
energies

Article

Accurate Short-Term Power Forecasting of Wind
Turbines: The Case of Jeju Island’s Wind Farm

BeomJun Park and Jin Hur *

Department of Electrical Engineering, Sangmyung University, Seoul 03016, Korea; 201737010@sangmyung.kr
* Correspondence: jinhur@smu.ac.kr; Tel.: +82-2-781-7576

Academic Editor: Marco Mussetta
Received: 22 April 2017; Accepted: 13 June 2017; Published: 15 June 2017

Abstract: Short-term wind power forecasting is a technique which tells system operators how much
wind power can be expected at a specific time. Due to the increasing penetration of wind generating
resources into the power grids, short-term wind power forecasting is becoming an important issue
for grid integration analysis. The high reliability of wind power forecasting can contribute to the
successful integration of wind generating resources into the power grids. To guarantee the reliability
of forecasting, power curves need to be analyzed and a forecasting method used that compensates
for the variability of wind power outputs. In this paper, we analyzed the reliability of power curves
at each wind speed using logistic regression. To reduce wind power forecasting errors, we proposed
a short-term wind power forecasting method using support vector machine (SVM) based on linear
regression. Support vector machine is a type of supervised leaning and is used to recognize patterns
and analyze data. The proposed method was verified by empirical data collected from a wind turbine
located on Jeju Island.

Keywords: wind power forecasting; enhancing reliability; power curve; support vector machine
(SVM); support vector regression (SVR)

1. Introduction

Wind power generation has grown rapidly over the past few decades, as demonstrated by the total
accumulated wind power capacity which hit 319 GW from an installation in 2013 [1]. Furthermore, the
worldwide total of wind power capacity was 432.9 GW in 2015, showing that the cumulative market
of wind power grew more than 17%, with wind power capacity expected to increase consistently,
to the point where wind power will generate 4337 TWh in 2035 [1,2]. For this reason, wind power
forecasting—a technique that determines the quantity of wind power output that can be expected over
a given period—is becoming a salient point of research as an important component in operating power
systems to maintain their reliability.

Prior to forecasting wind power outputs, power curves need to be analyzed as they represent
characters of wind turbine outputs. There are few studies on the reliability of power curves using
regression and artificial neural network models, etc. [3]; therefore, we have analyzed the reliability of a
power curve at each wind speed through the wind turbine’s power curve, and output the data using a
logistic regression. In statistics, a logistic regression measures the relationship between a categorical
dependent variable and one or more independent variables by estimating probabilities based on a
logistic function, which is the cumulative logistic distribution [4]. Using a logistic regression, wind
power outputs can be distributed (which do or do not enter the error range) at each wind speed, to
create a probability model relating to the reliability of power curves.

Accurate wind power forecasting is essential when it comes to considering variability, reducing
uncertainty, and penetrating wind power into power systems. Wind power forecasting is largely
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divided into three parts based on time horizon: short-term (one hour to one day), medium-term
(one day to one week), and long-term (one week to one year) [5]. In particular, given the increasing
supply of wind-generated power into the power grid, short-term wind power forecasting is becoming
a critical issue in the safe operation of power systems. Precise short-term wind power forecasting can
enable efficient power system management, improve the wind power supply level, and increase overall
systemic reliability. Additionally, it can be utilized for power system planning such as unit commitment
and dispatch scheduling [6]. Many approaches for predicting wind power have been proposed to
increase the reliability of forecasted values. For wind power forecasting, there are models based on
time series using auto regression moving average (ARMA)/auto regression integrated moving average
(ARIMA), or the regression method [7]. These methods have many advantages: they can forecast
fast and do not need many elements to forecast. However, time series models need lots of data when
the model is structured, and the parameters are difficult to update when new data are uploaded.
Furthermore, the regression model has limits in containing patterns and the variability of data.

Recently, many advanced approaches have been suggested to forecast more exact wind power
outputs based on statistic and ensemble methods [8–11]. In this study, we proposed the use of support
vector machine (SVM) to forecast wind power outputs. SVM is one of the most popular models in
the field of machine learning [12], and is an advanced technique for classification and regression
analysis. The support vector regression (SVR) is the method with which to carry out a SVM [13] based
on regression as this model can consider variability as SVM is not largely influenced by noise data,
which gives the high accuracy [14]. In this paper, we analyzed the accuracy of power curves at each
wind speed using logistic regression, and also proposed short-term wind power forecasting using
support vector machine based on linear regression to reduce wind power forecasting errors. To achieve
this, we used the value of the power curve at each speed, and the accuracy of the power curve was
calculated using logistic regression as additional variables. These variables are able to compensate
when the forecasted wind speeds input had uncertainty. For this reason, it was possible to improve the
error caused by the sudden change of output. In Section 2, the mathematical theories about logistic
regression and SVM are described. In Sections 3 and 4, we analyze the accuracy of the power curve
using logistic and forecast wind power outputs through the SVM method. In Section 5, we summarize
the results of this research.

2. Mathematical Definition for Enhanced Reliability Assessments Method of Wind Turbines

2.1. Logistic Regression

Logistic regression analysis is applicable to data that do not follow the normal distribution. Using
logistic regression analysis, it is possible to interpret discrete data which could not be analyzed by
linear regression analysis.

Simple linear regression is a statistical method used for predicting and analyzing an independent
variable that is influenced by a dependent variable when a dependent variable is continuous [15]. Since
dependent variables are binary and not continuous, it is impossible to use simple linear regression. In
simple linear regression, the interaction formula between a dependent variable, Y, and an independent
variable, X, is assumed in the linear model as:

Yk = β0 + βkxk + εk, k = 1, 2, . . . , n (1)

Here, the dependent variable and independent variables are continuous variables. In this
regression model, β0 + βkxk is an observation’s expectation, E(Yk), and εk is the error where the
independent variable, X, is xk. The expectation E(Yk) is assumed to be the independent variable’s
linear expression. The error, εk, follows the lognormal distribution as wind speed cannot have negative
values, and this parameter can be zero, if it is assumed to be unbiased. σ2

ε , which is consistent
irrespective of xk, has an average zero as the center. Errors εk and ε l occur independently (k 6= l).
For example, we could define yk as follows:
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yk =

{
1, the kth variable’s value is success

0, otherwise
(2)

In this assumption, yk is the realization of a random variable Yk. If we apply the variable Yk,
which has a rate of success P (Yk = 1) = pk, to a simple linear regression, we can get a regression
model as follows:

Yk = β0 + βkxk + εk = 0 or 1, k = 1, 2, . . . , n (3)

We can then calculate an expected value when X is expressed by xk:

E(Yk) = (pk × 1) + ((1− pk)× 0) = pk = β0 + β1xk (4)

In this equation, we can determine that the expected value is represented as a probability when
the independent variable, X, is xk. At this point, we can encounter problems with using a simple
linear regression for analyzing binary data. First, the error term does not follow a normal distribution.
When Yk is a binary dependent variable, the error term, εk, has two values, 1− β0 − β1xk (Yk = 1)
and −β0 − β1xk (Yk = 0). The second problem is that a simple linear regression has expectations
between −∞ and ∞. However, if we apply binary data to a simple linear regression, then expectations
always have values between 0 and 1. Therefore, this model is inadequate for applying a simple linear
regression to binary variables.

We can make a rule or classification which guesses the binary output from input variables. Due
to classification, the dependent variable will have binary variables, and the expectation, E(Yk), will
represent a probability which has values between 0 and 1. Therefore, the dependent variable would be
a binary variable, so it can be sufficient to use in a curve model, but not a linear model. The typical
curve model is a logistic model [16] expressed by Equation (5):

E(Yk) = pk =
exp(β0 + β1xk)

1 + exp(β0 + β1xk)
(5)

where exp(β0 + β1xk)/(1 + exp(β0 + β1xk)) is an observation’s expectation, E(Yk), which is a curve
model. The logistic model is used to estimate the probability of a binary response. Here, the logistic
regression measures the relationship between a categorical dependent variable and one or more
independent variables by estimating probabilities through a logistic model [17].

We can transform the logistic model into a linear model. This can be expressed as follow:

ln
(

pk
1− pk

)
= β0 + β1xk (6)

This transformation is called a logit transformation, which is defined by ln(pk/(1− pk)), where
pk is a proportion.

This mode of logistic regression [18] uses the method of maximum likelihood estimation for
estimating a regression coefficient. Here, the maximum likelihood estimation is a method for estimating
a population parameter using a value which maximizes a likelihood function. The likelihood function
is represented by a sample and population function.

Assume that P (Yk = 1|X = xk) = p(x; φ), for some function, p, parameterized by φ, which is
itself parameterized function. When observations comprise independent variables, the likelihood
function is expressed by Equation (7):

∏ n
k=1Pr(Y = Yk|X = xk) = ∏ n

k=1 p(x; φ)yk
(

1− p(x; φ)1−yk
)

(7)

The probability sampling, Y1, Y2, . . . , Yn, is estimated by a sequence of Bernoulli trials, which is
represented by fi(yi):

fi(yi) =

{
pyi

i

(
1− pyi

i

)
, yi = 0 or 1

0, otherwise
(8)
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If each trial were to have its own probability of success, Pk, the likelihood would be expressed by
Equation (9):

L(β0, β1 ; y1, y2, . . . , yn) = ∏ n
k=1 pyk

k

(
1− pyk

k

)
(9)

Equation (9) shows that the likelihood is the same as the probability sample’s joint
probability function.

In this logistic regression [19], analyzing the regression coefficient is difficult as the regression
model is not linear. Therefore, we need to utilize the odds’ conception for understanding a
regression coefficient.

Suppose the numerical values between 0 and 1 are allocated two outcomes of a binary variable.
The 0 signifies a negative response and 1 signifies a positive response. When pk is the ratio of
observations with an outcome of 1, then 1 − pk is the ratio of an outcome of 0. This proportion is called
the odds which is represented by Equation (10):

odds =
pk

(1− pk)
=

The probability of success
The probability of failure

(10)

When the probability of success is higher than the probability of failure, the odds has a value
greater than 1. Otherwise, when the probability of failure is higher than the probability of success, the
odds has a value less than 1.

In logistic regression [20], the regression model uses log odds, which involves applying the natural
logarithm to odds. When we assume that the prediction probability is p̂k, we can estimate the log odds
as follow:

ln
(

p̂k
1− p̂k

)
= b0 + b1xk (11)

If we were to use an exponential function on either side, we can generate transformed odds, as in
the Equation (12): p̂k

1− p̂k
= exp(b0) exp(b1xk) (12)

In this equation, the odds’ predicted value is multiplied as much as exp(b1). If xk is 0, then the
intercept, b0, becomes a predicted value.

2.2. Support Vector Regression (SVR)

As discussed in Section 1, support vector machine (SVM) is one of the most popular models in
the field of machine learning and is an advanced technique for classification and regression analysis.
SVM is not largely influenced by noise data and has high accuracy; furthermore, this model is easier to
use than other machine learning approaches [21], and has been used for wind power forecasting [22].
Typically, the basis for training appropriate model is represented as follows:

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂ Rd × K (13)

where Rd denotes the space of the input patterns; the dataset, D, consists of labeled patterns; K signifies
discrete space and indicates in regression scenarios. The purpose of this learning process is to find
a prediction function, “ f : X → R”, to map hidden patterns to reasonable labels with real values.
We can formulate the time series data which are measured outputs at time 1 ≤ t ≤ n. Measured
outputs are defined D in Equation (13).

To extend the SVM [21] to cases for which the data is not linearly separable, we use a hinge loss
function, as follows:

max(0, 1− yi(ω · xi + b)) (14)

This function is zero if the constraint is satisfied. This constraint is represented as:

yi(ω · xi + b) ≥ 1, (1 ≤ i ≤ n) (15)

In Equations (2) and (3), yi are either 1 or −1, each indicating the class to which the point
→
xi—a

p-dimensional real vector—belongs. In addition,
→
ω is the normal vector to the hyperplane and

→
xi
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indicates the correct side of the margin [19]. For data on the incorrect side of the margin, the function’s
value is relative to the distance from the margin. Therefore, we need to minimize the loss function,
as follows:

minimize

{[
1
n

n

∑
i=1

max
(

0, 1− yi

(→
ω ·→xi + b

))]
+ λ‖ →ω ‖

2
}

(16)

where λ indicates the decision to swap between increasing the margin size and ensuring that
→
xi resides

on the correct side of the margin. Thus, for thoroughly small values of λ, the soft-margin SVM will
still learn a viable categorization rule [22,23].

The SVR is a method to carry out a SVM based on regression. The SVR is divided into three types:
a linearly separable SVR, a linearly inseparable SVR, and a nonlinear SVR [24].

In this paper, a nonlinear SVR was used to forecast wind power outputs. To do so, we used
historical data for wind power output and wind speed data for training, in addition to the power
curve’s value and accuracy data for correcting errors.

3. Reliability of Power Curve Estimation Using Logistic Regression

As discussed in Section 1, the power curves first need to be analyzed as they represent the
character of a wind turbine’s outputs. In this section, we describe the construction of a statistical model
to estimate the reliability of power curves, based on logistic regression using R language version 3.3.1.
Wind power outputs and wind speeds, which were measured in single turbine from Jeju Island, were
used as data as one minute averaged values. We constructed one minute data into 10 min and one hour
averaged data by averaging 10 and 60 data of one minute. Wind speeds were measured by nacelle. The
turbine was made by the HANJIN Industry Corporation (Seoul, Korea), model number HJWT2000,
with a capacity of 2000 kW.

3.1. Jeju Island’s Empirical Output Data and Power Curve from Manufacturer

To perform this estimation, we used outputs measured from November to December 2015 from
Jeju Island (the corresponding area is not specified to protect the security of the technical data).

Since the reliability analysis of the output curve must be performed prior to the output prediction,
the data before the predicted data were used. Figure 1 represents the turbine’s power curve from the
manufacturer and the measured outputs. As power curves normally contain a mean power value over
10 min, we constructed a power curve by converting one minute of data to 10 min of data using the
average method.
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Figure 1. The wind turbine’s power curve from the manufacturer (red line), ±20% of the power curve’s
values (orange dashed lines) and measured outputs (black circles) from a wind turbine located on
Jeju Island.

As the power curve from the manufacturer did not correspond with the measured output data,
we suggested a logistic regression to estimate the reliability of the power curve.
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3.2. Classify Output Data Based on the Power Curve

To generate a logistic regression, we classified output data based on the power curve from the
manufacturer. The classification was decided by whether the outputs were included in the±20% of the
power curve’s values at each wind speed or not. The band of classification is represented by dashed
lines in Figure 1. In reality, as power curves frequently include a ±20% variability of measured power
output [22], we classified the outputs into two categories, by error, based on whether the output data
existed within the ±20% variability. We determined that the outputs were within the assumed existing
error range throughout the entire range.

3.3. Reliability of Power Curve Estimation

After classification, we obtained values of 1 and 0, which is represented in Figure 2.
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Figure 2. The statistical model for estimating reliability of power curves using logistic regression (The
red line is statistical model and the blue line is fixed minimum value).

As seen in Figure 2, the classified data was non-linear and binary which meant that we could
not use a linear regression model to analyze the data. Therefore, to analyze the binary data, which
had a non-linear character, we used a logistic regression that could analyze non-linear data to make
a statistical model. This model (represented by the red line) was used for estimating the reliability
of a power curve from the manufacturer based on logistic regression. The band of ±20% variability
got narrower while wind speed decreased, and would tend to be zero when the cut-in speed was
approached. Wind measurement errors do not reduce proportionally to wind speed, so power curve
reliability for low wind speeds could be underestimated. For this reason, we fixed the minimum value
so that when the wind goes under a value (6 m/s), which is represented by the blue dashed line.
The “X” label signifies wind speed, and the “Y” label signifies the probability that outputs exist within
a tolerance band. Using this statistical model, we could estimate the reliability of a power curve at
each wind speed. This is represented in Table 1.

Table 1. The probability that outputs exist within a tolerance band.

Wind Speed [m/s] Accuracy [%]

4.0 74.17
5.0 74.17
6.0 74.17
7.0 80.03
8.0 84.63
9.0 88.35

10.0 91.29
11.0 93.70
12.0 95.30
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Table 1. Cont.

Wind Speed [m/s] Accuracy [%]

13.0 96.56
14.0 97.48
15.0 98.15
16.0 98.74
17.0 99.03
18.0 99.30
19.0 99.50
20.0 99.62

We estimated the reliability of the power curve at each wind speed using this statistical model
(Figure 2), which was deduced by logistic regression.

4. Wind Power Forecasting by Using SVR

As discussed in Section 2, we used a SVM based on a multi-variable regression to forecast wind
power outputs [25]. Before any actual wind power forecasting, we analyzed Jeju Island’s output data
and independent variables, and used the empirical data including wind power outputs, wind speed,
power curve’s value and accuracy for training the SVM and forecasting wind power outputs.

4.1. Analysis of Empirical Data

To perform the wind power forecasting, we use outputs measured in January, 2016 from
Jeju Island.

As seen in Figure 3, the wind power outputs were highly variable. To forecast wind power
outputs, we considered three independent variables: wind speed, the value of the power curve at each
speed, and the accuracy of the power curve. The forecasting of wind power outputs was progressed
through the process as seen in Figure 4. The accuracy of the turbine’s power curve was calculated by
applying the wind speed, outputs, and turbine’s power curve data to logistic regression analysis. The
accuracy of the power curve was used as an auxiliary variable for the correction of the error. After
forecasting the accuracy of the power curve, SVM model training was performed using the weekly
data of wind speed, power, power curve, and power curve accuracy. Through training, the model
analyzed patterns between past data, and when input data arrived, the model would derive results
through the pattern learning result. In this paper, the forecasted wind velocity was used as the input
data to perform the output forecast.
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regression) method.

If a single variable is considered, it is possible for a large error to occur when a wrong single
variable enters the input data. Therefore, there is a need to consider multi-variables. We used the
value of the power curve at each speed and the accuracy of power curve, which is calculated by using
logistic regression as additional variables. These variables compensate when there is uncertainty in the
input of forecasted wind speeds.

4.2. Jeju Island’s Wind Power Outputs Forecasting

The training period was seven days long as learning periods can become biased towards past
data. After training, we forecasted wind power outputs after 24 h, for the month of January 2016. In all
cases, the results were slightly improved, but it was difficult to represent all days. Therefore, the two
best cases were selected. In this case, we used historical data measured from 1 to 7 January 2016 from
Jeju Island to train the SVM using R language and the “e1071” package [26–28]. After training, we
forecasted wind power outputs for 8 January. The SVR model parameters are represented in Table 2.

Table 2. SVR model parameter for forecasting wind power outputs on 8 January 2016.

Parameter SVR (Single Variables) SVR (Multi Variable)

SVM-Kernel Radial Radial
Cost 32.00 8.00

Gamma 1.0 0.33
Epsilon 0.00 0.00

The parameters of the SVR model listed in Table 2 were constructed through training using
data from 1 to 7 January 2016. By applying these parameters, we forecasted wind power outputs
for 8 January 2016. The results are in Figure 5. As shown in Figure 5, forecasted values using the
SVR model and the proposed method (using the SVR model based on multi variables) were similar
to the measured values. Both the SVR model and SVM based on multi-variable regression were
highly accurate.
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Figure 5. Measured and forecasted wind power outputs on 8 January 2016.

Table 3 shows the accuracy of the forecasted output values. Both forecasting methods exhibited
high accuracy, but the proposed method was more accurate. In Figure 5, we used historical data
measured from 4 to 10 January 2016 from Jeju Island, to train the SVM. After training, we forecasted
wind power outputs for 11 January (The forecasted values are added to Appendix A).

Table 3. Accuracy of SVR model and Persistence method (8 January 2016).

Hour Correlation R-Squared RMSE (Root Mean Square Error)

SVR (single variables) 0.9957 0.9919 16.9843
SVR (multi variables) 0.9971 0.9943 9.1491
Persistence method 0.9575 0.9169 33.8178

The SVR model parameters (which were set for forecasting wind power outputs on 11 January
2016) are represented in Table 4.

Table 4. SVR model parameter for forecasting wind power outputs on 11 January 2016.

Parameter SVR (Single Variables) SVR (Multi Variable)

SVM-Kernel Radial Radial
Cost 16.00 32.00

Gamma 1.0 0.33
Epsilon 0.10 0.00

The parameters listed in Table 5 are the parameters of the SVR model constructed through training
using data from 4 to 10 January 2016. By applying these parameters, we forecasted wind power outputs
for 11 January 2016. The results are shown in Figure 6.

Table 5. Accuracy of SVR model and Persistence method (11 January 2016).

Hour Correlation R-Squared RMSE (Root Mean Square Error)

SVR (single variables) 0.9942 0.9884 21.5575
SVR (multi variables) 0.9975 0.9950 15.4395
Persistence method 0.8830 0.7796 47.4638
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In Figure 6, the measured values are represented with a black line; forecasted values using the
SVR model based on wind power outputs and wind speed are represented as a red line; and forecasted
values based on the proposed method are represented with a blue line (The forecasted values are
added to Appendix A). Both forecasting models exhibited high accuracy, but the proposed method
generated more accurate forecast values.

To confirm this performance numerically, we calculated correlation, R-squared, and RMSE. Table 5
represents the accuracy of that forecasted output values.

As shown in Tables 3 and 5, the proposed method achieved very little improvement. However, it
was possible to improve the error caused by the sudden change of output.

5. Conclusions

Short-term wind power forecasting is an important technique as it can inform system operators
of how much wind power can be expected at a specific time. To increase the penetration of wind
generating resources into the power grids, short-term wind power forecasting is becoming an important
issue for grid integration analysis. To guarantee the reliability of forecasting, power curves need to
be analyzed, and a forecasting method selected which compensates for the variability of wind power
outputs. In this paper, we proposed an enhanced reliability assessment of power curves at each speed
using logistic regression as the outputs predicted by the power curve and wind speed were accurate
using this estimated reliability. Support vector machine is a kind of supervised learning and is a
method for recognizing patterns and analyzing data; therefore, we proposed a method for forecasting
wind power outputs using an SVM based on multi-variable regression to increase reliability.

The proposed method was verified with empirical data from a wind turbine located on Jeju
Island. We used limited data and one wind turbine size. These limitations can be improved when
additional data are available. We considered historical data including wind power output, wind speed,
power curve, and the accuracy of the power curve for training. During training, the purpose of the
power curve and its accuracy were made by correcting errors. After training, we forecasted wind
power outputs over the next 24 h. We obtained the forecasted values by using a SVM based on a
multi-variable regression, which was more accurate than the SVM based on single-variable regression
(A review of additional turbines is summarized in Appendix A). Thus, the proposed method for
estimating accuracy and forecasting outputs can provide reliable predictions of wind power outputs to
power system operators.
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Appendix A

Table A1 shows the forecasted values based on those represented in Figure 5. Wind power
forecasting using a SVM based on a multi-variable regression model was more accurate than forecasting
using a SVM based on a single-variable regression model.

Table A1. Measured and forecasted wind power outputs on 8 January 2016.

Hour Measured [kW] SVR (Single Variables) [kW] SVR (Multi Variable) [kW]

1 296.9598 267.4591 300.9246
2 341.4116 312.1750 332.6964
3 323.0441 294.2303 319.6960
4 271.0491 230.3204 268.9342
5 232.4090 197.8502 225.4609
6 199.9801 185.1180 199.5423
7 171.8569 170.9805 168.4929
8 95.5342 99.6494 100.8628
9 29.3689 25.4090 18.6278

10 7.5669 23.0390 11.4897
11 30.6104 58.0121 55.5026
12 50.0074 54.4576 59.8538
13 54.6308 48.3745 61.4500
14 92.1981 95.0139 92.6552
15 93.1122 95.7353 94.0444
16 64.3447 68.4379 78.6010
17 38.1156 43.8451 55.2460
18 15.6717 13.7728 21.5177
19 5.7529 6.9873 11.3017
20 8.7146 22.3561 24.5019
21 38.1685 44.7369 37.8291
22 29.4539 25.2614 23.6915
23 0.0000 12.8945 10.0190
24 31.5425 33.3151 29.0014

Table A2 shows the forecasted values based on those shown in Figure 6. Unsurprisingly, wind
power forecasting using a SVM based on a multi-variable regression model was more accurate. Again,
we calculated correlation, R-squared, and RMSE to confirm the accuracy numerically.

Table A2. Measured and forecasted wind power outputs on 11 January 2016.

Hour Measured [kW] SVR (Single Variable) [kW] SVR (Multi Variables) [kW]

1 11.8804 15.1721 14.6157
2 43.2991 38.5229 46.7491
3 56.2944 46.1228 54.6041
4 16.8877 34.2175 22.3426
5 51.2966 70.6714 55.3924
6 130.8975 123.2936 123.3551
7 180.7022 171.4096 171.4022
8 201.9767 189.8895 189.9328
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Table A2. Cont.

Hour Measured [kW] SVR (Single Variable) [kW] SVR (Multi Variables) [kW]

9 182.3402 178.1740 177.7160
10 149.3459 146.7730 147.3944
11 100.2452 87.8356 86.8331
12 154.6401 144.0491 144.8370
13 258.8261 240.4598 249.1183
14 247.9340 226.3591 231.6409
15 233.1442 214.8088 217.2803
16 253.4962 217.0605 250.0018
17 267.1652 227.2595 242.8441
18 244.9381 225.9953 231.6946
19 203.7053 187.9981 187.2971
20 259.7748 220.0076 223.5598
21 309.8671 269.3476 280.8379
22 277.4633 247.3862 256.8524
23 280.6704 258.5844 269.1221
24 386.0640 364.1557 359.7852

We calculated the accuracy of the power curves for additional turbines which were the same as
the existing wind turbine. The results of the accuracy are shown in Figure A1 and Table A3.
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Figure A1. The statistical model for estimating accuracy of power curves for additional turbine using
logistic regression (The red line is statistical model and the blue line is fixed minimum value).

We also applied the same method to the additional turbine to perform wind forecasting on
8 January 2016. The following results were obtained.

Table A3. The probability that outputs for additional turbine exist within a tolerance band.

Wind Speed [m/s] Accuracy [%]

4.0 74.97
5.0 74.97
6.0 74.97
7.0 80.57
8.0 85.57
9.0 88.66

10.0 91.71
11.0 94.48
12.0 96.15



Energies 2017, 10, 812 13 of 15

Table A3. Cont.

Wind Speed [m/s] Accuracy [%]

13.0 97.07
14.0 97.82
15.0 98.33
16.0 99.58
17.0 99.12
18.0 99.33
19.0 99.57
20.0 99.69

Table A4 shows the forecasted values based on those shown in Figure A2.

Table A4. Measured and forecasted wind power outputs to additional turbine on 8 January 2016.

Hour Measured [kW] SVR (Single Variable) [kW] SVR (Multi Variables) [kW]

1 332.540 311.150 308.801
2 346.513 335.553 320.253
3 325.885 323.321 299.133
4 278.277 265.841 239.944
5 238.735 217.666 200.565
6 202.201 200.712 189.074
7 173.578 171.336 175.348
8 103.105 106.735 108.191
9 35.696 27.867 26.605

10 21.520 25.571 24.042
11 44.146 64.988 59.111
12 57.347 66.005 58.541
13 64.183 70.684 64.431
14 100.914 95.935 97.406
15 101.308 98.109 103.570
16 71.782 84.313 69.181
17 47.644 58.474 46.167
18 17.291 26.321 28.347
19 12.912 13.278 17.640
20 13.503 31.426 24.212
21 45.669 43.895 47.083
22 35.911 28.939 30.082
23 6.901 20.691 22.567
24 36.306 32.960 40.109
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