirement of keeping the terminal SOC equal to the 

initial value, both the PMP-based strategy and the ECMS are difficult to handle the constraint of the 

SOC fluctuation during the operation process. 

The quadratic optimal control theory has been comprehensively applied in power systems, 

aerospace systems, social economic systems, and so on. For the classical linear quadratic regulator 

(LQR) problem, the quadratic performance index represents a trade-off between the distance of the 

state variable from the equilibrium point and the cost of the control input variable. In previous 

studies [36,37], the pedal signal was interpreted as a vehicle’s speed command. When the square of 

vehicle’s speed v2 and the battery’s residual energy E·SOC were chosen as the state variables, a 

quadratic performance index was designed to ensure the vehicle’s driving performance, sustain the 

battery SOC and restrain frequent and large-scale fluctuation of engine power simultaneously. The 

fuel economy was improved indirectly and the energy management problem was transformed into 

the LQR problem or the quadratic optimal tracking problem. The quadratic optimal control theory 

was firstly introduced by authors to deal with this kind of problem. The strategy had two control 

variables: the engine power and the motor power, so it was called as double-degree-of-freedom 

energy management strategy. 

In this paper, a further improvement is made based on the previous research. Generally, the 

pedal signal is interpreted as a torque command for power-split HEVs. When the battery’s residual 

energy E·SOC is chosen as the state variable, the quadratic performance index is designed only 

containing two items: the quadratic error of actual SOC from the desired value and the fuel 
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consumption rate. The motor power has no longer been restricted to take full advantage of the 

battery-motor system dynamic behavior. Different from the conventional LQR problem, an 

extended quadratic optimal control problem is formulated by approximating the fuel consumption 

rate as a quadratic polynomial of engine power, where the state variable is adjusted around the 

desired value rather than zero, and the quadratic form of the control variable is not about the 

control variable, but about the difference between the control variable and an given function of time. 

The approximated optimal control law is derived by utilizing the solution properties of the Riccati 

equation and adjoint equation. It is only related with one control variable: the battery-motor system 

power, so it is called as single-degree-of-freedom quadratic performance index strategy (SQPIS). To 

verify effectiveness of the proposed strategy, the Toyota Prius is chosen as the research target due to 

the fact that it is the most typical power-split HEV. The vehicle simulation model is developed 

based on the ADVISOR software, and the control performance and oil-saving effect are tested 

repeatedly. The simulation results show that the fuel economy is improved directly without 

sacrificing driving performance. The fuel consumption of SQPIS is very close to that of the 

PMP-based global optimal strategy. Furthermore, the SQPIS exhibits good adaptability with 

unchanged parameters under different initial battery SOC, cargo mass and road slope. 

The contributions of this paper can be summarized as follows: firstly, the quadratic performance 

index is designed to restrict the fluctuation of battery SOC and reduce fuel consumption 

simultaneously, which is still difficult to handle by the PMP-based global optimal strategy or ECMS. 

Secondly, an extended quadratic optimal control problem is formulated by approximating the fuel 

consumption rate as a quadratic polynomial of engine power. The concrete form of the optimal 

control law is derived theoretically, which is different from the conventional LQR problem. Thirdly, 

when the vehicle requested power is regarded as a random process and its average changes slowly, 

an approximate optimal control strategy is obtained, which is easy to be real-time implemented. 

Finally, the engineering significance of the proposed strategy SQPIS is discussed in details. 

2. Drivetrain Architecture and Energy Management Problem Description 

The configuration of the Toyota hybrid system (THS) is illustrated in Figure 1. It mainly includes 

the ICE, planetary gear, battery package, controller, motor/generator MG1 and MG2. The sun gear is 

connected with the MG1, the ring gear is connected with the MG2 and the planet carrier is connected 

with the ICE. The torque and speed between the wheel and engine are decoupled by the planetary 

gear. That is to say, the engine could operate on the optimal operating line (OOL) by jointly adjusting 

the MG1’s speed and engine’s torque, and the MG2’s torque is regulated simultaneously to guarantee 

the sum of MG1’s power and MG2’s power is equal to the battery-motor system power Pess. In the 

following discussion, only the static models of engine and motor are considered because their 

transient processes are relatively short and can be ignored. Firstly, a brief introduction of the 

battery-motor system model is given; the engine model and planetary gear model will be discussed in 

details in Section 4. 
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   ,ice iceT t t
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Figure 1. Drivetrain configuration of the Toyota hybrid system. 
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2.1. Efficiency Model of Battery-Motor System and Its Simplification 

The battery package used in Toyota Prius is a nickel metal hydride (NiMH) battery. The vehicle 

always operates in “charging sustaining mode” in which the SOC is kept within a predefined small 

range throughout a driving cycle. This is a high efficiency region for the battery and it could provide 

sufficient capacity to restrict large-scale fluctuation of engine power. 

The battery charging and discharging are complex electrochemical reaction processes. 

Generally, the battery package is described by an equivalent circuit model that is composed by a 

voltage source in series with a resistance. As shown in Figure 2, both the open-circuit voltage VOC 

and the internal resistor Rint are associated with the battery SOC. The battery efficiency is defined as: 
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,   0batP t   indicates the battery is discharging and   0batP t   indicates 

the battery is charging. As shown in Figure 3, the battery efficiency is related to its output power 

 batP t  and SOC, so the battery efficiency model can be expressed as [37]: 

    d

d b

bat

k

bat

E SOC t P t

t 


   (2) 

where the battery capacity is 6Ah,      6 A 3600 s 308 V   E QV  is the battery’s total energy and 

 E tSOC  is the battery’s residual energy. 

 

Figure 2. Characteristics of 
OCV  and 

intR . (
chgR  is the charge resistance and 

disR  is the discharge 

resistance). 

 

Figure 3. Efficiency MAP of battery package. 
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The motor/generator MG1 and MG2 are both permanent magnet motors. They have sufficient 

capability of short-time overload, wide flux-weakening range and high efficiency region. For the 

permanent magnet motors and their controllers, a static efficiency model is adopted as: 
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where  1MGP t  is the motor/generator MG1’s power,  2MGP t  is the motor/generator MG2’s power, 

MGs  is the efficiency of MGs and its controller, and 
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By substituting Equation (3) into Equation (2), the efficiency model of the battery-motor system 

can be obtained as: 
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The battery-motor system power  essP t  satisfies: 

     1 2ess MG MGP t P t P t   (5) 

If the efficiency of the two-motor system is defined as: 
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then the efficiency model of Equation (4) can be rewritten as: 

    d

d b m

ess

k k

bat m

E SOC t P t

t  


   (7) 

where 
 

 

  1,   > 0

1,   0

ess

m

ess

P t
k

P t


 

 
. 

The efficiencies 
bat  and 

MGs  are associated with the operating point of the battery and motor 

(see Figures 3 and 4). Therefore, the efficiencies 
bat  and m  are available online according to the 

operating points of the battery, the motor/generator MG1 and MG2. 
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Figure 4. Efficiency MAP of motor/generator MG1/MG2 and its controller. (a) MG1 and its controller; 

(b) MG2 and its controller. 

2.2. Energy Management Problem 

Generally, the pedal signal reflects the driver’s intention and it can be interpreted as a torque 

command. The requested power  reqP t  is determined by the vehicle control unit (VCU) based on 

the pedal signal and vehicle speed, and it satisfies: 
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     req ice essP t P t P t   (8) 

where  iceP t  is the engine power. 

The purpose of energy management is to reasonably assign the requested power 
re ( )qP t  

between engine and battery-motor system. In order to sustain the battery SOC and improve the fuel 

economy simultaneously, the performance index can be established as: 

    
0

2

1 1 2

1
d

2

ft
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t

J E SOC E SOC t m t t      
    (9) 

where 
0t  is the initial time, 

ft  is the final time, 
refSOC  is a desired value that the battery SOC 

should change around for efficiently using and protecting the battery and  m t  is the fuel 

consumption rate. The weight coefficient 
1 0   can be tuned to restrict the fluctuation of battery 

SOC and 
2 0   can be tuned to achieve a better fuel economy. 

As mentioned above, the engine can be adjusted to work on the OOL (see Figure 5). Each 

working point of OOL has the minimum fuel consumption for a given engine power. Therefore, the 

fuel consumption rate  m t  can be regarded as a function only related to the engine power  iceP t  

(see the point line in Figure 6) and the fuel consumption over a driving cycle is equal to the integral 

of  m t . In order to apply the linear quadratic optimal control theory, the curve fitting method is 

used to approximate  m t  as a quadratic polynomial of engine power  iceP t , that is: 

     2

1 2 3f ice icem t d P t d P t d    (10) 

where 10

1 7.643 10d   , 5

2 3.385 10d    and 
3 0.1758d   (see the solid line in Figure 6). 

 

Figure 5. Fuel consumption MAP of the engine. 

 

Figure 6. Optimal fuel consumption rate line. 
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By substituting Equations (8) and (10) into Equation (9), the performance index becomes: 
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where 
1d  and 

2d  are constants and  reqP t  is determined by the driver. Hence, the optimization 

problem of Equation (9) or (11) is equivalent to that of Equation (12): 
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The requested power  reqP t  is determined by the VCU, that is to say, the energy 

management problem can be deemed as a single-degree-of-freedom energy optimization problem 

where only one control variable  essP t  needs to be determined. If    x t E SOC t   is selected as 

the state variable,     essu t P t  is the control variable, from the Equation (7), a first order system is 

obtained as: 

     x t ax t bu t   (13) 

where 0a  , 1 ( ) 0b mk k

bat mb     . And the quadratic performance index Equation (12) is rewritten 

as: 

       
0

2 2
* *1

d
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    (14) 

where *

refx E SOC   is a constant and: 
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  (15) 

is a function of time only related to the requested power  reqP t . The weight coefficients are: 

1

2 1

q

r d









 (16) 

Because 
1 0d   is a constant, tuning the weight coefficients 

1  and 
2  are equivalent to 

tuning the weight coefficients q  and r . Both q  and r  are positive value and the value range of 

1  is 4 3

1 1[10 ,10 ]d d  . The specific reason will be explained in the next section. 

3. Single-Degree-of-Freedom Quadratic Performance Index Strategy 

The linear quadratic optimal control theory is easy to achieve the close loop state feedback 

control and to be applied in actual engineering. In Section 2, the energy management problem has 

been transformed into the quadratic optimal control problem of Equation (12), which is different 

from the conventional LQR problem. In this section, the optimal control law is derived in theory for 

the problem that has the performance index as Equation (14), and the practical significance is 

discussed with engineering concepts. 

3.1. Extended Quadratic Optimal Control Problem and Relevant Results 

For the linear system as: 

     t A t B t x x u  (17) 
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the optimal control law  tu  will be found to minimize the quadratic performance index: 

               
0

T T
* * * *1

d
2

ft

t
J t Q t t t R t t t      

   x x  x x  u u  u u  
 

(18) 

where  tx  and *
x  are the actual and desired state variable,  tu  is the control variable,  * tu  is 

a function of time which has been given. Q  and R  are the weight coefficient matrices, and the 

terminal time 
ft  is limited to ensure the performance index Equation (18) is finite. Note that the 

above optimal control problem is different from the conventional LQR problem. It is called as an 

extended quadratic optimal control problem, where the state variable  tx  is adjusted around the 

desired value *
x  rather than zero, and the quadratic form of the control variable is not about the 

control variable  tu , but about the difference between the control variable  tu  and an given 

function of time  * tu , which comes from the optimization problem of Equation (12). 

The target is to find the optimal control law  tu  to minimize the quadratic performance 

index Equation (18). According to the quadratic optimal control theory, the Hamiltonian function of 

extended quadratic optimal control problem is: 

                       
T T

* * * *1 1

2 2

T T T TH = t Q t t t R t t t A t t B t      x x  x x  u u u u x u   (19) 

where  t  is the co-state variable that satisfies: 

      * TH
t Q t A t


    


x x  

x
   (20) 

and the minimum value of Hamiltonian function (Equation (19)) can be obtained by making its 

partial derivative of  tu  equal to zero, i.e., 

      * TH
R t t B t


     


u u  

u
  (21) 

That is: 

     1 *Tt R B t t  u u  (22) 

Further, assuming that: 

       t K t t t x g
 

(23) 

where    = TK t K t  is the solution of differential Riccati equation and  tg  is the adjoint variable. 

Substituting Equation (23) into Equation (22) gives: 

         1 1T Tt t t t tR B K R B    u x g + u  (24) 

and the derivative of Equation (23) is: 

           t K t t K t t t x + x g  (25) 

Substituting Equations (17) and (24) into Equation (25) gives: 

                      1 1 *T Tt K t K t A K t BR B K t t K t BR B t K t B t t     = x g u g  (26) 

Substituting Equation (23) into Equation (20) yields: 

         *T Tt Q A K t t A t Q  = x g + x  (27) 

Now, Equation (28) can be derived by comparing Equation (26) with Equation (27): 



Energies 2017, 10, 896 9 of 23 

 

                    

      

1 1 *

*

T T

T T

K t K t A K t BR B K t t K t BR B t K t B t t

Q A K t t A t Q

     

  

x g u g

= x g + x
 (28) 

For any time 
0[ , ]ft t t , the Equation (28) holds for arbitrary  tx ,  * tu  and *

x . Therefore, 

the corresponding items are equal, and the Riccati equation and adjoint equation are received, i.e., 

         1 0T TK t A K t K t A K t BR B K t Q      (29) 

          1 * *
T

Tt A BR B K t t Q K t B t   g = g x u
 

(30) 

Because there is no terminal item in performance index Equation (18), the terminal condition 

of Equations (29) and (30) are ( ) 0fK t   and ( ) 0ft g  respectively. In adjoint equation Equation 

(30),    *K t B tu  is a new added item and it makes the extended quadratic optimal control 

problem different from the previous ones. Note that, this difference is very important and how this 

added item works will be explained in the following section. 

3.2. Derivation of Single-Degree-of-Freedom Quadratic Performance Index Strategy 

For the energy management problem stated in Section 2, the related matrices and variables are 

scalars (see in Equations (13) and (14)). According to the results of the extended quadratic optimal 

control problem mentioned above, the optimal control law  u t  can be obtained as: 

          */u t b k t x t g t r u t     (31) 

where  *u t  is a given function of time defined by Equation (15),  k t  satisfies the Riccati equation: 

     2 2 / 0, 0fk t b k t r q k t     (32) 

and  g t  satisfies the adjoint equation: 

            2 * */ , 0fg t b k t r g t qx bk t u t g t  =  (33) 

3.3. Analysis from the Perspective of Engineering Application 

The optimal control algorithm must look ahead and back, and the quadratic performance 

index-based control algorithm is also no exception. The Equations (29) and (30) are end boundary 

value problems. The solving process should be along the opposite direction of time, and  *u t  of 

Equation (15) for time 0[ , ]ft t t  must be known in advance. Consequently, it will bring about a 

real-time implementation issue. In following discussion, we will mainly focus on the algorithm of 

Equations (31)–(33), and find out the specific solutions. The main results are described as follows: 

(a) According to the characteristics of the solution of Riccati equation, if ft  is large enough 

(for example, 16 0s 0ft  ), the solution  k t  of Equation (32) will keep as a constant except for the 

time near to ft . In other words, in most time of 0[ , ]ft t t , k  is a constant and satisfies the 

algebraic Riccati equation: 

2 2 0k b r q    (34) 

Solving the Equation (34) for k  gives 0k qr b   , so the solution k  is independent of 

the driving cycle and  *u t . 
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(b) For the constant k qr b  , the adjoint Equation (33) is a linear differential equation that 

satisfies the superposition principle. The solution  g t  of Equation (33) can be divided into two 

responses of x  and  u t , i.e.,      
x u

g t tg g t  , and satisfies: 
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(36) 

Obviously, along the opposite direction of time, Equations (35) and (36) are the stable first 

order filters with time constant 0bat mT r q b r q     , and the steady amplification 

coefficients of their solutions about x  and  u t  are 0qr b   and 0r b   respectively. 

Because 0.6refx E SOC E     is a constant, in most time of 
0[ , ]ft t t , the solution  

x
g t  of 

Equation (35) is a constant   refx
g qr b E SOC     , except for the time near to ft , i.e., 

[ 3 , ]f ft t T t  . And if the average value of requested power  reqP t  changes slowly, the following 

filtering result along the positive direction of time: 

 
 

 
     0

d d1
, 0

d d

t t
t

u ur
u T u u u t

b q t t
t t

 

          (37) 

can be used to replace the filtering result along the opposite direction of time (note that, in general, if 

Equation (36) does not represent a filtering arithmetic, the above results can’t be obtained). Defining 

a new variable: 

   * *r
g t x u

b
t

q

b

r
    (38) 

replacing  g t  with  g t  and letting k qr b   in Equation (31), the approximated optimal 

control law can be obtained as: 

               * * * *b q
u t kx t g t u t x t x u t u t

r r


      

 
(39) 

In the approximated optimal control law of Equations (37) and (39), only the present and past 

information of  x t  and  *u t  are used to achieve the present control variable  u t , so the 

real-time implementation problem no longer exists. 

(c) The control law of Equation (39) consists of two parts,        * */q r x t x x t x bT     

is the feedback item to restrict the fluctuation of the battery SOC, and    u ut t    is the 

feedforward item that the battery-motor power plays a role of peak shaving and valley filling for 

engine power. It is obvious that, as r  increases or q  decreases, and or the efficiency of 

battery-motor system 
bat m   increases, the time constant bat mT r q   increases, the alternating 

component of  u t  increases and  *u t  approaches the average value of  u t . The feedback 

action is weakened, and the feedforward action is enhanced. As a result, the fluctuation of battery 

SOC is enlarged and the degree of hybridization is deepened, which is helpful to improve the fuel 

economy. Conversely, as r  decreases or q  increases, and or the efficiency of battery-motor 

system bat m   decreases, the time constant bat mT r q   decreases,  *u t  and  *u t  tend to 

counteract with each other. The feedback action will be enhanced, and the feedforward action will 

be weakened. As a result, the fluctuation of battery SOC is shrunken and the degree of 

hybridization is decreased, which is not helpful to reduce fuel consumption. In general, the 
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recommended value of time constant T  is dozens of seconds. The specific selection process can be 

obtained by combining typical driving cycles. Except for achieving a better fuel economy, the 

battery-motor system power  essP t , the engine power  iceP t  and the battery SOC should also 

satisfy the following test conditions: 

 _ min _ maxess ess essP P t P   (40) 

  _ max0 ice iceP t P   (41) 

 min maxSOC SOC t SOC 
 

(42) 

where 
_ maxessP  and 

_ minessP  are the maximum and minimum power of battery-motor system, 

_ maxiceP  is the maximum engine power, 
max 0.75SOC   and 

min 0.45SOC   are the maximum and 

minimum battery SOC, respectively. 

(d) For a given filter time constant T , when the requested power  reqP t  changes violently, 

the battery-motor system is just trying to peak shaving and valley filling for engine power. When 

the requested power  reqP t  is relatively steady, the battery-motor system power  essP t  will tend 

to be zero. It is implied that the proposed strategy has the ability to adapt various driving 

conditions, such as the urban or suburb driving condition. 

(e) In this paper, three operation modes are added to further reduce the fuel consumption and 

they are switched according to the requested power  reqP t . The basic logics are listed as follows: if 

the  reqP t  is less than 
0P , the battery-motor system provides the requested power or recycles the 

braking energy; otherwise, the engine and the battery-motor system provide the requested power 

together and the battery package acts as an energy buffer unit. 

Thus, the final power-split algorithm is: 
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 (43) 

where  *u t  and  *u t  are decided by Equations (15) and (37), respectively. 

4. Vehicle Simulation Model 

The ADVISOR software can be used to make rapid analysis for HEVs, such as driving 

performance, fuel consumption, emissions and etc. All the component models in software are 

public and they can be easily modified under the Matlab/Simulink environment. In this paper, a 

forward-facing vehicle simulation model is developed and embedded in ADVISOR platform to 

verify the effectiveness of the proposed strategy SQPIS. As shown in Figure 7, each module 

represents an actual drivetrain component in a Toyota Prius. 

The simulation process can be simply described as follows: the speed versus time information 

for a given driving cycle is stored in the drive cycle module. At each control cycle, it provides the 

desired speed  *v t  to the driver module. In order to trace the given driving cycle, the accelerator 

pedal or the brake pedal should be continuously regulated by the driver. In the driver module, this 

process is realized by a proportion-integral (PI) regulator. Through the PI regulator, the difference 

between desired speed  *v t  and actual speed  v t  is converted into the requested power  reqP t . 

The proposed strategy SQPIS is embedded in the energy optimization strategy module. The engine 

power  iceP t  and battery-motor system power  essP t  are obtained by Equation (43), and then 

they are converted into corresponding torque or speed command for engine, motor/generator MG1 

and MG2. If these commands don’t exceed the power limitation of these components, they will 
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provide the actual torque signal to the planetary gear module. Taking the gear ratio into 

consideration, the actual torque signal is passed forward through the final drive module until it 

results in a driving force  F t  at the wheel/axle module interface. Generally, the vehicle should 

overcome the rolling resistance, aerodynamic resistance and grade resistance. The actual vehicle 

speed  v t  can be derived by Equation (44) in the vehicle module and it eventually feedbacks to 

the driver module as an input variable: 

 
 

 21
+ cos sin

2
r D

dv t
F t m mgf mg C Av t

dt
       (44) 

where   is the rotating mass efficient and 1  , m  is the vehicle total weight including the 

passengers mass and cargo mass, g  is the gravitational acceleration constant, 
rf  is the rolling 

resistance coefficient,   is the road slope,   is the air density, 
DC  is the aerodynamic drag 

coefficient and A  is the vehicle frontal area. 
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Figure 7. Vehicle simulation model. 

4.1. Engine Model 

The Toyota Prius is powered by a 1.5-L 1NZ-FXE four-cylinder gasoline engine. As shown in 

Figure 8, the fuel consumption model is used to describe the input/output characteristics of engine, 

and the fuel consumption rate  m t  can be defined as: 

      ,ice icem t f T t t  (45) 

where  iceT t  is the engine torque and  ice t  is the engine speed. 
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Figure 8. Fuel consumption rate of 1NZ-FXE (Coolant Temperature is 95 °C). 
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This model has been verified by ADVISOR software, and the actual fuel consumption rate can 

be derived by using the linear interpolation method. Note that the engine temperature also has a 

significant impact on the fuel consumption rate, especially during the cold starting process. 

Therefore, the temperature correction factor is introduced to ensure the simulation precision: 

     
0.65

95
1 0.1

75
T T

T
fm t m t m t


  
  

       

 (46) 

4.2. Planetary Gear Model 

The planetary gear consists of three basic components: sun gear, planet carrier and ring gear 

(see Figure 9). The motor/generator MG1 is connected with the sun gear and the engine is 

connected with the planet carrier. The motor/generator MG2 and the final drive are connected with 

the ring gear. Since the rotation direction of engine is unchangeable, the rotation direction of planet 

carrier can’t be reversed. Both the sun gear and the ring gear can rotate forward and reverse, so the 

rotation speed of any gear can be determined by the other two gears. Assuming that the radius of 

the sun gear is S and the radius of ring gear is R, the speed and torque of these components should 

satisfy the kinematic constraints as Equations (47) and (48): 

1

2

1

1

1

MG ice

MG ice out

T T

T T T








  


   
 

 (47) 

 1

2

1MG ice out

MG out

   

 

   


  
(48) 

where /R S   is the ratio of ring gear radius and sun gear radius, 
iceT , 

1MGT , 
2MGT  and 

outT  

are output torque of engine, MG1, MG2 and output axle respectively, 
ice , 

1MG , 
2MG  and 

out  

are output speed of engine, MG1, MG2 and output axle respectively. Because the MG2 is directly 

connected with the output axle, the speed 
2MG  can be determined by the vehicle speed  v t : 

   r

out

w

G
t v t

r
 

 
(49) 

where 
rG  is the ratio of final drive, 

wr  is the wheel radius. 

Planet 

Carrier

Ring Gear

Sun Gear

ωr

ωc

ωs

R S
ωrωc

ωs

 

Figure 9. Configuration of planetary gear system. 

4.3. Energy Optimization Strategy Model 

As shown in Figure 10, the energy optimization strategy module can be divided into three 

parts. In the first part, the operation mode switch block generates the operation mode signal 

 mode t . If the requested power   0reqP t  , the system operates in regenerative braking mode and 

  1mode t  . When   00 reqP t P  , the system operates in electric drive mode and   2mode t  . 
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Otherwise,   3mode t   represents the system operates in hybrid mode. In order to avoid the 

frequent switch among these three modes, a hysteresis loop controller is added. The second part is 

the core algorithm of SQPIS. Taking the operation mode signal  mode t , requested power  reqP t  

and battery’s residual energy  E SOC t  as input variables, the engine power  iceP t  and the 

battery-motor system power ( )essP t  can be obtained by the approximate optimal control law of 

Equation (43). 

Operation 
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Optimal Operating Line 

(OOL)
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Figure 10. Simulation diagram of energy optimization strategy model. 

At last, the control command of engine, motor/generator MG1 and MG2 will be generated in the 

third part. The OOL has been converted and stored in a data table (see Figure 5). The corresponding 

engine optimal operating point    ,opt opt

ice iceT t t    can be derived by utilizing the interpolation and 

table lookup method. As shown in Figure 10, the MG1’s speed should be regulated together to make 

the engine operate at the given optimal working point, and the command  *

1MG t  is set equal to 

     1       opt

ice outt t . On the other hand, the sum of output power from MG1 and MG2 should 

be adjusted equal to the battery-motor system power  essP t . Therefore, the MG2’s torque command 

 *

2MGT t  is obtained by: 

 
     

 

*

1 1*

2

ess MG MG

MG

out

P t t T t
T t

t






  (50) 

5. Simulation Results and Comparative Analysis 

In order to quantitatively demonstrate the effectiveness of the proposed strategy SQPIS in this 

paper, the simulation tests are performed over different driving conditions. The results are 

compared with the rule-based energy management strategy (rule-based EMS) [38], which have been 

applied to Toyota Prius with impressive success, the A-ECMS [34] and the PMP-based global 

optimal control strategy [31]. 

5.1. Test Design and the Selection of Weight Coefficient 

The rule-based EMS is summarized as follows: when the vehicle decelerates, the engine power 

is set to zero. If the requested braking power doesn’t exceed the maximum battery charging power, 

the MG2 will operate as a generator. When the vehicle accelerates, if the requested power  reqP t  is 

lower than 
0P  and the battery SOC is high enough, the MG2 will be used as a motor and drive the 

vehicle individually. As the requested power  reqP t  increases or the battery SOC is lower than the 

minimum value 
minSOC , the engine will be started. It not only provides the requested power, but 

also tries to sustain the battery SOC around the desired value, that is: 
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     ( )ice req chg refP t P t K SOC t SOC     (51) 

where 
chgK  is the fitting coefficient. When the requested power  reqP t  exceeds the maximum 

engine power, the engine will operate at the maximum value and the MG2 will provide assistant 

power to keep the vehicle still owning better driving performance. 

The PMP-based global optimal control strategy attempts to search for the optimal control 

variable to minimize fuel consumption under a given driving cycle. As shown in Figure 6, the fuel 

consumption rate  m t  is a function only related to engine power  iceP t . Then, the total fuel 

consumption can be treated as the integral performance index: 

  
0

d
ft

ice
t

J m P t t   (52) 

For the given requested power  reqP t , the engine power  iceP t  and battery-motor system 

power ( )essP t  should satisfy Equation (8). Therefore, taking Equations (1), (7) and (8) into 

consideration, the optimal control variable  essP t  can be obtained by searching the minimum 

value of the Hamiltonian function [31], that is: 
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 (53) 

where   is the co-state variable, which converts the electric energy consumption into virtual fuel 

consumption, OCV  is the battery open-circuit voltage, 
intR  is the battery internal resistor, and m

 

is the efficiency of the two-motor system. 

As mentioned above, the physical meaning of Hamiltonian function Equation (53) is the 

equivalent fuel consumption and it has a similar formulation as ECMS. The co-state variable   

can be deemed as the equivalence factor in ECMS. The optimality of ECMS is especially sensitive to 

the value of equivalence factor, which should be tuned appropriately only when the driving cycle is 

known in prior. The A-ECMS, which is on the basis of SOC feedback, is a better method to improve 

the robustness and make it applicable in real-world conditions. Firstly, an initial guess value is 

given for the equivalent factor  , and then it must be adjusted according to the adaptation law 

every T seconds [34]: 

    1 1

1
,  = , =1,2,...

2
k k k p refc SOC SOC t t k T k          (54) 

where 
1k 
 is the new equivalence factor when  , 1t kT k T    , 

k  is the equivalence factor 

when  1 ,t k T kT    , 1k   is the equivalence factor when    2 , 1t k T k T      and pc  is the 

proportional gain of feedback controller. 

The detailed vehicle model specifications of the Toyota Prius are shown in Table 1. For the 

proposed strategy SQPIS, the switching power 0P  in Equation (43) is 5 kW, which is the same as 

that of the rule-based EMS. In order to avoid frequent switching between different opearation 

modes, a 2 kW hysteresis loop is added. The weight coefficients could be determined by combining 

a certain driving cycle. Different coefficient value is chosen to carry out the simulation test until a 

better fuel economy is obtained. Meanwhile, the test conditions (see Equations (40)–(42)) also 

should be verified. In this paper, the urban dynamometer driving schedule (UDDS) cycle, which 

represents a typical city test schedule and is always used to evaluate the fuel economy of electric 

vehicles, is chosen to determine the weight coefficients. When the weight coefficients 
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133.4861 10q   , 107.643 10r   , the filter time constant is calculated as 46.8233sT  , and 

solutions of the Riccati equation and adjoint equation are shown in Figure 11. 

Table 1. Toyota Prius model specifications. 

Description Parameter Value Unit 

Vehicle 

Total weight 1368 kg 

Wheel radius 0.287 m 

Frontal area 1.746 m2 

Aerodynamic drag coefficient 0.3 - 

Rolling friction coefficient 0.009 - 

Final drive ratio 3.93 - 

Engine 

Displacement 1.5 L 

Max torque 102 @4000 rpm Nm 

Max power 43 @4000 rpm kW 

Motor/Generator1 

(MG1) and controller 

Max speed 5500 rpm 

Max torque 55 Nm 

Max power 15 kW 

Motor/Generator2 

(MG2) and controller 

Max speed 6000 rpm 

Max torque 305 Nm 

Max power 31 kW 

Battery Package 
Cell capacity 6 Ah 

Nominal voltage 308 V 

Planetary Gear Set 
Tooth number of sun gear 30 - 

Tooth number of ring gear 78 - 
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Figure 11. Solution of the Riccati equation and the adjoint equation. 

5.2. The simulation Test Results and Analysis 

Abundant simulation tests are applied to validate the proposed strategy under some typical 

driving cycles. Figures 12–15 are the simulation results of the rule-based EMS, A-ECMS, SQPIS and 

PMP-based global optimal strategy under the UDDS driving cycle respectively. The initial value 

 0SOC t  and desired value refSOC  are set to 0.6. In order to make comparison analysis among 

different strategies, when the final value ( )fSOC t  is not equal to the initial value 
0( )SOC t , the 

charge deviation will be converted into corresponding virtual fuel consumption by equivalent 

method. The equivalent fuel consumption (EFC) could be expressed as: 

 
 

  0

d
100

/100km

ft

t

ref f

f

m t t
EFC L s SOC SOC t

L

 
 

     
  


 (55) 

where  m t  is the fuel consumption rate (g/s), f  is the fuel density (749 g/L), L  is the total 

distance of given driving cycle (km) and s  is the equivalent factor, which is calculated by: 
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f lhv ice m bat

E
s

Q   
  (56) 

where E  is total battery energy (J), 
lhvQ  is fuel low heating value (42,600 J/g), 

ice  is average 

efficiency of engine used to charge battery, 
m  is average efficiency of two-motor system and 

bat  

is average efficiency of battery. 
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Figure 12. The simulation result of rule-based energy management strategy (EMS). 
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Figure 13. The simulation result of adaptive equivalent consumption minimization strategy 

(A-ECMS). 
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Figure 14. The simulation result of single-degree-of-freedom quadratic performance index strategy 

(SQPIS). 
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Figure 15. The simulation result of Pontryagin’s minimum principle (PMP)-based global optimal 

strategy. 

As shown in the first line of Table 2, the PMP-based strategy has the best fuel economy since it 

is a global optimal strategy. On the other hand, comparing with the rule-based EMS, both the 

A-ECMS and the SQPIS achieve a noticeable improvement in fuel economy, but the fuel economy of 

SQPIS is a little better than that of the A-ECMS. 



Energies 2017, 10, 896 19 of 23 

 

Table 2. Simulation results of different drive cycles. 

Drive Cycle Rule-Based EMS A-ECMS SQPIS PMP-Based Global Optimal Strategy 

UDDS 
EFC (L/100 km) 5.2733 4.0527 3.9984 3.6534 

λ = −5.0142 × 10−5 
SOC(tf) 0.5505 0.5987 0.5362 0.5972 

HWFET 
EFC (L/100 km) 4.2338 4.0581 4.0310 3.6445 

λ = −5.1489 × 10−5 
SOC(tf) 0.6082 0.5956 0.5756 0.6003 

CSHVR 
EFC (L/100 km) 4.7662 3.7175 3.6114 3.5605 

λ = −5.2145 × 10−5 
SOC(tf) 0.5883 0.6046 0.5515 0.5980 

LA92 
EFC (L/100 km) 6.4213 5.0392 4.8891 4.5662 

λ = −4.7331 × 10−5 
SOC(tf) 0.5934 0.5995 0.5543 0.5989 

INDIA_U

RBAN 

EFC (L/100 km) 4.7333 3.5538 3.4253 3.2982 
λ = −5.4307 × 10−5 

SOC(tf) 0.5807 0.6043 0.5398 0.6010 

INDIA_H

WY 

EFC (L/100 km) 4.3588 3.8504 3.8223 3.6255 
λ = −4.7461 × 10−5 

SOC(tf) 0.5963 0.5916 0.5637 0.6007 

NEDC 
EFC (L/100 km) 4.6078 3.9271 3.8528 3.6949 

λ = −5.6184 × 10−5 
SOC(tf) 0.6202 0.6134 0.6012 0.6001 

J1015 
EFC (L/100 km) 4.6734 3.7336 3.6696 3.5542 

λ = −4.9843 × 10−5 
SOC(tf) 0.6074 0.6075 0.5795 0.5988 

For the SQPIS, the average tracing error between the required and achieved speed is only 0.1472 

km/h, and it could adjust the output power of MG1 and MG2 actively in order to avoid large scale 

fluctuation of engine power. As shown in Figure 16, the engine efficiency distribution for the 

rule-based EMS is relatively dispersed, but it will be more concentrated for the SQPIS and 

PMP-based global optimal strategy. That is a powerful evidence to explain why the SQPIS is a more 

effective strategy for reducing the fuel consumption. 

Just as the analysis of previous section indicated, the SQPIS has a good adaptability under 

various driving cycles. Other seven driving cycles, including the urban and suburb condition, are 

chosen to verify this point with unchanged weight coefficients. The EFC and final value ( )fSOC t  of 

different strategies have been listed in Table 2. Obviously, the fuel consumption difference between 

the rule-based EMS and PMP-based global optimal strategy varies according to the driving cycle. The 

minimum difference is 16.17% under the HWFET cycle and the maximum difference is about 44.34% 

under the UDDS cycle. 

 
(a) (b) (c) 

Figure 16. Engine efficiency distribution under urban dynamometer driving schedule (UDDS) 

driving cycle. (a) rule-based EMS; (b) SQPIS; and (c) PMP-based strategy. 

The nature of PMP-based strategy is an open-loop optimization algorithm and it carries out 

one-dimension optimization at each control cycle by utilizing the Equation (53). In addition to the 

large amount of calculation, prior knowledge of the whole driving conditions is needed. Hence, as 

shown in Table 2, the value of co-state variable   can only be derived by off-line calculation and it 

should be adjusted under different driving cycles to ensure the final value ( )fSOC t  is equal to its 

initial value. Different from the PMP-based strategy, the SQPIS has the ability to restrict the SOC 

fluctuation and reduce fuel consumption simultaneously. The simulation results indicate that the 
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SQPIS achieves a better compromise between the fuel economy and driving performance, i.e., the 

minimum fuel consumption difference between the SQPIS and PMP-based global optimal strategy 

is only 1.43% under the CSHVR cycle, and the maximum difference is 10.6% under the HWFET 

cycle. As mentioned above, the SQPIS generates only a state feedback solution. Comparing with the 

PMP-based global optimal strategy, the SQPIS can be real-time implemented in various driving 

cycles with the same weight coefficients. Therefore, the robustness of the proposed strategy SQPIS 

is better than that of the PMP-based global optimal strategy. 

In order to solve the mismatch problem existing in the PMP-based strategy and ECMS, the 

A-ECMS is proposed to adjust equivalence factor based on the SOC feedback value. Although the 

A-ECMS is a better way to be implemented in real-world conditions, it still needs extensive 

calculation in one-dimension optimization at each control cycle. Furthermore, as listed in Table 2, 

simulation results indicate the fuel consumption of A-ECMS is also a little higher than that of the 

SQPIS. For example, the minimum fuel consumption difference is 0.67% under the HWFET cycle 

and the maximum fuel consumption difference is 3.75% under the INDIA_URBAN cycle. 

The aforementioned results are obtained while the cargo mass and road slope stay the same. 

The simulation results with {1368kg,  1568kg,  1768kg}m   and road slope tan {0,  5%,  10%}   

under the UDDS driving cycle are listed in Table 3. The vehicle dynamic performance could be 

ensured by the rule-based EMS, A-ECMS and SQPIS with unchanged parameters, but for the 

PMP-based global optimal strategy, the co-state variable   should be adjusted according to the 

cargo mass or road slope. Comparing with the rule-based EMS and A-ECMS, the fuel consumption 

of SQPIS is closer to that of the PMP-based global optimal strategy. 

Table 3. Impacts of cargo mass and road slope on fuel consumption under urban dynamometer 

driving schedule (UDDS) driving cycle. 

Cargo Mass Rule-Based EMS A-ECMS SQPIS PMP-Based Global Optimal Strategy 

1368 
EFC (L/100 km) 5.2733 4.0527 3.9984 3.6534 

λ = −5.0142 × 10−5 
SOC(tf) 0.5505 0.5987 0.5362 0.5972 

1568 
EFC (L/100 km) 5.8433 4.5030 4.4498 3.9802 

λ = −4.8372 × 10−5 
SOC(tf) 0.5498 0.5966 0.5364 0.5988 

1768 
EFC (L/100 km) 6.4531 4.9280 4.8785 4.3275 

λ = −4.7621 × 10−5 
SOC(tf) 0.5462 0.6049 0.5430 0.5981 

Road Slope (0–500 m) Rule-Based EMS A-ECMS SQPIS PMP-Based Global Optimal Strategy 

0% 
EFC (L/100 km) 5.2733 4.0527 3.9984 3.6534 

λ = −5.0142 × 10−5 
SOC(tf) 0.5505 0.5987 0.5362 0.5972 

5% 
EFC (L/100 km) 5.5030 4.3343 4.2880 3.8715 

λ = −4.9872 × 10−5 
SOC(tf) 0.5505 0.5983 0.5362 0.5999 

10% 
EFC (L/100 km) 5.9062 4.6140 4.5462 4.1133 

λ = −4.8528 × 10−5 
SOC(tf) 0.5505 0.6067 0.5362 0.5989 

As mentioned above, when the initial value 
0( )SOC t  is set to 0.6, the final value ( )fSOC t  

obtained by SQPIS can be brought back near to the desired value refSOC . However, in the actual 

driving process, the initial value 
0( )SOC t  may be not 0.6. For the PMP-based global optimal 

strategy, the co-state variable   has to be adjusted off-line according to the initial value 
0( )SOC t . 

But for the SQPIS, it is easier to be implemented without changing any weight coefficient. When the 

initial value ranges from 0.5 to 0.7, the SOC trajectories under UDDS driving cycle are given in 

Figure 17. The simulation results indicate that the SOC trajectories tend to be convergent after 460s 

and the final values ( )fSOC t  are same under different initial battery SOC. The adaptability of the 

proposed strategy SQPIS is exhibited. 
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Figure 17. State of charge (SOC) trajectories with various 
0( )SOC t  under UDDS driving cycle. 

6. Conclusions 

The quadratic performance index is innovatively applied to solve the energy management 

problem of power-split HEVs. It is designed to restrict the fluctuation of battery SOC and reduce 

fuel consumption simultaneously. By approximating the fuel consumption rate as a quadratic 

polynomial of engine power, an extended quadratic optimal control problem is formulated. When 

the average value of requested power changes relatively slow, the adjoint equation can be treated as 

a filtering process and an approximate optimal strategy SQPIS is obtained. The SQPIS generates 

only a state feedback solution and the amount of calculation is negligible. 

The forward-facing vehicle simulation model of a Toyota Prius is established and embedded in 

ADVISOR platform to validate the effectiveness of SQPIS. Compared with the rule-based EMS, 

A-ECMS and PMP-based global optimal control strategy, our simulation results show that the 

SQPIS has better oil-saving effect than that of the rule-based EMS and A-ECMS without sacrificing 

driving performance and its fuel economy is nearly the same as that of the PMP-based global 

optimal control strategy. Furthermore, the SQPIS also exhibits good adaptability under different 

initial battery SOC, cargo mass and road slope. The proposed strategy SQPIS has good robustness 

with unchanged weight coefficients and it is easy to be real-time implemented, so this strategy is 

extremely valuable in engineering application. 
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