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Abstract: Accurate and reliable forecasting on energy-related carbon dioxide (CO2) emissions is of
great significance for climate policy decision making and energy planning. Due to the complicated
nonlinear relationships of CO2 emissions with its driving forces, the accurate forecasting for CO2

emissions is a tedious work, which is an important issue worth studying. In this study, a novel CO2

emissions prediction method is proposed which employs the latest nature-enlightened optimization
method, named the Whale optimization algorithm (WOA), to search the optimized values of two
parameters of LSSVM (least squares support vector machine), namely the WOA-LSSVM model.
Meanwhile, the driving forces of CO2 emissions including GDP (gross domestic product), energy
consumption and population are chosen to be the import variables of the proposed WOA-LSSVM
method. Taking China’s CO2 emissions as an instance, the effectiveness of WOA-LSSVM-based CO2

emissions forecasting is verified. The comparative analysis results indicate that the WOA-LSSVM
model is significantly superior to other selected models, namely FOA (fruit fly optimization
algorithm)-LSSVM, LSSVM, and OLS (ordinary least square) models in terms of CO2 emissions
forecasting. The proposed WOA-LSSVM model has the potential to effectively improve the accuracy
of CO2 emissions forecasting. Meanwhile, as a new nature-enlightened heuristic optimization
algorithm, the WOA has the prospect for wide application.

Keywords: CO2 emissions prediction; Whale optimization algorithm; LSSVM; parameters
optimization; driving forces

1. Introduction

With the high speed expansion of globalization and industrialization, energy consumption of
the whole world has experienced a rapid increase in the last 2 decades. The consumption of fossil
fuel, contributing to economic development to a large extent, constitutes 80% of the global energy
consumption [1]. It has become widely that greenhouse gases emissions, particularly CO2 emissions,
have destructive impacts on the environment, especially in terms of global warming, primarily from
such sources as fossil fuel burning for electricity production and heat supply [2]. In the past 20 years,
nearly 75% of the human-caused carbon emissions originated from fossil fuel burning. The scientific
opinion holds that CO2 emissions are the main driving forces of climate change [3]. Therefore, it is
essential to forecast CO2 emissions from the angle of energy consumption for climate policy making
and energy planning. First, CO2 emissions forecasting can not only help predict how future global
temperatures will rise, but also help to evaluate prospective expenses of emission reduction, as well
as potential benefits from guarding against global temperatures rising [4]. Second, the Copenhagen
Accord established that global temperatures rising ought to be confined to below 2 ◦C, which demands
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40–70% emissions decrease by 2050, as compared to emissions in 2010. With the approaching of 2050,
various carbon capture technologies have been developed for CO2 emissions reduction to achieve a
2 ◦C limitation on global warming [5–9]. In addition to carbon capture technologies, CO2 emissions
prediction can also contribute toward examining whether the sustained reinforcing of global climate
policy has the capability to bring a notable CO2 emissions decrease to achieve the 2 ◦C goal. If not, the
governments need to carry out more aggressive climate policies.

Several kinds of estimation methods have been developed in CO2 forecasting modeling in recent
years. The structure model, a popular approach, has been employed in some literatures to forecast CO2

emissions, such as the national energy modeling system (NEMS) and computable general equilibrium
(CGE) models [10–12]. Nevertheless, these approaches are unable to reflect the dynamic instinct of
the real economy, due to the stationary of parameter values in structural models. Therefore, there are
also other methods used to forecast CO2 emissions. Meng [13] employed a logistic function to imitate
emissions generated from non-renewable energy burning. Liang [14] constructed an input–output
model of energy consumption and CO2 emissions of multi-areas in China and carried out scenario
analysis for 2010 and 2020. Chen put forward a blended fuzzy regression and back propagation
network method, which was used to forecast global CO2 concentration [15]. Pao [16] and Lin [17]
employed grey model to forecast CO2 emissions of Brazil and Taiwan. Through estimating China’s
future energy demand, He [18] predicted CO2 emissions during the period of 2010 to 2020 on the
basis of scenario analysis method. From the previous studies, it can be seen that there are few studies
employing the intelligent forecasting techniques (algorithms), which usually have the advantages of
strong learning ability and high forecasting accuracy. Therefore, this paper attempts to employ the
LSSVM (least squares support vector machine) technique, a famous and widely applied intelligent
algorithm, to forecast CO2 emissions.

The LSSVM model has been widely utilized to deal with forecasting issues in different fields, such
as gas [19], short-term electric load [20], wind speed [21], and hydropower consumption [22]. However,
it is rare to find that the LSSVM technique has been used for CO2 emissions forecasting. Therefore, the
application feasibility of LSSVM model to forecast CO2 emissions is examined in this paper. Generally
speaking, the LSSVM method relies on the values of two parameters, namely the bandwidth of RBF
kernel “σ” and the regularization parameter “c”. At present, some optimization methods were utilized
to find the optimized values for the two parameters, such as genetic algorithm [20], artificial bee
colony algorithm [23], chaotic differential evolution approach [24], and FOA (fruit fly optimization
algorithm) [25]. However, most of these optimization methods have some disadvantages of being hard
to understand, or achieving local optimum but reaching global optimum slowly. The WOA (Whale
optimization algorithm), put forward by Seyedali Mirjalili in 2016, is a novel heuristic optimization
algorithm enlightened by nature [26]. This new optimization method can be easily understood and
achieve the global optimal solution in a quite short time. Considering these superiorities, this study
tries to employ the WOA method to optimize two significant parameters of the LSSVM method, with
the aim of improving the forecasting performance of CO2 emissions. Simultaneously, at the aim
of further improving the prediction accuracy, the main driving factors of CO2 emissions including
GDP (gross domestic product), energy consumption and population, are also taken to be the import
variables for the established WOA-LSSVM approach to forecast CO2 emissions.

The primary contributions of this paper are the following:

• A novel LSSVM-based CO2 emissions forecasting model is proposed, of which the significant
parameters in LSSVM are optimized by the meta-heuristic optimization algorithm WOA. It is
verified that this hybrid intelligence forecasting method has the superiority in the forecasting
precision of CO2 emissions through comparing with LSSVM model optimized by FOA, LSSVM
without parameters optimization and OLS (ordinary least square). This paper extends the
application domains of intelligence LSSVM forecasting technique.

• GDP, energy consumption and population, which are considered as the main driving forces of CO2

emissions, are imported into the proposed WOA-LSSVM approach. Therefore, the proposed CO2
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emissions prediction model in this paper not only employs the intelligence forecasting technique,
but also takes the social economic driving factors of CO2 emissions into consideration, which
encapsulates the complicated nonlinear relationships of CO2 emissions with its main driving
forces to some extent.

The remainder of the study is processed below. Section 2 represents the theory of WOA method
and LSSVM model, and a novel CO2 emissions prediction method (namely WOA-LSSVM) that
combines the WOA and LSSVM technique is illustrated. Section 3 proceeds with the empirical
simulation and analysis for WOA-LSSVM-based CO2 emissions. In Section 4, the CO2 emissions
forecasting performance of different models are compared. Finally, the conclusions are presented in
Section 5.

2. The Methodology of WOA-LSSVM Forecasting Model

2.1. Basic Methodology of LSSVM Model

LSSVM is an improvement of the support vector machine (SVM), which replaces the inequality
constraints of traditional SVM with equality constraints, studying with the principle of structural risk
minimization through employing linear least squares guide lines to the loss function. So, the speed of
problem solving and the accuracy of convergence can be enhanced [27]. The fundamental theory of
LSSVM method is introduced as below.

Set a series of samples {xi, yi}m
i=1, taking xi ∈ Rn as the entering vector and yi ∈ R as the

homologous output value of sample i. Through employing a nonlinear function φ, the sample data are
mapped to a higher dimension from the customary feature space, therefore, to approximately describe
it in a linear form:

f (x) = wTφ(x) + b (1)

where w implies the weight vector, and b indicates the error.
In the original space, the LSSVM with the equality constraints is expressed as: minJ(w, ξ) = 1

2 wTw + 1
2 C

m
∑

i=1
ξ2

i

s.t.y = wφ(x) + b + ξi

(2)

where C indicates the regularization parameter, and ξi represents the slack variable.
Then, the Lagrangian function L can be established as:

L(w, b, ξ, a) =
1
2

wTw +
1
2

C
m

∑
i=1

ξ2
i −

m

∑
i=1

ai

{
wTφ(xi) + b + ξi − yi

}
(3)

where ai implies Lagrange multiplier.
The conditions of Karush–Kuhn–Tucker (KKT) for optimal performance are provided by:

∂L
∂w = 0→ w =

m
∑

i=1
aiφ(xi)

∂L
∂b = 0→

m
∑

j=1
ai = 0

∂L
∂ξi

= 0→ ai = Cξi
∂L
∂ai

= 0→ wTφ(xi) + b + ξi − yi

(4)

Removing the variables w and ξi, the majorization issue is converted into the linear form
as follows: [

0 QT

Q K + C−1 I

][
b
A

]
=

[
0
Y

]
(5)
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where Q = [1, . . . , 1]T , A = [a1, a2, . . . , am]
T ; Y = [y1, y2, . . . , ym]

T . In accordance with the Mercer’s
condition, the Kernel function is described as:

K(xi, xj) = φ(xi)
Tφ(xj) (6)

The LSSVM method for regression can be set by:

f (x) =
m

∑
i=1

aiK(x, xi) + b (7)

Owing to a fewer parameters to be set and a superior performance, the radial basis function (RBF)
is chosen to be the Mercer kernel function K(x, xi) in this paper, which is shown in Equation (8).

K(x, xi) = exp
{
−‖x− xi‖2/2σ2

}
(8)

Consequently, two parameters are needed to be found if the LSSVM model is utilized to forecast
CO2 emissions, which are the bandwidth of RBF kernel “σ” and the regularization parameter “c”. The
latest intelligent algorithm WOA will be applied to search the optimal values of “σ” and “c”, and the
optimization details are introduced in Sections 2.2 and 2.3.

2.2. Basic Theory of WOA

Enlightened by the humpback whales’ special hunting strategy, named the bubble-net feeding
method [28], the researcher Seyedali Mirjalili proposed a novel nature-enlightened heuristic
optimization method, namely WOA, simulating the public behavior of humpback whales [26]. The
foraging behavior investigated by Goldbogen et al. employing tag sensors has found that there are
two tactics bound up with the bubble, which are called “upward-spirals” and “double-loops” [29].
In “upward-spirals” strategy, humpback whales dive about 12 m and begin to generate bubbles in
a heliciform around the prey and swim up to the surface, which is shown in Figure 1, taken from
the original in study [26]. Therefore, it is worth mathematically imitating the heliciform bubble-net
predation strategy to carry out optimization. WOA is proposed in accordance with this behavior.
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Figure 1. Bubble-net predation strategy of humpback whales [26]. Figure 1. Bubble-net predation strategy of humpback whales [26].

For a detailed description of WOA, please refer to the work documented in study [26].
In accordance with the upward spiral bubble-net foraging maneuver, the WOA method is made
up of several steps, which are illustrated as follows:

• Step 1: Parameters setting.
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The vital parameters of WOA contain: the amount of search agents SearchAgents_no; the
amount of variables dim; the maximum amount of generations Max_iteration; the lower bound
lb = [lb1, lb2, lb3, . . . ., lbn−1, lbn], and upper bound ub = [ub1, ub2, ub3, . . . , ubn−1, ubn] of variables.

• Step 2: Population initialization.

As a method on the basis of population, the humpback whales in WOA method can be expressed
in a matrix as below:

W =


w1,1 w1,2 ... ... w1,d
w2,1 w2,2 ... ... w2,d

...
...

...
...

...
wn,1 wn,2 . . . . . . wn,d

 (9)

where W represents the position matrix of humpback whales; wij means the value of j-th parameter of
the i-th humpback whale, i = 1, 2, · · · , n, j = 1, 2, · · · , d, wij can be calculated by employing stochastic
distribution which is indicated in Equation (10).

W(i, j) = (ub(i)− lb(i))× rand(i, j) + lb(i) (10)

where W(i, j) is the value of the i-th row, j-th column of the matrix; lb(i) and ub(i) imply the lower
bound and upper bound of i-th humpback whale; rand(i, j) represents the stochastic number generated
from uniform distribution in [0, 1] interval.

• Step 3: Fitness function determination.

At the aim of evaluating each humpback whale, the fitness function f [∗] ought to be determined
during the process of majorization, and the matrix OW is utilized to store the fitness values of
humpback whales as follows:

OW =


OW1

OW2
...

OWn

 =


f [(w11 w12 · · · w1,d)]

f [(w21 w22 · · · w2,d)]
...

f [(wn1 wn2 · · · wn,d)]

 (11)

• Step 4: Iteration process.

In WOA method, the search agents renovate their places according to a stochastically selected
search agent or the best scheme attained till now. At the aim of performing a global search and
avoiding local optimum, the WOA method begins with a series of random solutions, which means the
location of a search agent would be updated with regard to a stochastically selected search agent. The
mathematical model can be estimated as below:

→
D = |

→
C ·
→
Xrand −

→
X| (12)

→
X(t + 1) =

→
Xrand −

→
A ·
→
D (13)

where t represents the current iteration,
→
A and

→
C mean coefficient vectors,

→
Xrand represents a stochastic

location vector (a stochastic humpback whale) selected from the present population,
→
X implies the

location vector, || stands for the absolute value, and · indicates an element-be-element multiplication.

The vectors
→
A and

→
C can be computed as below:

→
A = 2

→
a ·→r −→a (14)
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→
C = 2 ·→r (15)

where
→
a is linearly reduced from 2 to 0 through the process of iterations, and

→
r represents a stochastic

vector in [0, 1].

Since the value of
→
A depends on the diversification of

→
a , a stochastic search agent is selected

when
∣∣∣∣→A∣∣∣∣ > 1, while the best scheme is chosen when

∣∣∣∣→A∣∣∣∣ < 1 to renovate the location of the search

agents. Under the condition of
∣∣∣∣→A∣∣∣∣ < 1, the humpback whales swim around the prey in two forms of

paths, which are the shrinking circle and heliciform path.
For the shrinking encircling path, the search agents can renew their positions on the basis of the

following equations:
→
D =

∣∣∣∣→C ·→X∗(t)−→X(t)
∣∣∣∣ (16)

→
X(t + 1) =

→
X
∗
(t)−

→
A ·
→
D (17)

where X∗ indicates the location vector of the best solution attained till now. The vectors
→
A and

→
C

can be calculated in accordance with Equations (14) and (15). Through reducing the value of
→
a in

Equation (14), the shrinking encircling mechanism can be achieved.
For the spiral shaped path, the helix-shaped movement between the humpback whales and prey

can be simulated as follows:

→
X(t + 1) =

→
D′ · ebl · cos(2πl) +

→
X
∗
(t) (18)

where
→
D′ =

∣∣∣∣→X∗(t)−→X(t)
∣∣∣∣ implies the distance of the i-th humpback whale to the prey (best scheme

attained till now), b means a constant used to determine the shape of the logarithmic spiral, l indicates
a stochastic number in the interval [−1, 1], and · illustrates an element multiplication.

Since the humpback whales swim around the best solution within a shrinking circle path and
along a heliciform path at the same time, for the purpose of modeling this simultaneous behavior,
it is assumed that there is a 50% probability of selecting either the spiral model or the shrinking
circle mechanism to renovate the positions of humpback whales in the majorization process. The
mathematical equation can be established as below:

→
X(t + 1) =


→
X
∗
(t)−

→
A ·
→
D i f p < 0.5

→
D′ · ebl · cos(2πl) +

→
X
∗
(t) i f p ≥ 0.5

(19)

where p represents a stochastic number in interval [0, 1].

• Step 5: Optimal selection.

During every iteration process, the search agents renovate their places with regard to a
stochastically selected search agent or the best scheme attained till now. A stochastic search agent is

selected under the condition of
∣∣∣∣→A∣∣∣∣ > 1 and the search agents renew their locations in accordance with

the Equation (13), while the best solution is chosen if
∣∣∣∣→A∣∣∣∣ < 1 and the search agents renovate their

places according to Equations (17) and (18) relying on the value of p. Finally, the WOA method comes
to the termination if the iteration criterion is satisfied.

The primary steps of WOA method are demonstrated in Figure 2.
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2.3. Basic Principle of WOA-LSSVM Model for CO2 Emissions Forecasting

It is necessary to determine the optimal values of two parameters for LSSVM method before the
operation of CO2 emissions prediction. For the purpose of improving the forecasting performance, the
WOA method is utilized to optimize the value of these two parameters.

The process of WOA-LSSVM model for CO2 emissions forecasting is elaborated on below:

• Step 1: Parameters setting.

There are five primary parameters of WOA needed to be set, including the number of whales
SearchAgents_no, the number of variables dim, the maximum number of iteration Max_iteration, the
lower bound lb = [lb1, lb2, lb3, . . . ., lbn−1, lbn], and upper bound ub = [ub1, ub2, ub3, . . . , ubn−1, ubn].
In this paper, set SearchAgents_no = 50, dim = 2, Max_iteration = 100, lb = [0.01, 0.001], and ub = [100, 10].

• Step 2: Population initialization.

Since the values of SearchAgents_no, dim, Max_iteration, the lower bound and the upper bound
have been initialized, the first stochastic population (location) of whales can be calculated using
Equation (10). And the value of iteration is 1 at the original stage.

• Step 3: Fitness function determination.

In this study, the positions of whales are used to represent two parameters of LSSVM model,
namely wi,1 = σ, and wi,2 = c. Therefore, wi,1 and wi,2 are fed into the LSSVM model for CO2 emissions
prediction. In accordance with the CO2 emissions prediction result, the homologous value of fitness
function can be computed based on the root mean square error (RMSE) shown in Equation (20) utilized
to establish the fitness function in this paper.

RMSE =

√
1
n

n

∑
k=1

(x(k)− x̂(k))2 (20)

where x(k) indicates the actual value of CO2 emissions at time k; x̂(k) implies the forecasting value of
CO2 emissions at time k.

• Step 4: Optimization begins.

At the original iteration (iteration = 1), the fitness values of all the whales are computed based on
Equation (20). Then, rank the first population of whales according to their fitness values, and choose
the whale with the optimal fitness value. After the best whale is identified, other whales will attempt
to renew their places with respect to the best whale, according to Equation (19).

• Step 5: Optimization ends.

When the first iteration comes to the termination, the best whale and the best fitness value of
the whale can be obtained. Then, we can begin to generate the offspring generation, and renovate
the location and fitness of the whale at each iteration on the basis of Equations (9)–(19). The whales
update their positions with regard to the best whales selected according to the fitness value. The best
whale and their corresponding fitness value can be obtained after each iteration. Therefore, after 100
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iterations, the optimization process comes to the end, and the best position of whale can be obtained.
Simultaneously, the regularization parameter “c” and the bandwidth of RBF kernel “σ” of LSSVM
method are attained.

The optimization process of WOA-LSSVM method for CO2 emissions prediction is illustrated in
Figure 3.
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3. Empirical Simulation and Analysis

3.1. Data Sources and Preprocessing of Data Sample

In this study, the WOA-LSSVM method is utilized to predict the CO2 emissions in China. Before
forecasting CO2 emissions, it is critical to determine the key drivers of China’s increasing CO2

emissions, which should be considered as the input variables of the proposed WOA-LSSVM-based
CO2 emissions forecasting model. The CO2 emissions and its driving forces show complicated
nonlinear relationships. In summarizing previous studies [30–32], GDP, population, total exports,
energy consumption, and economic structure are found to be the main drivers of CO2 emissions. Based
on these findings, we further explore the correlation degrees between these driving forces and China’s
CO2 emissions between 1991 and 2014 by using the grey correlation analysis method, which measures
the correlation degree between different factors according to the similarity or difference degree of
trends, and the values are listed in Table 1. From Table 1, we can infer that GDP, energy consumption
and population maintains the top three highest correlation degrees with China’s CO2 emissions, which
are 0.6577, 0.6727, and 0.6798, respectively. Therefore, GDP, energy consumption and population are
selected as the input variables for WOA-LSSVM-based CO2 emissions forecasting model in this paper.

Table 1. The correlation degrees between China’s CO2 emissions and driving forces.

Driving Forces GDP Energy
Consumption Population Total Export Economic

Structure *

Correlation degree 0.6577 0.6727 0.6798 0.6377 0.6015

* The economic structure is represented by the proportion of the secondary industry added value in GDP.

The data of China’s CO2 emissions related to energy consumption from 1991 to 2014 are picked
out from the British Petroleum (BP) Statistical Review of World Energy, which presents objective and
high-quality data for world energy markets, including data about petroleum, coal, solar energy, natural
gas, hydropower, wind power and nuclear power. According to the CO2 emissions data of 68 countries
for the period from 1965 to 2014 provided in BP Statistical Review of World Energy, the CO2 emissions
in China has a 5.58% average annual growth rate. As the largest CO2 emitter, China emitted 9.76 Gt
CO2 in 2014, which increased 0.90% in comparison to that in 2013, which is a little more than the 0.5%
global mean annual growth rate. The data of GDP, energy consumption, and population from 1991 to
2014 were picked out from the China Statistical Yearbook. Data on GDP were converted to the constant
price by taking 2000 as the basic period.

The forecasting procedure should begin with the sample data normalization ranging from 0 to 1
employing Equation (21):

z =
x− xmin

xmax − xmin
(21)

where xmin and xmax are the minimal and maximal value of each import data series.
The sample data are classified into the training set and testing set. In this study, the last four data

of CO2 emissions and related driving factors are selected as the testing set. Therefore, the sample
points of the training set range from 1991 to 2010, and the prediction points of the testing set begin in
2011 and end in 2014. The data of China’s CO2 emissions, GDP, energy consumption and population
from 1991 to 2014 are indicated in Figure 4.
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3.2. Optimal Parameters Determination for LSSVM Method

In WOA-LSSVM method, the optimal values of “σ2” and “c” in LSSVM approach are determined
by WOA method. Figure 5 displays the iterative root mean square error (RMSE) tendency of the
WOA-LSSVM method finding for the optimized parameters. The iterative RMSE trend converges in
the 6th generation after 100 iterations, and the optimal values of “σ2” and “c” are 2.0684 and 93.2203,
respectively, which will be applied for CO2 emissions prediction at the testing stage. Therefore, the
CO2 emissions during the testing period of 2011 to 2014 can be forecasted, and the prediction data
are displayed in Table 2. As illustrated in Table 2, the gaps between actual CO2 emissions values and
forecasting CO2 emissions values are small. Specifically, the gaps between actual and forecasting CO2

emissions values at the year of 2011 and 2014 are only−3.55 million tons (Mt) and 7.71 Mt, respectively.
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Figure 5. The iterative root mean square error (RMSE) trend of the WOA-LSSVM method finding for
optimized parameters.
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Table 2. Forecasting results and gaps by using WOA-LSSVM model.

Year Forecasting Value (Unit: Mt) Actual Value (Unit: Mt) The Gap * (Unit: Mt)

2011 9209.67 9206.12 −3.55
2012 9378.71 9415.42 36.71
2013 9611.85 9674.22 62.37
2014 9753.36 9761.08 7.71

* The gap indicates the difference between the predicted value and actual value, the negative value of which
demonstrates the actual data is less than the predicted one.

4. Forecasting Performance Evaluation

4.1. Selection of Comparison Models and Forecasting Performance Evaluation Index

For the purpose of evaluating the prediction accuracy of WOA-LSSVM method for China’s CO2

emissions forecasting, two things are essential to be determined, which are the choice of compared
prediction methods, and the selection of the prediction performance evaluation indicator.

In order to comparatively analyze the prediction data of various methods, three compared
prediction methods are chosen that are the LSSVM optimized by FOA (FOA-LSSVM), single LSSVM
without parameters optimization, and OLS. For the FOA-LSSVM approach, the parameters “σ2” and
“c” are optimized by FOA. The iteration begins with programming the original parameters of FOA:
maxgen = 100, sizepop = 20, (X_axis, Y_axis) ⊂ [−50, 50], FR ⊂ [−10, 10]. For the OLS model, through
minimizing the residual sum of squares, the OLS model can calculate the coefficients of a linear
model [33]. For these selected models, just like that of WOA-LSSVM model, the training sample ranges
from 1991 to 2010, and the data between 2011 and 2014 are treated as the testing sample. Meanwhile,
the driving factors including GDP, energy consumption and population are also regarded as the input
variables of three compared prediction methods, and the output variable is CO2 emissions.

The determined parameters “σ2” and “c” of the FOA-LSSVM model, the single LSSVM model
and the WOA-LSSVM model are all illustrated in Table 3.

Table 3. The determined values of parameters for fruit fly optimization (FOA)-LSSVM, single LSSVM
model and WOA-LSSVM model.

Model FOA-LSSVM LSSVM WOA-LSSVM

σ2 0.2496 0.8 2.0684
C 5.6947 20 93.2203

To further analyze the prediction precision of each model, percentage error (PE), mean absolute
percentage error (MAPE) and root mean square error (RMSE) are chosen to compare the prediction
data of different models. They are computed by Equations (20)–(23), respectively.

PE =
x(k)− x̂(k)

x(k)
× 100% (22)

MAPE =
1
n

n

∑
k=1

∣∣∣∣ x(k)− x̂(k)
x(k)

∣∣∣∣× 100% (23)

where x(k) represents the actual data at time k, and x̂(k) indicates the prediction data at time k.

4.2. Comparisons of Prediction Performance for Different Prediction Methods

The actual data and prediction data for CO2 emissions in China by using WOA-LSSVM,
FOA-LSSVM, LSSVM, and OLS methods during the period of 2011–2014 are illustrated in Figure 6.
We can deduce that the WOA-LSSVM method performs best for CO2 emissions in 2011 and 2014
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among all of the compared forecasting models. In 2013, the forecasted result attained from the OLS
method has the smallest gap from the actual value, and the WOA-LSSVM model ranks second. In 2012,
the forecasting result of FOA-LSSVM model is closest to the actual value, followed by OLS method,
WOA-LSSVM, and single LSSVM models.
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To accurately compare the CO2 emissions forecasting performances of different models, the
evaluation indicators PE, MAPE, and RMSE are employed, and the results are demonstrated in
Figure 7 and Table 4. Generally, the PE range in interval [−3%, 3%] is deemed as standard performance
of forecasting results [34]. As can be seen from Figure 7, all of the prediction points are in the range of
[−3%, 3%]. Meanwhile, the forecasting PEs of WOA-LSSVM model all fall within the scope of [−0.7%,
0.7%]. The proposed WOA-LSSVM model show the best CO2 emissions forecasting performance in
2011 and 2014 based on PE standard. Although the proposed WOA-LSSVM model does not reach the
highest prediction accuracy in the remaining years based on PE standard, the gaps are small. Therefore,
the WOA-LSSVM model has the superior CO2 emissions prediction performance compared to OLS,
single LSSVM, and FOA-LSSVM models.

The calculation results listed in Table 4 also verify the superiority of WOA-LSSVM model in
accordance with MAPE and RMSE. The MAPE value of WOA-LSSVM model is only 0.29%, which
is the smallest among all of the compared models (0.62% of FOA-LSSVM, 0.45% of single LSSVM,
and 0.67% of OLS model). The RMSE value of WOA-LSSVM approach is significantly less than
that calculated by FOA-LSSVM, LSSVM, and OLS methods, which are 36.43 Mt, 84.34 Mt, 54.20 Mt,
and 70.36 Mt, respectively. In this case, the prediction performance of WOA-LSSVM model is better
than FOA-LSSVM, single LSSVM, and OLS. It is also very interesting to discover that the prediction
precision of single LSSVM method is better than the FOA-LSSVM, but that the WOA-LSSVM has
the best prediction performance. This implies that the WOA has a greater capacity for optimizing
LSSVM-based CO2 emissions forecasting model than FOA. Therefore, it can be safely concluded
that the WOA has great potential in optimizing parameters of LSSVM model for improving the CO2

emissions forecasting accuracy.
Conclusively, the established WOA-LSSVM approach can dramatically lessen the deviations

between the actual CO2 emissions and prediction CO2 emissions, which is significantly superior to the
single LSSVM, FOA-LSSVM, and OLS models in China’s CO2 emissions forecasting. As a new kind of
nature-inspired meta-heuristic optimization algorithm, the WOA has the prospect for wide application.
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Table 4. Mean absolute percentage error (MAPE) and RMSE for chosen prediction methods.

Model WOA-LSSVM FOA-LSSVM LSSVM OLS

MAPE (%) 0.29 0.62 0.45 0.67
RMSE (Mt) 36.43 84.34 54.20 70.36

5. Conclusions

The accurate and reliable prediction on CO2 emissions is of great significance for climate policy
decision making and energy planning. In previous studies, it can be seen that the dramatic growth
of CO2 emissions in China is driven by many factors. However, the nonlinear relationships of CO2

emissions with its driving forces are quite complicated, which makes the CO2 emissions forecasting a
difficult task. Therefore, improving the accuracy of CO2 emissions forecasting is a field worth studying.
In this study, the widely utilized LSSVM technique has been applied to build a new CO2 emissions
forecasting model, the parameters of which are optimized by a latest nature-inspired meta-heuristic
optimization algorithm, WOA. Meanwhile, the proposed WOA-LSSVM model takes the main driving
factors including GDP, energy consumption and population as the input variables, which takes the
social economic effects on CO2 emissions into consideration. To validate the potential of the presented
WOA-LSSVM method in terms of CO2 emissions forecasting, three other models (namely FOA-LSSVM,
single LSSVM, and OLS) are selected to compare the forecasting performance. The comparative
analysis implies that the proposed WOA-LSSVM method show the best performance in China’s
CO2 emissions forecasting based on three evaluation indicators (namely PE, MAPE and RMSE). The
proposed WOA-LSSVM model is significantly superior to other selected models in terms of CO2

emissions forecasting, and the application of WOA to optimize LSSVM approach is valid and feasible.
In future studies, the WOA, as a new nature-enlightened heuristic optimization algorithm, has the
potential in optimizing other intelligent algorithms such as SVM and neural network for practical issues,
such as electricity demand forecasting and renewable power output forecasting. In the meantime, we
can also conduct research concentrating on scenario forecasting methods applied to CO2 emissions
forecasting to give full consideration to the impacts of national policies, such as carbon-reduction
policies, economic and social development levels, and human behaviors on CO2 emissions.
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