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Abstract: Since the demand response (DR) market was introduced in Korea, load aggregators have 
also been allowed to participate in the electricity market. However, a risk-management-based 
method for the efficient operation of demand response resources (DRRs) has not been studied from 
the load aggregators’ perspective. In this paper, a systematic DRR allocation method is proposed 
for load aggregators to operate DRRs using mean-variance portfolio theory. The proposed method 
is designed to determine the lowest-risk DRR portfolio for a given level of expected return using 
mean-variance portfolio theory from the perspective of load aggregators. The numerical results 
show that the proposed method can be used to reduce the risk compared to that obtained by the 
baseline method, in which all individual DRRs are allocated in a DRR group by maximum 
curtailment capability. 

Keywords: demand response resource; mean-variance portfolio theory; expected return and risk; 
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1. Introduction 

The demand response (DR) market was introduced in the Korean electricity market in 
November 2014. In the past, demand management was implemented through the program by Korea 
Electric Power Corporation (KEPCO) in Korea. However, after the DR market was opened, a third 
party called “the load aggregator” was allowed to participate in the Korean electricity market. Load 
aggregators have recruited the resources of KEPCO’s customers who have participated in demand 
management. Thus, there has not been any difficulty in recruiting demand response resources (DRRs). 
However, due to the lack of business experiences of the load aggregators, there was not enough prior 
knowledge on the efficient operation and management of aggregated DRRs. The profitability of 
aggregators varies depending upon how the aggregators manage the DRRs because various DRRs 
have different characteristics. 

In this study, a mean-variance portfolio method is proposed for determining the lowest-risk 
DRR portfolio for a given level of expected return for load aggregators. The proposed method is 
designed to compute the expected return and risk of a DRR portfolio by considering DRRs’ various 
characteristics such as the maximum curtailment capability, sustained response duration, and 
historical participation rate. 

Markowitz’s mean-variance portfolio theory [1] suggests how to minimize the risk of a portfolio 
based on the expected returns and risks of individual assets. The correlation among the expected 
returns of individual assets can reduce risk when assembling a portfolio of assets. This is named the 
portfolio effect or diversification effect. Portfolio theory was applied initially in the financial field and 
has subsequently been applied in the field of energy research. Bar-Lev and Katz, in early examples 
of applying portfolio theory to the electric power field, proposed a method to optimize the fossil fuel 
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generation mix and determined the extent to which the electricity industry has utilized fossil fuel 
resources in [2]. Awerbuch and Berger evaluated the application of portfolio theory to the 
development of an optimal generation mix in the European Union (EU), and illustrated the portfolio 
effects, i.e., diversification effects of different generating mixes in [3]. In [4], Jansen et al. presented 
the results of an application of portfolio theory to a future portfolio of electricity generating 
technologies in the Netherlands by 2030, and they identified that portfolio (cost) risk can be reduced 
significantly through diversification with a critical role for renewable generation such as wind power. 
In [5], Delarue et al. applied portfolio theory to establish a multi-period power generation mix plan, 
and illustrated that the introduction of wind power can be motivated by a desire to lower the risk on 
generation cost. In [6], Eichhorn and Römisch presented a model for finding an electricity portfolio 
that maximizes profits and minimizes risk when retailers procure the power they need to supply 
using polyhedral risk measures. 

There have been various studies related to optimizing the operation of DRRs. In reference [7], 
DRRs can be considered as a means to avoid the risk by the fluctuation of electricity prices and 
demand from the perspective of load-serving entities (LSEs). On the other hand, the proposed 
method in this paper attempts to determine the lowest risk DRR portfolio for a given level of expected 
return using mean-variance portfolio theory from the load aggregators’ perspective. In [8], 
Mollahassani-pour et al. proposed a method to minimize the cost while maintaining the reliability of 
a system by considering the DRRs in establishing the preventive maintenance plan of the generator, 
assuming the DRR as the virtual power plant. In [9], Dabbagh and Sheikh-El-Eslami proposed an 
offering model for a virtual power plant, which is an integration of various distributed energy 
resources, using a two-stage stochastic programming approach and conditional value at risk (CVR). 

The market-bidding problem of a pool of price-responsive consumers for the aggregator or the 
retailer is studied in [10]. The complex market bid, consisting of a series of price-energy bidding 
curves, consumption limits, and maximum pike-up and drop-off rates, can largely capture the price-
sensitive consumption of the cluster of flexible loads. In [11], the relation between electricity price 
and customer response is analyzed by applying stochastic finite impulse response (FIR) model. A 
bidding approach for a time-shiftable load in the day-ahead and real-time markets is proposed in [12] 
to minimize energy procurement cost. The bidding strategy of plug-in electric vehicle aggregator 
proposed in [13]. Bidding and clearing strategy is developed in [14] by incorporating the internal 
dynamics of thermostatically controlled loads into mechanism design problem. These studies deal 
with the price-bid strategy of the aggregator or the retailer in various electricity market, but the return 
and risk faced by them is not considered. 

Portfolio theory has been applied in the field of power research primarily for the optimization 
of the generation mix and procurement of electricity. In addition, studies on DRRs have thus far 
focused on effective operation of the resources. However, there has not been any research conducted 
to measure the profitability and risk of the resources and allocate them by applying portfolio theory. 

The present work outlines an approach to assess the rate of return and the risk of DRRs and to 
optimize the operation of many DRRs using Markowitz portfolio theory. Section 2 provides details 
of the calculation method for the expected return and risk of an individual DRR (each customer). 
Section 3 details the method of grouping resources using portfolio theory. Section 4 reports on 
numerical results, and Section 5 discusses the conclusion and paths forward. 

2. How to Measure Expected Returns and Risks of Individual Resources 

2.1. Background 

Markowitz’s portfolio theory, or mean-variance analysis, is a mathematical framework to 
assemble a portfolio of assets such that the risk is minimized for a given level of expected return, and 
the expected return and risk of an asset are defined to be the mean and variance (or standard 
deviation) of an asset’s rate of return, respectively. This theory was originally developed in the 
finance field, but if the expected return and risk of an asset can be measured in a reasonable way, it 
can be applied in various fields such as a generation mix and DRRs operation. In particular, because 
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load aggregators must operate so many DRRs, it is very useful to apply portfolio theory in grouping 
the resources and operating them to minimize the risk or maximize the profit. 

Load aggregators hold many DRRs (end use customers) that have quite different characteristics 
such as reduction capacity, ramp period (or response time), and sustained response period. These 
resources would respond differently according to their business environment, and rewards for load 
reduction and penalties for reduction failure are offered by the market price, so the characteristics of 
each resource (customer) and the market price have an effect on the revenues of load aggregators. 

2.2. Market Price and Participation Rate 

Since electricity market prices are used to determine both compensation for curtailment and 
penalties by failure to curtail, the market price is a significant factor to influence the profit of load 
aggregators. Market prices are determined by the principle of supply and demand in the electricity 
market and generally changes according to various market conditions such as loads, fuel prices, and 
generator maintenance schedule. Because electricity market prices are dynamic, they can be generally 
modeled using the geometric Brownian motion (GBM) model [15–17]. Thus, prices in the future in 
this study are estimated by the following GBM model:  ݀ܲ = ௣ܲߤ ݐ݀ + ௣ܲߪ  (1) ݖ݀

where P and ߤ௣  represent electricity market price and a drift rate of electricity market price, 
respectively. ߪ௣ ݐ݀ , , and ݀ݖ  denote volatility of electricity market price, time interval and 
generalized Wiener process, respectively. ߤ௣ and ߪ௣ are estimated from Korea’s electricity market 
price data during years 2014–2016. 

Customers, i.e., individual DRRs, may fail to achieve the contracted curtailment capability 
allocated by an aggregator. In a case where the customer fails to curtail, the market operator imposes 
the penalty on the aggregator due to the curtailment failure. In the other words, the uncertainty in 
the behavior of customers’ response influences aggregators’ profit, and the participation rate is a 
critical factor in the revenue stream of load aggregators. 

The behaviors relating to participation can be analyzed by using historical load curtailment data. 
If DRRs do not participate when curtailment is instructed, there will be a higher probability that DRRs 
will not participate in the very near future as well. In this study, the future participation rate is 
estimated using the past participation rate and GBM model. The past participation rate (ߨ௜௣௔௦௧) is 
calculated from the data of historical load curtailment in Korea Electric Power Corporation (KEPCO) 
DR program as follows: 

௜௣௔௦௧ߨ = ௜௧௣௔௦௧ܴܦ௜௧,௣௥௢௩௣௔௦௧ܴܦ  (2) 

where ܴܦ௜௧௣௔௦௧ is the DRR requested by the load aggregator to customer i at time t in the past demand 
response event, and ܴܦ௜௧,௣௥௢௩௣௔௦௧  is the amount of the load curtailment provided by customer i at time t 
in the past DR event. 

In practice, various factors such as temperature, humidity, electricity prices and operating 
schedules in factories can affect customer’s electricity consumption. These factors also influence 
participants in demand response in a similar manner, but differently depending upon whether the 
participants are residential or industrial. Consumption patterns of residential participants could 
possibly be more weather dependent, whereas those of industrial participants could be more 
operating schedule dependent. However, regardless of consumer types, the primary driver to 
manage the consumption patterns of any electricity consumer and draw the participations in demand 
response is the price signal. The price signal in the market is the key factor affecting the decision-
making on the demand side as to whether to participate or not. The participation in demand response 
is generally dependent upon the degree of the compensation and status of the price signal. For 
example, owners of DRRs with lower shutdown cost would participate in demand response even 
when electricity price is relatively low. On the other hand, owners of DRRs with higher shutdown 
cost would preferably participate in demand response whenever the price is relatively high enough 
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to recover its shutdown cost. Despite the fact that there have been former studies dealing with 
consumers’ responses to electricity prices [10], the participation rate is considered in this study to be 
a dependent variable of the electricity price and participation rate in the future is estimated through 
regression model as follows: ܴܲ௜௧ = ܽ௜ ௧ܲ + ܾ௜  (3) 

where ܴܲ௜௧ represents the participation rate of DRR i at time t. 
The first-order coefficient, ܽ௜ , and the constant term, ܾ௜ , are estimated by linear regression 

model using the past participation rate (ߨ௜௧௣௔௦௧) and electricity price data. The electricity price at time 
t, i.e., ௧ܲ, which is used in the future participation rate estimation, is based on the price data estimated 
by the GBM model. Because ௧ܲ is a dynamic variable estimated using stochastic process model, ܴܲ௜௧ 
is also dynamic. 

2.3. Revenue and Cost of Load Reduction 

2.3.1. Overview of Demand Response Market in Korea 

Demand response resources have been traded in the Korean wholesale electricity market since 
November 2014. In the DRR market, peak curtailment DRRs (or capacity DRRs) and price responsive 
DRRs are traded separately. In the case of peak curtailment DRRs, Korea Power Exchange (KPX) 
(Independent System Operator in Korea Electricity Market) instructs a load curtailment an hour 
ahead, and these resources assume a role to substitute for high-cost generators. The customers 
participating in the load curtailment are compensated with incentives such as payments for 
availability and performance. The payment for availability is calculated in the same method as the 
capacity price of generators and the payment for performance is determined based on the resources’ 
actual curtailment and the highest variable generation cost at that time. In the case of price responsive 
DRR, the resources bid on the day-ahead electricity market and curtail the load if the demand 
reduction price is lower than the bid prices of generators, and are compensated with incentives based 
on the system marginal price (SMP). 

2.3.2. Revenue from Load Curtailment 

Regarding load aggregators, revenue from the load curtailment of a customer (or individual 
DRR) includes market payment and customer penalties. Market payment includes payment for 
scheduled curtailment, payment for dispatched curtailment, and payment for capability. Payment 
for scheduled curtailment is a reward for the amount of load curtailment assigned in a day-ahead 
unit commitment (UC), and is determined based on system marginal price (SMP) in the electricity 
market. Payment for dispatched curtailment is a reward for the amount of the load curtailment 
assigned in an-hour-ahead dispatch and determined based on the highest variable cost of all 
operating generators. Payment for capacity is a reward for the obligatory curtailment capacity. 
Customer penalties are payment for failing to curtail the scheduled load and are determined by a 
contract between a load aggregator and a customer. Revenue	 = 	Market payment + Customer penalty (4) Market	payment= Payment for scheduled curtailment+ Payment for dispatched curtailment+ Payment for availability (capability) (5) 

2.3.3. Cost of Load Curtailment 

The costs of a load aggregator for load curtailment consist of customer incentives and market 
penalties. Customer incentives are payments paid to a customer to participate in load curtailment 
and are determined by a contract between a load aggregator and a customer such as customer 
penalties. Market penalties are payments for failing to reduce. If a load aggregator did not carry out 
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the load curtailment assigned in a day-ahead UC, KPX imposes penalties for scheduled curtailment 
on the aggregator. In addition, if a load aggregator fails to carry out the load curtailment dispatched, 
KPX imposes penalties for dispatched curtailment on the aggregator. Penalties for scheduled 
curtailment are determined based on SMP, and penalties for dispatched curtailment are determined 
as the cutback of the payment for capacity. Cost	 = 	Customer incentive + Market penalty (6) Market	penalty = Penalty for scheduled curtailment+ Penalty for dispatched curtailment  

(7) 

2.3.4. Rate of Return of an Aggregator by the Load Curtailment of Each Customer 

A rate of return (ܴܱܴ௜) that a load aggregator can obtain when a customer (individual DRR i) of 
the aggregator participates in load curtailment is defined as follows: ܴܱܴ௜ 	= ܧܴ ௜ܸெ௉(ܴܦ௜௦) + ܧܴ ௜ܸ௉ா(ܴܦ௜௦) − ܱܵܥ ௜ܶூே஼்(ܴܦ௜௦) − ܱܵܥ ௜ܶ௉ா(ܴܦ௜௦)ܱܵܥ ௜ܶூே஼்(ܴܦ௜௦) + ܱܵܥ ௜ܶ௉ா(ܴܦ௜௦) 	 (8) 

where ܴܦ௜௦ is the amount of load reduction that customer i contributes for scenario s as follows: ܴܦ௜௦ = ௜௔௟௟௢௖ܴܦ ∙ ௜௦ߨ , ∀ ݅, ݏ ܧܴ (9)  ௜ܸெ௉ is the revenue obtained in payment for the load curtailment by customer i. It increases 
proportionally with increasing actual amount of load curtailment by customer i when the customer’s 
actual load curtailment is less than or equal to 120% of the load reduction assigned to customer i in 
the DR event. However, if the actual amount of the customer’s load curtailment is greater than 120% 
of the amount of load curtailment allocated by the aggregator, no further revenue resulting from 
receiving DR market prices is generated. The function ܴܧ ௜ܸெ௉ is defined as follows: ܴܧ ௜ܸெ௉(ܴܦ௜௦) = ௦ܲܯ ∙ min(ܴܦ௜௦, ௜௔௟௟௢௖ܴܦ × 1.2), ∀ ݅, ݏ  (10) 

where ܲܯ௦  is the wholesale electricity market price for scenario s, ܴܦ௜௦  is the actual load 
curtailment of customer i for scenario s, and 	ܴܦ௜௔௟௟௢௖ is the amount of load curtailment allocated to 
customer i. ܴܧ ௜ܸ௉ா is the revenue obtained only when customer i does not curtail some or all of the allocated 
load curtailment in the DR event. The penalty imposed on customer i by the aggregator is the penalty 
price (ܲܧ௜) multiplied by the difference between the actual and allocated amount of load curtailment 
on customer i. This function is expressed as follows: ܴܧ ௜ܸ௉ா(ܴܦ௜௦) = ௜ܧܲ ∙ max(ܴܦ௜௔௟௟௢௖ − ,௜௦ܴܦ 0), ∀ ݅, ݏ  (11) 

where ܲܧ௜ is price of the penalty determined by a contract between an aggregator and customer i. ܱܵܥ ௜ܶூே஼் is an incentive offered as the reward for load reduction to customer i that participates 
in the DR event by the aggregator. It increases proportionally with increasing actual amount of load 
reduction by customer i when the customer’s actual load reduction is less than or equal to the load 
curtailment assigned to customer i in the DR event. However, if the actual amount of the customer’s 
load reduction is greater than the customer’s load curtailment assigned by the aggregator, there is no 
further cost to pay for additional load reduction. The function ܱܵܥ ௜ܶூே஼் is defined as follows: ܱܵܥ ௜ܶூே஼்(ܴܦ௜௦) = ܥܰܫ ௜ܶ ∙ min(ܴܦ௜௦, ,(௜௔௟௟௢௖ܴܦ ∀ ݅, ݏ  (12) 

where ܥܰܫ ௜ܶ is the incentive price determined by a contract between an aggregator and customer i. ܱܵܥ ௜ܶ௉ா is an expense that should be paid to the ISO by the aggregator who fails to meet the 
amount of curtailment allocated by the ISO (KPX) because customer i does not reduce some or all of 
allocated load curtailment in the DR event. If a customer does not curtail as much as allocated by its 
aggregator, the deficit is covered by another customer of the aggregator and the aggregator is not 
charged a penalty. However, because the aggregator should pay the price to the customer covering 
the deficit, the cost increases. Thus, ܱܵܥ ௜ܶ௉ா is the price for load reduction of the customer covering 
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the deficit, however, the unit price is equal to the price for the load curtailment of customer i. This 
function is expressed as follows: ܱܵܥ ௜ܶ௉ா(ܴܦ௜௦) = ܥܰܫ ௜ܶ ∙ min(ܴܦ௜௔௟௟௢௖ − ,௜௦ܴܦ 0), ∀ ݅, ݏ  (13) 

2.4. Calculation of Expected Returns and Risks 

In this study, a Monte Carlo simulation-based method is used to calculate the expected return, 
risk, and covariance, i.e., correlation coefficient of DRRs. In this paper, the primary factors affecting 
the rate of returns of aggregators are assumed to be the participation rate and wholesale electricity 
market price. Therefore, future price and participation rate need to be estimated in order to calculate 
the rate of return for an individual DRR. The stochastic model described in Section 2.2 is applied to 
estimate the future price and participation rate. The amount of curtailment from DRR, revenue, cost, 
and rate of return are computed using the estimated future prices and participation rates. The mean, 
i.e., expected return and the variance, i.e., risk of a portfolio are computed by Monte Carlo simulations 

3. Resource Allocation Method Using Portfolio Theory 

In this section, a new method is proposed for optimally grouping DRRs, the load curtailment of 
all customers contracting with a load aggregator to reduce their loads, using the expected return and 
risk of the individual DRR by applying portfolio theory. 

3.1. Resource Grouping Scenario 

There are many ways by which a load aggregator divides its customers (individual resources) 
into DRR groups. For example, dividing 10 individual resources into two DRR groups results in a 
number of 1024 (=2ଵ଴), and with increasing number of individual resources and DRR groups, the 
number of possible divisions increases very quickly. However, not all cases are considered because 
there are some constraints related to formulating DRRs. In the Korean DR market, one DRR group 
shall be composed of 10 or more individual DRRs, and the maximum reduction capacity of one DRR 
group shall be 10–500 MW. Therefore, in this study, the cases that satisfy these constraints are 
considered and defined a dividing case as a “scenario”. Figure 1 roughly shows how an aggregator 
can divide all its individual DRRs into some (N) DRR groups. 

 
Figure 1. Schemes of dividing individual demand response resources (DRRs) into DRR groups. 

Each individual resource has its own load characteristics. Some resources have a high load factor, 
some have a low load factor, and the shape of the load duration curve (LDC) varies from resource to 
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resource. One DRR group can minimize the risk from the aggregator’s point of view by 
complementing them if resources with different load characteristics are evenly included. Therefore, 
the DRR group is constructed by reflecting the load characteristics of the individual resources. 

A DRR group is simply a collection of DRRs aggregated by a load aggregator. The load 
aggregator can operate multiple DRR groups. A scenario is one of all possible DRR combinations by 
combining different DRRs to form a DRR group. A portfolio is constructed by taking a weighted 
combination of DRRs with different composition ratios, i.e., weights of DRRs on their curtailment 
capabilities in a DRR group. Therefore, it is possible to create various types of portfolios by taking 
different composition ratios of DRRs in the same DRR group. 

3.2. Minimum Variance Portfolio Selection of Optimal Grouping Scenario 

There are several DRR groups in a scenario and, for each group, we can construct many 
portfolios with individual DRRs included in each DR resource. Then the expected return and risk of 
the portfolios are calculated. The expected return and risk of a portfolio are defined as follows: ܧ(ܴ௉) =෍ݓ௜ ∙ ௡(௜ܴ)ܧ

௜ୀଵ  (14) 

௉ଶߪ =෍ݓ௜ ∙ ௝ݓ ∙ ௜௝௡ߪ
௜ୀଵ  (15) 

where ݓ௜ is a share of individual DRR i in the portfolio, ܧ(ܴ௜) is an expected return of individual 
DRR i, ߪ௉ଶ is a variance of an individual DRR’s return, and ߪ௜௝ is a covariance between the rate of 
returns of individual DRRs i and j. 

Once the expected return and risk of portfolios are calculated, the minimum variance portfolio 
(MVP) for each DRR group can be determined. The MVP is the portfolio whose risk (variance or 
standard deviation) is the least among all portfolios that can be created with individual DRRs 
included in a DRR group. A “group risk” (ܴܭܵܫ௜௚௥௣) can be defined to be the risk of the MVP and 
define a “scenario risk” (ܴܭܵܫ௦௦௖௡), as the mean of all group risks of that scenario. The final objective 
is to determine the optimal scenario, which has the lowest scenario risk, and which is the best way to 
group individual DRRs. Combining the above steps, the following optimization problem can be 
formulated as follows: 

݉݅݊{௦} ௦௦௖௡ܭܵܫܴ = 1ܰ ෍ܴܭܵܫ௜௚௥௣ே
௜ୀଵ  (16) 

௜௚௥௣ܭܵܫܴ = ݉݅݊{௪೔,௪ೕ} ௉ଶߪ =෍෍ݓ௜ ∙ ௝ݓ ∙ ௜௝௡ߪ
௝ୀଵ

௡
௜ୀଵ  (17) 

෍ݓ௜௡
௜ୀଵ = 1  (18) 

෍ݔ௜௝௡
௝ୀଵ ≥ ܰ௚௥௣  (19) 

݀௠௜௡ ≤ ෍ݔ௜௝ே
௝ୀଵ ∙ ௝݀ ≤ ݀௠௔௫  (20) 

௠௜௡ܧ ≤ ෍ݔ௜௝ே
௝ୀଵ ∙ ௝݀ ∙ ௝߬ ≤ ௠௔௫ܧ  (21) 

where ݔ௜௝  is a binary variable indicating whether individual DRR j is included in DRR group i  
(i.e., if included, 1; otherwise, 0). N୥୰୮ is the minimum number of individual DRRs to be included in 
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one DRR group, ௝݀ is the maximum amount of load curtailment capacity for individual DRR j, and ݀௠௜௡	ܽ݊݀	݀௠௔௫ are the minimum and maximum amounts of total load capacity (MW), respectively, 
that one DRR group should reduce in a DR event. ௝߬  is the maximum curtailment duration of 
individual DRR j, and ܧ௠௜௡ and ܧ௠௔௫ are the minimum and maximum amounts of total energy 
(MWh), respectively, that one DRR group should curtail in a DR event. 

3.3. Target Return and Risk 

MVP has the advantage of minimizing risk, but it has the weakness that the expected return is 
also lowered. For this reason, aggregators are inevitably interested in how to construct a resource 
that can achieve a reasonable expected return. This can be overcome by slightly modifying the 
method presented above. By adding the target expected rate of return and the target risk as 
constraints while keeping the objective function that minimizes the risk, it is possible to achieve two 
goals: securing the appropriate rate of return and minimizing the risk. The following constraint 
expression is added: 

෍ݓ௜ ∙ ௜௡ܴ)ܧ
௜ୀଵ ) = ௧௔௥௚௘௧(௣ܴ)ܧ  (22) 

෍ݓ௜ ∙ ௝ݓ ∙ ௜௝௡ߪ
௜ୀଵ = ௣ଶ௧௔௥௚௘௧ߪ  (23) 

 
Figure 2. Algorithm of proposed method. 

4. Numerical Results 

Figure 2 shows the overall algorithm of the proposed method described in the previous chapter. 
In this section, according to this algorithm, the proposed DRR allocation method is numerically tested 
using historical data of customers (individual DRRs) who have participated in KEPCO’s DR program. 
There have been few attempts to study how the recruited demand response resources can be 
managed effectively with respect to rate of return and risk from a research perspective. Furthermore, 
since the aggregator does not disclose how they actually manage resources, it is difficult to recognize 
how exactly and what method is being used in practice. Therefore, the performance of the proposed 
method is compared with the baseline method. The baseline method is designed to determine a 
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composition ratio of individual demand response resources in a portfolio based on their reduction 
capabilities. 

4.1. Assumptions and Data 

In the numerical test, to simplify the discussion, a load aggregator was assumed to attempt to 
constitute two DRR portfolios from 14 individual resources and participates in the only price-
responsive DR market. To optimize the resource constitution, the load aggregators consider the 
maximum curtailment capability (or capacity), load factors and participation rates of individual 
customers. The participation rate (ߨ௜) is calculated using historical load curtailment data of individual 
resources in the DR program conducted by KEPCO, and load factors are derived from load data by 
industry. Wholesale electricity market prices (ܲܯ௦) and penalty prices for individual resources (ܲܧ௜) 
are estimated using historical SMP data from the Korea Electricity Exchange (KPX). It is assumed that 
the unit price of customer incentives for individual resources (ܥܰܫ ௜ܶ) are calculated considering the 
retail price. The characteristics of individual resources are presented in Table 1. 

Table 1. The characteristics of individual resources. 

Number Name Capacity 
(MW) 

Load Factor
(%) 

Number Name Capacity 
(MW) 

Load Factor
(%) 

1 Iron 225 81 8 Paper 3 85 
2 Steel 111.4 81 9 Railway 0.2 62 
3 Cement 1 23 72 10 Electronic 3 85 
4 Cement 2 50 72 11 Waste 0.8 81 
5 Machinery 30 46 12 Wholesale 1 0.6 49 
6 Chemicals 1 23 86 13 Wholesale 2 0.67 49 
7 Chemicals 2 150 86 14 Accommodation 0.62 65 

4.2. Expected Returns and Risks of Individual Resources 

Large-capacity resources such as iron, steel, cement, machinery, and chemicals are more 
profitable and less risky than small-capacity resources such as railways, wholesale and retail, and 
accommodation, as shown in Figure 3a. Resources with large variation in participation rate 
(electronic, accommodation, chemicals 2) showed relatively high risk as shown in Figure 3b. 

 
(a) (b)

Figure 3. Expected returns, risks and the participation rate (PR) of individual resources. 

4.3. Baseline Method 

The composition ratio of individual resources is determined based on the reduction capacity of 
each resource, and the expected return and risk are not considered. The expected returns of 
configured DRR portfolios (B1 and B2) are 22.6% and 24.4%, and the risks of B1 and B2 are 24.1% and 
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25.2%, respectively. As shown in Figure 4, configured DRR portfolios (B1 and B2) have a much lower 
risk than individual resources because of the risk diversification effect of the portfolio. 

 
Figure 4. Expected return and risk of portfolios obtained by baseline method. 

4.4. Proposed Method Results 

Each of the 14 individual resources is divided into two groups of seven, and then the composition 
of the resources in each group is determined according to the mean-variance portfolio theory. 

When dividing into two groups, load factor and load characteristics of individual resources are 
considered. One resource group includes resources with high load factor such as iron, steel, cement, 
chemicals, paper, and electronics, and resources with low load factor such as machinery, railway, and 
wholesale and retail. The load duration curve (LDC) shown in Figure 5 shows relatively similar forms 
of steel, cement, chemicals, paper, electronics, and waste. Accommodation, railways, machinery, and 
wholesale and retail are different from the above resources. In consideration of this, a resource group 
is configured so that it has different types of load duration curves. As a result of constructing the 
resource group in this way, DRR1 includes steel, cement 2, chemicals 2, paper, electronics, wholesale 2, 
and accommodation, while DRR2 includes iron, cement 1, machinery, chemicals 1, railway, waste, 
and wholesale 1. 

 
Figure 5. Load duration curves (LDCs) of individual resources. 
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The portfolio that minimizes the risk with the same rate of return for each of portfolios (B1 and 
B2) obtained by the baseline method is A1 and A2 for each group, respectively, and the portfolios 
that maximize returns with the same risk are C1 and C2, respectively. The expected returns and risks 
for the portfolios constructed according to the proposed method are shown in Figure 6. 

The risks for portfolios A1 and A2 were 21.9% and 23.9%, respectively, down 9.1% and 5.2% 
from the risk for portfolio (B1 and B2) obtained by the baseline method. Expected returns of portfolios 
C1 and C2 were 24.5% and 25.9%, respectively, which were 8.4% and 6.1%, higher than the expected 
returns of portfolio (B1 and B2) obtained by the baseline method. In other words, constructing the 
portfolio by the proposed method can reduce the risk or increase the profit rate. 

 
Figure 6. Expected returns and risks of portfolios and individual resources. 

As shown by Figure 7, the individual resource composition ratios of the portfolio composed of 
the proposed method are the same as the results obtained by the baseline method in which the 
composition ratio of large resources is high, but the composition ratio of small resources is increased. 
This is due to portfolio effects, i.e., diversification effect that reduce risk by correlations between 
returns for each resource. Through portfolio C1 and C2, it is likely that the proportion of large-
capacity resources should be increased to increase expected return. 
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Figure 7. Composition ratio of individual resources in each portfolios. 

4.5. Portfolio Selection of Load Aggregators 

According to the indifference curve characteristic of an aggregator, the resource allocation 
strategy in the intervals A1–C1 and A2–C2 (bold line) is selected. IC-1 and IC-2 are the indifference 
curves of the aggregator with relatively low risk aversion tendency and those with relatively strong 
risk aversion, respectively. This process is shown in Figure 8. 

 
(a) (b)

Figure 8. Portfolio selection of load aggregators using efficient frontier and indifference curve (IC). 

5. Conclusions 

In this paper, a systematic method is proposed to optimize DRRs using mean-variance portfolio 
theory. It is demonstrated in the test results that the proposed method can contribute to increasing 
the profitability of the aggregator and to minimizing the risk.  

DRRs can be aggregated with other distributed energy resources (DERs) such as wind 
generations, photovoltaic generations, and energy storage systems (ESSs) to be operated as virtual 
power plants (VPPs). It is also possible to evaluate the expected return and risk of a portfolio of DERs 
for VPPs in a way similar to the manner in which a portfolio of DRRs is evaluated using the proposed 
method. The proposed method could be further extended in combination with renewable generation 
forecasting techniques and the coordinated operation strategies for mitigating the variation of DERs 
for VPPs. 
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