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Abstract: The optimum transmission strategy for maximizing energy efficiency (EE) of a multi-user
massive multiple-input multiple-output (MIMO) system in radio frequency energy harvesting
networks is investigated. We focus on dynamic time-switching (TS) antennas, to avoid the practical
problems of power-splitting antennas, such as complex architectures, power loss and signal distortion
when splitting the power of the received signal into power for information decoding (ID) and
energy harvesting (EH). However, since a single TS antenna cannot serve ID and EH simultaneously,
the MIMO system is considered in this paper. We thus formulate an EE optimization problem
and propose an iterative algorithm as a tractable solution, including an antenna selection strategy
to optimally switch each TS antenna between ID mode and EH mode using nonlinear fractional
programming and the Lagrange dual method. Further, the problem is solved under practical
constraints of maximum transmission power and outage probabilities for a minimum amount of
harvested power and rate capacity for each user. Simulation results show that the proposed algorithm
is more energy-efficient than that of baseline schemes, and demonstrates the trade-off between the
required amount of harvested power and energy efficiency.

Keywords: radio frequency-energy harvesting; massive MIMO; energy efficiency (EE); resource
allocation; time-switching (TS) antenna; Lagrange dual method

1. Introduction

With the growing popularity of green communication systems and energy-efficient transmission
systems through energy efficiency (EE) maximization, RF energy harvesting and various optimization
solutions to optimally allocate communication resources have been actively researched [1,2]. In RF
energy harvesting networks (RF-EHNs), since energy and information are simultaneously transmitted
by RF signals, RF energy harvesting and information reception can be theoretically performed from the
same input RF signal with the same receiving antenna [3]. For this concept of simultaneous wireless
information and power transfer (SWIPT) [4], we can practically consider two types of receiving
antenna, power-splitting (PS) and time-switching (TS) [1]. The PS antenna, however, is known to have
unsolved practical problems such as more complex architectures than that of the TS antenna [5], power
loss and signal distortion when splitting the received signal power between power for information
decoding (ID) and energy harvesting (EH). On the other hand, the TS antenna is easy to implement
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and has no power loss or signal distortion, but there is a disadvantage in that the single TS antenna
cannot serve ID and EH simultaneously compared with the PS antenna. Therefore, it is necessary
to employ a massive multiple-input multiple-output (MIMO) system with multiple TS antennas to
simultaneously serve ID and EH, and to solve a derived antenna selection (AS) problem in order
to properly switch each TS antenna to either ID mode or EH mode. There are related studies for
EE optimization in RF-EHNs with PS and TS antennas, such as the resource allocation problem
for a two-user EHN with the single TS antenna [6], a multi-user (MU) network with the single PS
antenna [7], and MU single-input single-output (SISO) systems with the TS scheme [4] and the PS
scheme [8]. In [9], a three-node wireless powered communication system was studied, in order to
achieve the maximum throughput by balancing the time duration between the wireless power transfer
phase and the information transfer phase in SISO systems. In [10], the authors found that the lifetime of
randomly distributed wireless sensor nodes can be increased significantly as a result of Wireless Energy
Harvesting (WEH) from ambient RF signals, and derived the analytical expression for the probability
of successful communication between two types of sensors. In [11], the network lifetime gain for
a two-way relay network in which the source, destination and RF-powered relay nodes are modeled
as three independent Poisson Point Processes was investigated, and it was found that the lifetime of
the network can be greatly increased by enabling RF energy harvesting and network coding. In [12],
the authors analyzed the performance of ambient RF energy harvesting sensor networks where the
distribution of ambient RF sources is modeled as an α-Ginibre point process that reflects the repulsion
among the sources, and provided semi-closed-form expressions for the mean of the harvested energy
and the exact power outage probability. In [13], a dynamic power splitting scheme was proposed in
a point-to-point wireless link considering three special cases of dynamic power splitting: static power
splitting, time switching, and on–off power splitting. The time switching-based simultaneous wireless
information and power transfer was further investigated in a multicast system [14] and a multi-user
cooperative wireless network [15]. The power splitting schemes were further investigated under
different scenarios in [16–19]. In [20], a resource allocation scheme to jointly optimize transmit power,
and transfer time and spatial beam so as to achieve secrecy for wireless powered communication
was investigated under an information interception scenario by an eavesdropper. In [21], a MIMO
wiretap channel for SWIPT was studied in order to design an optimal transmit covariance matrix
for maximizing the ergodic secrecy rate. In [22,23], a MIMO system-based tradeoff between wireless
energy and information transfer was investigated with a time duration divided into two times each for
ID and EH. A hybrid access point broadcasting wireless energy and information to a set of distributed
users was considered in [24,25], and optimal resource allocation was derived in half- and full-duplex
modes. In [26,27], an RF energy harvesting MU massive MIMO network based on the TS antenna
was studied under the assumption that each user had a single antenna to receive wireless energy
and information.

Although the aforementioned works are variously studied, the optimal transmission power
control and optimal AS strategy for optimally switching multiple TS antennas to receive wireless
energy and information, while satisfying their minimum channel capacity and minimum amount of
harvested energy in the field of TS antenna-based RF energy harvesting MU massive MIMO networks,
have not yet been investigated.

In this paper, we focus on a system model for RF-EHNs based on the massive MIMO system
using the TS antenna for SWIPT to avoid the practical issues of using the PS antenna, and overcome
the problem whereby a single TS antenna cannot serve ID and EH at the same time. We study how
to concurrently and efficiently transmit the data and energy while optimizing energy efficiency in
RF-EHNs. The objective of the paper is to maximize “energy efficiency (bit/Joule)”, encompassing
both data transmission and RF energy harvesting, in an RF-EHN context. To find the maximum EE in
the TS antenna-based MU massive MIMO system, we estimate (1) how many transmission antennas
the transmitter should allocate to each user; (2) how much transmission power for each transmission
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antenna is needed for each user; and (3) how many TS antennas for each user should be switched to
the ID mode or the EH mode in the AS problem.

Our main result is that we greatly improved energy efficiency under a new resource allocation
strategy with the proposed MU massive MIMO systems in RF-EHNs using nonlinear fractional
programming and the Lagrange dual method. Further, this was achieved by solving the problem
of optimally allocating the three parameters, the transmission and receiving antenna allocation,
and transmission power allocation, which is influenced by the dynamic distances between the
transmitter and receivers under practical constraints.

The rest of the paper is organized as follows. Section 2 describes the system model, and formulates
the EE with its constraints. Section 3 offers solutions, and discusses EE optimization algorithms with
given constraints using Lagrange dual decomposition and nonlinear fractional programming. Section 4
presents simulation results. Finally, Section 5 concludes the paper.

2. System Model and Problem Formulation

2.1. Notation

We use boldface capital and lower-case letters to denote matrices and vectors. CN×M denotes the
set of all N ×M matrices with complex entries. AH and rank(A) represent the Hermitian transpose
and rank of matrix A. vec(A) denotes the vectorization of matrix A by stacking its columns from left to
right to form a column vector. IN is the N × N identity matrix. |·| and |·|p denote the absolute value of
a complex scalar and the lp-norm of a vector, respectively. The circularly symmetric complex Gaussian
(CSCG) distribution is denoted by CN (µ,σ2) with mean µ and variance σ2. ~ stands for “distributed
as”. E(·) is the expectation operator. bxc is the floor function denoting the largest integer not greater
than x.

2.2. MU Massive MIMO RF-EHNs

In this section, we consider wireless energy harvesting and information transmission systems in
an orthogonal frequency division multiplexing (OFDM) downlink network, where a set of UEs, k ∈
{1, . . . , K}, is recharging electric energy from dedicated radio sources and information communications
through a single hybrid-access point (H-AP), as in Figure 1. Each user k in the UE set has been equipped
with TS antennas as many as nT

k , where each TS antenna can be switched and worked as an antenna or
rectenna for ID or EH under the proposed resource allocation algorithm. For example, if a UE has two
TS antennas, it can be classified into 3 modes: (ID, ID), (ID, EH), and (EH, EH). The total number of TS
antennas nT

k = nID
k + nEH

k is composed of a sum of nID
k and nEH

k , where nID
k and nEH

k are the numbers
of antennas for the ID and the number of rectennas for the EH, respectively.

Figure 1. Proposed system model, MU massive MIMO RF-EHNs.
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2.3. Multi-User MIMO Channel Model

We consider a Rayleigh fading channel with mk downlink transmission antennas allocated as
a part of the total number of transmission antennas M at the H-AP and nID

k antennas at the receiver
for each user k (∑K

k=1 mk ≤ M, ∀k ∈ K). The nID
k × 1 vector at the desired user’s receiver can be

modeled as:
y[t]ID

k = H[t]kx[t]k + w[t]k, 1 ≤ k ≤ K (1)

y[t]EH
k = G[t]kx[t]k + w[t]k, 1 ≤ k ≤ K (2)

where H[t]k ∈ CnID
k ×mk and G[t]k ∈ CnEH

k ×mk are matrices of independent Rayleigh fading channels for
the ID and EH, respectively. hij,k and gij,k are entries of H[t]k and G[t]k, and follow independent and

identically distributed (i.i.d.) CN (0, σ2). Further, hij,k =
√

lkd−φ
k fij,k is the square root of channel gain,

where dk, φ and li,k are respectively the distance between a user k and the H-AP, the corresponding
path loss exponent, and a path loss constant determined by both the carrier frequency of wk and the
antenna gain. For small-scale Rayleigh fading coefficients, fij,k ∼ Exp(lkd−φ

k /σ2) are exponentially
distributed random variables. In addition, we assume the CSI is not available at the transmitter,
so the transmission power for each transmitter’s antenna has to be distributed equally with equal
gain combining (EGC) to maximize the channel capacity. x[t]k is a transmission signal vector having
a vector size mk × 1 for user k, and x[t]k = v[t]ksk, where v[t]k is a loaded power vector with entries of
vi,k =

√
pk. sk ∈ C is the information-carrying symbol, and E[|sk|2] = 1 is assumed without loss of

generality. The additive noise w[t]k is assumed to be a complex Gaussian vector with zero mean and
covariance matrix N0wkInID

k
, where N0 is the noise power spectral density. Also, we assume that the

system has K parallel frequency channels with bandwidth wk (1 ≤ k ≤ K), and that the H-AP operates
with the SWIPT for one scheduling time slot. In each time slot, H-AP transmits signal x[t]k to user k on
the frequency channel, and the user receives signal y[t]k.

2.4. Channel Capacity of Multi-Antenna

The mutual information of a MIMO channel capacity Ik for user k is as follows [28–30]:

Ik = wk log2 det
(

InID
k

+
ρi,k

mk
HkHk

H)
, (3)

where ρi,k is the average SNR for the ith individual’s single-input single-output (SISO) channel,

and ρi,k = Pk

∣∣∣hi,k

∣∣∣2/Nowk, where Pk = mk pk is the total transmission power [29,31], and pk is the

transmission power for each transmission antenna for downlink SWIPT. Also, hi,k ∼ CN
(

0, σ2

mk

)
is

the local average of channel gains in the ith row of Hk. Note that the MIMO channel is decoupled
into rank(Hk) parallel SISO channels and the variance of the local average of channel gains, σ2

mk
,

is calculated by Var(hi,k) = 1
mk

2 Var(hi1,k + hi2,k + . . . + himk ,k) =
Var(hi1,k)+Var(hi2,k)+...+Var(himk ,k)

mk
2 = σ2

mk
,

where hij,k ∼ CN (0, σ2). If Hk is a full rank matrix of rank(Hk) = min(mk, nID
k ), then we have

a min(mk, nID
k ) of non-zero singular values and independent channels. By using singular value

decomposition, Equation (3) can be simplified as follows [28]:

Ik =
Nmin

∑
i=1

wk log2

(
1 +

ρi,k

mk
λi,k

)
, (4)

where Nmin = min(mk, nID
k ) is the number of independent transmitter-receiver SISO paths. λi are

unordered eigenvalues of the matrix HkHk
H. However, the performance analysis based on the

exact form of the channel capacity of (4) seems intractable and complex. As an alternative, we use
an upper bound of the channel capacity following reference [32], which can be evaluated numerically.



Energies 2017, 10, 802 5 of 18

The expression of the upper bound of the channel capacity is very useful, and gives simple
mathematical expression for outage constraints in Section 3.2 in this paper and optimal solution in
iterative forms in Section 3.3. From the reference [32], we have an inequality by a concave function κ(t):

∑
i

χiκ(ti) ≤ κ

(
∑

i
χiti

)
, (5)

where χi ≥ 0 and ∑i χi = 1. Clearly, equality holds when all ti are equal, or when the sum has only one
term. Note that wk log2

(
1 + ti

mk

)
is a concave function in ti. Therefore, we set κ(ti) = wk log2

(
1 + ti

mk

)
,

ti = ρi,kλi, and χi = 1/Nmin. Consequently,

Nmin

∑
i=1

wk log2

(
1 +

ρi,kλi,k

mk

)
≤ Nminwk log2

(
1 +

∑Nmin
i=1 ρi,kλi,k

mk Nmin

)
= ck(pk, nID

k , mk). (6)

Then, the upper bound of the overall network capacity C(pk, nID
k , mk) is:

C(pk, nID
k , mk) =

K

∑
k=1

ck

(
pk, nID

k , mk

)
. (7)

2.5. Total Power Dissipation with Energy Harvesting

For the downlink transmission, the overall power consumption (Watt) in the network is given
by [33]:

P(pk, nEH
k , mk) =

K

∑
k=1

ζPk + pAP
c +

K

∑
k=1

pUE
c,k −

K

∑
k=1

pEH
k , (8)

where ζ > 1 is the constant power inefficiency of the power amplifier. Also, the static circuit power
dissipation pAP

c > 0 for the H-AP and pUE
c > 0 for the user occur in electronic components of the

active transceiver, such as mixers, filters, and digital-to-analog converters, and are independent of the
actual transmission power pk. Note that pUE

c includes the power consumption for channel training and
estimation with massive transmission antennas. On the other hand, the sum of harvested power pEH

k
has a minus sign and works as the opposite of the power consumptions. Further, the harvested RF
energy pEH

k indicates a part of the power radiated by the transmission antennas mk, and can potentially
be obtained by the user k’s rectennas nEH

k [4].

pEH
k = ξkE[||Gkvk||22] = ξktr(GkSkGHk ) = ξk pktr

(
GkUSk GHk

)
, (9)

where the constant parameter 0 ≤ ξk ≤ 1 is a user k’s loss in the energy transducer for converting RF
to DC to be stored. Further, the noise is neglected in Equation (9), since, in practice, it is too small to
be harvested. We use Sk = E

[
vkvHk

]
to denote the covariance matrix of vk, and this can be rewritten

as Sk = pkUSk , where USk is the all-ones matrix having the same dimensions of Sk. For simplicity,
we assume that Gk

∼= gkUGk , where gk is an average channel gain of gij,k. Then, Equation (9) is
re-evaluated as:

pEH
k
∼= ξk|gk|

2tr
(

UGk USk UGHk

)
= ξk|gk|

2 pkmktr
(

UGk UGHk

)
= ξk|gk|

2 pkmk
2nEH

k . (10)

2.6. Overall Network Energy Efficiency

Accordingly, the primal optimization problem for maximizing the overall network energy
efficiency is formulated as:

(P1) max
{pk ,nID

k ,mk}
η =

C(pk ,nID
k ,mk)

P(pk ,nEH
k ,mk)

, (11)
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subject to:
(C1) ∑K

k=1 Pk ≤ Pmax, pk ≥ 0, ∀k ∈ K.
(C2) ∑K

k=1 ζPk + pAP
c ≤ ppg, ∀k ∈ K.

(C3) ∑K
k=1 mk ≤ M, ∀k ∈ K.

(C4) Pr
[
ck(pk, nID

k , mk) ≤ cQoS
k

]
≤ εc, ∀k ∈ K.

(C5) Pr
[

pEH
k ≤ pQoP

k

]
≤ εp, ∀k ∈ K.

(C6) 1 ≤ nID
k ≤ nT

k , ∀k ∈ K.
(C7) nID

k + nEH
k = nT

k , ∀k ∈ K.

The EE function as an objective function (P1) is constructed as a summation of the channel
capacity per a summation of the consumed power for the H-AP and all UEs, and the units of (P1)
are bits/Joule. Note that the (P1) is a non-convex optimization and maximization problem; we will
discuss its transformed convex function for optimization in Section 3. Constraint (C1) implies that
each transmission power of the H-AP to user k is non-negative, and that its total power is limited,
and cannot exceed the maximum transmission power Pmax. Constraint (C2) limits the total power
consumption of the network so that it does not exceed the maximum power supply from the power
grid, ppg. Constraint (C3) means that the sum of the mk cannot exceed the total number of antennas of
the H-AP. Constraints (C4) and (C5) are the inequality of outage probability, to stochastically guarantee
the minimum quality of service (QoS) and amount of harvested power (AoP), respectively, for each
UE, where cQoS

k and pQoP
k are pre-defined requirements of channel capacity and harvested power,

respectively, and εc ∈ (0, 1) and εp ∈ (0, 1) are the pre-defined outage probabilities. Constraints (C6)
and (C7) are the numbers of switched rectennas and antennas, respectively, bounded by each user k’s
total time-switching antennas. Further, we can obtain the optimal value using either the argument
parameter nID

k or nEH
k , because nID

k + nEH
k is nT

k , as is shown in Constraint (C7).

3. EE Optimization

In this section, nonlinear fractional programming [34] for transforming the non-convex objective
function (P1) to the convex function in Section 3.1, and Lagrangian dual decomposition theory for
resource allocations in Section 3.3, are used for optimization of the EE function. With these two
optimization methods, the locally optimal values for the three arguments pk, nID

k , and mk, as well as
for energy efficiency, can be successfully acquired. Also, through the proposed iteratively distributed
algorithms, the locally optimal EE can be quickly and efficiently converged to.

3.1. Outer Loop Algorithm: Transformation of the Primal Objective Function

Since the objective function (P1) is a non-convex function, solving the function requires a brute
force approach. To obtain an efficient optimization solution, we transform (P1) to the convex function
using nonlinear fractional programming [34]. For simplicity, we define F as a set of feasible solutions
of the optimization problem (P1), and the maximum EE as η∗. The theorem for achieving maximum
EE can be proved as follows:

Theorem 1. η∗ =
C(pk

∗ ,nID
k
∗ ,mk

∗)
P(pk

∗ ,nEH
k
∗ ,mk

∗)
= max

{pk ,nID
k ,mk}

{
C(pk ,nID

k ,mk)

P(pk ,nEH
k ,mk)

|∀{pk, nID
k , mk} ∈ F

}
if and only if,

max
{pk ,nID

k ,mk}
{C(pk, nID

k , mk)− η∗P(pk, nEH
k , mk)} = C

(
pk
∗, nID

k
∗, mk

∗
)
− η∗P

(
pk
∗, nEH

k
∗, mk

∗
)

= 0, for

C(pk, nID
k , mk) ≥ 0 and P(pk, nEH

k , mk) > 0.

This theorem shows that (P1) in fractional form has an equivalent function in subtractive form.
Consequently, we can deal with the optimization problem as an equivalent objective function, and the
equivalent form is used in the rest of this paper.
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As a transformed objective function, the function (P2) is a convex and combinatorial
optimization problem:

(P2) max
{pk ,nID

k ,mk}
C(pk, nID

k , mk)− ηP(pk, nEH
k , mk) (19)

subject to: (C1), (C2), (C3), (C4), (C5), (C6), (C7), where C(pk, nID
k , mk) − ηP(pk, nEH

k , mk) ≥ 0
is given for any value η generated by the outer loop algorithm, which is shown in Algorithm 1,
above. For a proof of Theorem 1, we define the equivalent objective function (P2) as F(η) =

max
{pk ,nID

k ,mk}
{C(pk, nID

k , mk)− ηP(pk, nEH
k , mk)}.

Algorithm 1. Outer Loop Algorithm for EE Maximization.

1: Set initial input η = 0, iteration index Tout = 0, threshold
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2: While 1 do

3:
Obtain optimum values of three arguments {pk

′, nID
k
′, mk

′} through the inner loop algorithm for the
given η

4: If C(pk
′, nID

k
′, mk

′)− ηP(pk
′, nEH

k
′, mk

′) < τ (convergence verification)

5: Return {pk
∗, nID

k
∗, mk

∗} = {pk
′, nID

k
′, mk

′} and obtain optimal EE η∗ =
C(pk

∗ ,nID
k
∗ ,mk

∗)

P(pk
∗ ,nEH

k
∗ ,mk

∗)

6: else

7: Update C(pk
′ ,nID

k
′ ,mk

′)

P(pk
′ ,nEH

k
′ ,mk

′)
and Tout = Tout + 1

8: end if
9: end while

Proof of Theorem 1. Convergence and maximization.

Lemma 1. F(η) is strictly monotonic decreasing in η , i.e., F(η′) > F(η′′ ) if η′ < η′′ .

Proof. Let η′ maximize F(η′), then F(η′) = max
{pk ,nID

k ,mk}
{C(pk, nID

k , mk)− η′P(pk, nEH
k , mk)} =

C(pk
′′ , nID′′

k , mk
′′ ) − η′P(pk

′′ , nEH′′
k , mk

′′ ) > C(pk
′′ , nID′′

k , mk
′′ ) − η′′ P(pk

′′ , nEH′′
k , mk

′′ ) ≥
max

{pk ,nID
k ,mk}

{C(pk, nID
k , mk)− η′′ P(pk, nEH

k , mk)} = F(η′′ ) where C
(

pk
′′ , nID′′

k , mk
′′
)
−

η′P
(

pk
′′ , nEH′′

k , mk
′′
)

> C
(

pk
′′ , nID′′

k , mk
′′
)
− η′′ P

(
pk
′′ , nEH′′

k , mk
′′
)

is reasonable, because η′ is
smaller than η′′ , as stated in Lemma 1.

Lemma 2. Let any set
{

pk
′, nID′

k , mk
′
}

and η′ =
C
(

pk
′ ,nID′

k ,mk
′
)

P
(

pk
′ ,nEH′

k ,mk
′
) , then F(η′) ≥ 0.

Proof. F(η′) = max
{pk ,nID

k ,mk}

{
C
(

pk, nID
k , mk

)
− η′P

(
pk, nEH

k , mk
)}

≥ C
(

pk
′, nID′

k , mk
′
)
−

η′P
(

pk
′, nEH′

k , mk
′
)
= 0.

As shown in Lemmas 1 and 2, it is natural that F(η) converges to 0, because F(η) is a monotonic
decreasing and positive function as shown in Lemmas 1 and 2. Further, Algorithm 1 shows an iterative
outer-loop algorithm for solving the optimization problem. The algorithm satisfies the conditions in
Theorem 1. The convergence to the maximum EE is guaranteed if the inner problem (P2) in line 3
in the outer-loop algorithm can be solved. We showed that the energy efficiency η increases in each
iteration, and it converges to η∗ if F(η) < τ. In conclusion, F(ηTout) will eventually approach zero,
and satisfy the conditions stated in Theorem 1. That means that the threshold
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3.2. Closed-Form Expression for Outage Constraints

The closed-form outage constraints can be expressed by substituting the ck of (6) into

(C4), and pEH
k of (10) into (C5). Knowing that the channel frequency response

∣∣∣hi,k

∣∣∣2 follows∣∣∣hi,k

∣∣∣2 ∼ Exp
(

mk
σ2

)
, then ∑Nmin

i=1 ρi,kλi,k ∼ Exp
(

Nowk

pkσ2 ∑
Nmin
i=1 λi,k

)
is an exponentially distributed random

variable. Note that the rate parameter of ∑Nmin
i=1 ρi,kλi,k can be calculated by: E

(
∑Nmin

i=1 ρi,kλi,k

)
=

E
(
ρ1,kλ1,k + ρ2,kλ2,k + . . . + ρNmin ,kλNmin ,k

)
= λ1,kE(ρ1,k) + λ2,kE(ρ2,k) + . . . + λNmin ,kE

(
ρNmin ,k

)
=

λ1,k
pkσ2

Nowk
+ λ2,k

pkσ2

Nowk
+ . . . + λNmin ,k

pkσ2

Nowk
= ∑Nmin

i=1 λi,k
pkσ2

Nowk
, where ρi,k =

Pk|hi,k|2
Nowk

∼ Exp
(

Nowk
pkσ2

)
.

The outage probability for (C4) becomes:

Pr
[

Nminwk log2

(
1 + 1

Nmin

∑
Nmin
i=1 ρi,kλi,k

mk

)
≤ cQoS

k

]
≤ εc

⇔ Pr

∑Nmin
i=1 ρi,kλi,k ≤ mk Nmin

e
cQoS
k ∗ln2
Nminwk − 1

 ≤ εc

⇔ 1− exp

− Nowk

pkσ2 ∑
Nmin
i=1 λi,k

∗mk Nmin

e
cQoS
k ∗ln2
Nminwk − 1

 ≤ εc.

(20)

⇔ ψ
(

pk, nID
k , mk

)
= ln(1− εc) ∗

pkσ2 ∑Nmin
i=1 λi,k

Nowkmk Nmin
+ e

cQoS
k ∗ln2
Nminwk − 1 ≤ 0. (21)

Using the same process of (20), (21), (C5) is expressed as:

ω
(

pk, nEH
k , mk

)
= ln

(
1− εp

)
ξk pkmkσ2 + pQoP

k ≤ 0, (22)

where |gk|
2 ∼ Exp

(
nEH

k mk
σ2

)
.

3.3. Inner Loop Algorithm: Resource Allocation

To be practical, we will focus on an efficient distributed algorithm by Lagrange dual
decomposition. The Lagrange dual decomposition is obtained by using non-negative Lagrange
multipliers to involve the described constraints (C1)–(C7) in the objective function (P1). This solution
gives rise to a new problem, which is that of maximizing the objective function with respect to the
dual variables under the derived constraints on the dual variables. Therefore, by its decomposability,
the dual decomposition algorithm has advantages over exhaustive dynamic programming in terms
of both efficiency and simplicity when strong duality holds. The dual problem formulation of (P2) is
constructed as:

L(pk, nID
k , mk, α, β, γ, δk, εk)

=
K
∑

k=1
ck(pk, nID

k , mk)− η

(
K
∑

k=1
ζmk pk + pAP

c +
K
∑

k=1
pUE

c,k −
K
∑

k=1
pEH

k

)
− α

(
K
∑

k=1
mk pk − Pmax

)
− β

(
K
∑

k=1
ζmk pk + pAP

c − ppg

)
− γ

(
K
∑

k=1
mk −M

)
−

K
∑

k=1
δkψ(pk, nID

k , mk)−
K
∑

k=1
εkω(pk, nEH

k , mk),

(23)

where α, β, γ, δk and εk are Lagrange multipliers. We rewrite Equation (23) as Algorithm 2:
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Algorithm 2. Inner Loop Algorithm for Resource Allocation.

1:
Initialize: Active UE set

k = {1, 2, . . . , K}, µ1, µ2, µ3, µ4, nID
k = 1, nEH

k = nT
k − nID

k , α = β = γk = δk = pk = 0.
2: while pk, nID

k , mk are not converged do
3: for k ∈ K do
4: if nID

k < mk (case 1) do
5: Update p̂k = pk(Tin + 1) by jointly solving (39)~(42)
6: Update m̂k = mk(Tin + 1) by jointly solving (39)~(42) using the calculated value p̂k

7:
Update n̂ID

k = nID
k (Tin + 1) + 1/2 by jointly solving (39)~(42) using the calculated value

p̂k and m̂k
8: else if nID

k ≥ mk (case 2) do
9: Update p̂k = pk(Tin + 1) by jointly solving (39)~(42)
10: Update m̂k = mk(Tin + 1) by jointly solving (39)~(42) using the calculated value p̂k

11:
Update n̂ID

k = nID
k (Tin + 1) + 1/2 by jointly solving (39)~(42) using the calculated value

p̂k and m̂k
12: end if
13: Update the subgradient of δk(Tin + 1) with Sδk (Tin)

14: Update the subgradient of εk(Tin + 1) with Sεk (Tin)

15: end for
16: Update the subgradient of α(Tin + 1) with Sα(Tin)

17: Update the subgradient of β(Tin + 1) with Sβ(Tin)

18: Update the subgradient of γ(Tin + 1) with Sγ(Tin)

19: Let Tin = Tin + 1
end while

L(pk, nID
k , mk, α, β, γ, δk, εk)

= ∑K
k=1 Lk(pk, nID

k , mk, α, β, γ, δk, εk)− ηpAP
c + αPmax − β(pAP

c − ppg) + γM,
(24)

where Lk
(

pk, nID
k , mk, α, β, γ, δk, εk

)
= ck

(
pk, nID

k , mk
)
− η

(
ζmk pk + pUE

c,k − pEH
k

)
− αmk pk − βζmk pk −

γmk − δkψ
(

pk, nID
k , mk

)
− εkω

(
pk, nEH

k , mk
)
. The dual optimization problem of Equation (24) with

respect to variables α, β, γ, δk and εk is:

min
α≥0

D(α) =
K

∑
k=1

Dk(α) + αPmax. (25)

min
β≥0

Q(β) =
K

∑
k=1

Qk(β)− β
(

pAP
c − ppg

)
. (26)

min
γ≥0

U(α) =
K

∑
k=1

Uk(γ) + γM. (27)

min
δk≥0

Vk(δk). (28)

min
εk≥0

Zk(εk). (29)

As (P2) is convex maximization, strong duality holds. We can solve the dual problems of
Equations (25)–(29) in an iterative manner, using the gradient method [35]. The subgradient of α

in subproblem D is:

Sα =
∂D(α)

∂α
=

K

∑
k=1

mk pk + Pmax, (30)

where Dk(α) in Equation (25) can be sorted as the first term by the descending order, and is partially
differentiated by α. Therefore, composing the equation with either all terms, or the first term in α except
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the constant, doesn’t cause any problems, and it can be easily calculated at the H-AP. Each subgradient
of β, γ, δk and εk is:

Sβ =
∂Q(β)

∂β
=

K

∑
k=1

ζmk pk − pAP
c + ppg, (31)

Sγ =
∂U(γ)

∂γ
=

K

∑
k=1

mk + M, (32)

Sδk =
∂Vk(δk)

∂δk
= ψ

(
pk, nID

k , mk

)
, (33)

Sεk =
∂Zk(εk)

∂εk
= ω

(
pk, nEH

k , mk

)
. (34)

The parameters pk and nID
k in subgradients Sγk and Sδk are easy to calculate at the H-AP. Then,

the multipliers are updated. During the iteration, Lagrange multipliers α, β, γ, δk and εk are updated
in a distributed manner as:

α(Tin + 1) = [α(Tin)− µ1Sα(Tin)]
+, (35)

β(Tin + 1) =
[
β(Tin)− µ2Sβ(Tin)

]+, (36)

γ(Tin + 1) = [γ(Tin)− µ3Sγ(Tin)]
+, (37)

δk(Tin + 1) =
[
δk(Tin)− µ4Sδk (Tin)

]+, (38)

εk(Tin + 1) =
[
εk(Tin)− µ5Sεk (Tin)

]+, (39)

where [Z]+ = max{Z, 0}. The parameter Tin is the number of iterations of the inner loop in which the
H-AP updates α, β, γ, δk and εk. The constant coefficients µ1, µ2, µ3, µ4 and µ5 are positive values like
a learning rate to converge faster.

Nmin =

{
nID

k , nID
k < mk, case 1

mk, nID
k ≥ mk, case 2

By the Karush-Kuhn-Tucker (KKT) condition, the optimal transmission power p̂k is calculated by
the following equality:

∂Lk
(

pk, nID
k , mk, α, β, γ, δk, εk

)
∂pk

= 0, (40)

and the optimal number of receiving antennas n̂ID
k and number of transmission antennas m̂k are easily

calculated by jointly solving Equations (39)–(42) for the two cases of Nmin:

∂Lk
(

pk, nID
k , mk, α, β, γ, δk, εk

)
∂nID

k
= 0. (41)

∂Lk
(

pk, nID
k , mk, α, β, γ, δk, εk

)
∂mk

= 0. (42)

Algorithm 1 gives the pseudo-code of the inner loop algorithm.

4. Simulation Results

In this section, we provide numerical results to show the effectiveness of the proposed algorithm.
The simulation scenario is set as a small cell network of wireless personal area network size using
38 (GHz) as the center frequency, and assumes that an H-AP with a coverage of 10 m radius connects
with less than 10 active users, which is a scenario that can generally happen in an office space in
a building. In wireless power transfer (WPT), the coverage is very limited because of the very low
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efficiency of WPT. It is expected that the coverage of WPT “is practically” (please see the DEMO posted
to the link of youtube: https://youtu.be/qP9fZQX1sDk with [36,37]) up to 10 m for wireless-powered
sensor applications. This is why we consider such a small cell network for WPT. In the same spirit,
we can improve such low efficiency of WPT by using a massive antenna array. For this reason, we set
a small cell network randomly deployed with the massive antenna array at the hybrid access point.
Further, the proposed scenario where a small number of users access a single access point with the
massive MIMO is set considering the trend that wireless communication networks are evolving toward
small cell networks and large-scale MIMO systems. For the massive MIMO property, the number of
transmit antennas at the H-AP, M, and the number of equipped TS antennas for user k, nT

k , are set to
80 and 16~32, respectively. The specific settings are listed in Table 1.

Table 1. Simulation Parameters.

Parameter Value

Number of users, k 8

Coverage of H-AP 10 (m)

Three-dimensional location of H-AP (0, 0, 0)

Three-dimensional location of users (0, 5, 0), (−4, −5, 0), (8, −3, −1), (−6, 5, 0), (3, 3, 1),
(1, 1, 0), (1, −3, 0), and (−2, −9, 1) (m)

Distance from H-AP for user k 4, 6.4, 8.6, 8.48, 4.36, 1.41, 2.24, and 9.27 (m)

Number of transmit antennas at the H-AP, M 80

Number of TS antennas for user k, nT
k 16, 32

Initial transmission power, pk(1) 2.25 (mW)

Outage probability for C4 and C5, εc and εp 0.15, respectively

Bandwidth for user k, wk 300 (kHz)

Static circuit power dissipation at H-AP, pAP
c 34 (dBm)

Static circuit power dissipation at user k, pUE
c 25 (dBm)

Maximum transmission power, Pmax 1300 (mW)

Maximum power supply from the power grid, ppg 47 (dBm)

ξk 0.8

Target channel capacity, cQoS
k 14 (Mbps)

Target amount of harvested energy, pQoP
k 1200 (µW)

Center frequency, fc 38 (GHz)

Noise variance, N0wk −119.23 (dBm)

Noise spectral density, N0 −174 (dBm/Hz) at 290 degree Kelvin.

Power inefficiency of the power amplifier, ζ 5

Figure 2 shows the distribution of the eight users around the H-AP as an RF-EHN. In this
map, the H-AP estimates and distributes the optimum value of the three arguments, p̂k, n̂ID

k and m̂k,
to users using the proposed inner and outer algorithms every scheduled time. Further, each user
simultaneously receives the transmitted signal from the H-AP for the EH and ID.

https://youtu.be/qP9fZQX1sDk
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Figure 2. The map of the proposed RF-EHN for simulations.

Figure 3 represents the convergence performance of transmission power according to each
iteration in terms of pk and pkmk(= Pk). Note that the convergence performances of the proposed
algorithm for Inner Loop Algorithm and Outer Loop Algorithm are presented in Figures 3–6.
The optimization is in progress following the QoS and AoP to obtain the maximum EE from the
initial transmission power value of 3.5 (dBm). From the figure, it is confirmed that convergence
performance is different for each user but that convergence is achieved in two to six iterations as
a whole. Some curves seem to converge in the second iteration but, in fact, the value changes slightly
when the iteration goes on. Generally, it seems unreasonable that convergence would occur in only
the second iteration, and it seems reasonable that it would require several iterations. Further, it is
confirmed that the system operates within the pre-defined maximum transmission power constraint
of 1300 mW. This means that iteration continues to keep the constraint C1. Note that for precise
performance analysis, simulations in this paper show the number of antennas as real numbers, rather
than natural numbers.

Figure 4 represents the performance of antenna and rectenna convergence in accordance with
each iteration based on the proposed inner loop algorithm, allocating three resources at optimal values.
Also, we can see that most antennas effectively converge within five iterations. As the number of
iterations increases, each user’s antenna and rectenna curve varies to satisfy the pre-defined QoS and
AoP, and the sum of the antennas and rectennas for the two curves of each user cannot exceed its
equipped total number of switching antennas. When the numbers of antennas and rectennas have
converged, all users are perfectly guaranteed their QoS and AoP.

Figure 5 shows the convergence performance of the number of allocated transmission antennas
to each user. Each curve simultaneously maximizes the EE, and meets the user’s QoS and AoP.
This demonstrates that to satisfy their QoS and AoP, users far from the H-AP need to be allocated up to
five times more transmission antennas than near ones. Also, these converged values do not exceed the
maximum transmission power limitation of C1 with regard to the results of Figure 5. This means that
we designed the system for practical resource allocations, so that the transmission antennas cannot be
infinitely allocated to users.

Figure 6 represents energy efficiency performances as a network EE in the proposed simulation
settings, and every point of the energy efficiency is averaged over 1000 independent channel
realizations. The “iteration” in this figure refers to the iteration index Tout of the Outer Loop Algorithm
in Algorithm 1. Also, the energy efficiency is calculated by the proposed the inner and outer loop
Algorithms, and is constructed as the ratio of each user’s channel capacity per consumed electric power
containing the harvested energy. The energy efficiency is locally optimized, with suboptimal values,
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as the iterations continue. Furthermore, it is based on the presented optimization curves for the three
arguments, as in Figures 3–5. In the experimental environments of these figures, the energy efficiency
has a maximum value when all of the users are equipped with 32 time-switching antennas. However,
it is observed that, although the number of equipped antennas is doubled, the energy efficiency rises
to about 1.6 times the values on the curve for 8 users equipped with 16 time-switching antennas.
It is instructive to see that this is because of insufficient transmission antenna allocations, due to the
limit of transmission antenna allocation capabilities, and the increases of circuit power consumption
that occurred in 4 users equipped with 32 antennas. Consequently, with regard to meeting the goal
of EE maximization, the overall behavior of the graphs in the figures, including Figure 6, is seen
as reasonable.

Figure 3. Transmission power versus iterations for each user.

Figure 4. Ratio of ID and EH mode versus iterations for each user.
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Figure 5. Number of allocated transmission antennas for downlink SWIPT at the H-AP versus iterations
for each user.

Figure 6. Energy efficiency versus iterations with various sizes of the receiving antenna array.

Figure 7 shows various target outage probabilities εc, εp ∈ [0.05, 0.35] versus real outage
probabilities to make sure that the outage constraints (C4) and (C5) work fine in the proposed
algorithm. The results of Figure 7 are averaged over 1000 independent Monte-Carlo simulations,
and each curve involves various channel and noise parameters. It is observed that the real outage
probabilities are always lower than the target outage probabilities, which means that the outage
constraints work accurately.

Figure 7. Robustness of the proposed algorithms for the outage constraints for (a) QoS and (b) AoP.
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Figure 8 represents energy efficiency versus different ratios of ID and EH modes for all users.
The ratio θ ∈ [0, 1] represented in Equation (43) means that the ratio of switching between ID and EH
mode for the total number of antennas that each user has:

nT
k = θ × nT

k + (1− θ)nT
k = nID

k + nEH
k . (43)

Figure 8. Energy efficiency versus various ratios of ID and EH mode for all users.

For comparison with the performance of the proposed algorithm in terms of TS antenna switching
strategy nID

k , we set baseline scheme A that optimizes energy efficiency only in terms of two resources
(pk, mk) (the proposed algorithm optimizes all proposed resources

(
pk, nID

k , mk
)
). The baseline scheme

A has no TS antenna switching strategy but has various ratios θ ∈ [0, 1] for simulations. Note that
θ is applied to all users equally, and energy efficiency becomes zero when θ is zero, since the channel
capacity is not ensured at all. From the figure, it is observed that there are performance differences
between the proposed algorithm and the baseline scheme in terms of energy efficiency, and 120% of
the baseline scheme’s peak energy efficiency is as much as that of the proposed algorithm for the two
cases that nT

k is 16 and 32. This means that the fixed TS antenna switching ratio of the baseline scheme
cannot maximize energy efficiency, so it is necessary to calculate the optimum switching ratio for each
user as shown in Figure 4 in order to achieve maximum energy efficiency.

Figure 9 illustrates energy efficiency versus the total transmission power constraint for k = 8 users.
The transmission power constraint is set as a series of levels from 900 to 1700 (mW) with intervals of
10 (mW). Note that all energy efficiencies are estimated regardless of achieving the user’s target QoS
and AoP, and this is done only to see how energy efficiency behaves when maximum transmission
power varies. We can observe that all curves are upper convex, and this is mainly due to linear scaling
of the transmission power in Equation (7)’s first term. For comparison, we set baseline scheme B
that allocates the equal number of transmission antennas 1, 2, 5, and 10 to each user. In other words,
the baseline scheme B optimizes energy efficiency only in terms of two resources (pk, nID

k ), while
the proposed algorithm optimizes energy efficiency in terms of (pk, nID

k , mk). From the figure, it is
observed that there are performance differences between the proposed algorithm and the baseline
scheme (mk = 10), and 137% of the baseline scheme’s EE is as much as the proposed algorithm’s EE
at a maximum gap point of 1440 [mW] (the proposed algorithm allocates its total 80 transmission
antennas to users for fair comparison). This means that fixed transmission antenna policies of baseline
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schemes degrade the energy efficiency performance, and this is because more power is required
to satisfy the minimum QoS and AoP. On the other hand, although the two schemes use the same
transmission antennas, the reason that the proposed scheme has better EE performance can be seen to
be because it allocates optimized numbers of transmission antennas to users.

Figure 9. Energy efficiency versus transmission power constraints.

Figure 10 demonstrates the performance of energy efficiency versus variable QoS and AoP constraints.
It is observed that the curve of the proposed algorithm (pQoP

k = 1200 (µW), Pmax = 1300 (mW)) has its EE
values of up to 17 (Mbps) of QoS. Also, it is impossible to calculate the EE with both QoS over 17 (Mbps)
and AoP over 1650 (µW) satisfied, because the resources are not sufficient. However, if it has more
maximum transmission power—as much as 1500 (mW)—it can achieve a little more energy efficiency
and QoS. Additionally, if the RF energy harvesting network sets more AoP—as much as 150 (µW)—users
may get more battery charge. However, that can result in degrading the achievable energy efficiency,
and decreasing the settable values for the QoS as a trade-off.

Figure 10. Quality of service versus EE.
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5. Conclusions

In this paper, we formulated energy efficiency optimization for MU massive MIMO RF-EHNs
as a mixed non-convex problem. To solve the problem, minimum channel capacity requirements,
a minimum harvested power, circuit power consumption, limit of transmission antenna allocation,
and ID and EH switching mechanisms were taken into account. To simultaneously guarantee each
user’s QoS and AoP and maximize the energy efficiency, two iterative optimization algorithms were
proposed, based on optimizing the number of achievable bits-per-Joule in RF-EHNs. Simulation
results showed that the proposed algorithm converges to the solution within a few iterations and
demonstrated that the proposed algorithms are more energy-efficient than the baseline schemes.
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