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Abstract: With the energy consumption rising in rail transport, the railway sector is showing 

increasing interest in the energy-efficient operation of freight trains. Freight trains require more 

complicated driving strategies than ordinary passenger trains do due to their heavy loads, especially 

in the long-distance steep downhill (LDSD) sections that are very common in freight rail lines in 

China. This paper studies the energy-efficient operation of a freight train considering LDSD sections. 

An optimal control model including regenerative and pneumatic braking is developed for the 

freight train. Then, when a train leaves/enters the LDSD section, we verify the uniqueness of control 

transitions and discuss the speed profile linkage between LDSD and its adjacent sections, which 

indicates that the periodic braking should be applied on LDSD sections for optimality. Additionally, 

given the same running time for the entire journey, our analysis shows that electrical braking-full 

braking strategy is more energy-efficient than coasting-full braking strategy on LDSD sections. 

Finally, a numerical algorithm for the optimal driving solution is proposed. The simulation results 

demonstrate that the driving strategies generated by the proposed algorithm performs better than 

those from fuzzy predictive control and field operation regarding energy saving. 

Keywords: freight train; energy-efficient operation; maximum principle; periodic braking; 

numerical algorithm 

 

1. Introduction 

Freight trains play a major role in cargo transport all over the world. Due to the rising energy 

consumption, more attention has been paid to freight trains. Taking China as an example, the hauling 

energy consumption of locomotives accounts for 70%–75% of the total energy consumption of the 

railways [1]. Thus, due to economic and environmental concerns it’s very necessary to reduce the 

energy consumption of railways. 

As we all know, the terrain in China is high in the west and descends toward the east coast. Thus, 

some rail lines consist of track sections where the train speed still increases even if full (maximum) 

electrical braking applied, i.e., long-distance steep downhill (LDSD) sections. The train driver must 

deal with the energy-efficient operation problem of the freight train in LDSD sections. Various 

methods have been adopted to reduce the energy consumption of freight trains, such as optimizing 

the timetable, changing the appearance of the locomotive to lower its aerodynamic resistance, 

installing regenerative brakes to feed the energy back to the traction network [2]. Additionally, a good 

driving strategy is an economic method with great potential for reducing energy consumption, which 

is an interesting issue. 
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1.1. Previous Work for the Train Energy-Efficient Operation 

Lots of methods have been utilized to solve the train energy-efficient operation problem since 

the 1960s [3,4]. Reviewing the approaches, we can divide them into two categories: classic methods 

and intelligent methods. Classic methods refer to the optimization approaches that use precise 

mathematical models with rigorous derivations. Intelligent methods are the optimization approaches 

which solve the train energy-efficient operation problem using multiple objectives and constraints. 

1.1.1. Classic Methods 

Maximum Principle (MP) was firstly employed in the train trajectory optimization by Ichikawa 

[4]. Then the researchers from Scheduling and Control Group (SCG) improved and developed the 

application of MP to the problem of train trajectory optimization. Based on MP, three optimal controls 

for short-distance transport trains were presented by Milroy [5]: maximum power, coast and 

maximum brake. Asnis et al. [6] proposed that the optimal speed profile consists of four optimal 

controls: maximum power, cruise, coast and maximum brake. Lee et al. [7] noted that “cruise” was 

the fourth optimal control for long-distance transport trains. Howlett et al. [8] came up with a new 

local energy minimization principle to calculate the optimal switching points of the long-haul freight 

train along a single steep downhill or uphill track section. Albrecht et al. [9,10] discussed the existence 

and uniqueness of the train operation optimal strategy. The relationship between energy 

consumption and operation time was studied by Howlett [11]. Meanwhile, other researchers also 

studied the train trajectory optimization based on MP. Khmelnitsky [12], Golovitcher and Iakov [13], 

and Liu [14] presented the necessary conditions of the train energy-efficient operation based on MP. 

Numerical algorithms were used to search for the optimal control strategy when the speed limit was 

considered in the optimal control problem of the train energy-efficient operation. Yang et al. [15] 

presented the optimal model of train operation with the regenerative braking considered. And the 

optimal solution from coasting to braking consists of a set of speed trajectories. 

Combined with the Karush-Kuhn-Tucker (KKT) condition and derivative approach, the 

Lagrangian multipliers method was applied in the trajectory optimization of diesel locomotives with 

discrete controls. For a train along the level track within a given time, Jiaxin [16,17] noted that the 

energy consumption of the diesel locomotive was minimized if the velocity of the train was kept close 

to the critical velocity. Then Cheng’s theory was improved by Howlett. The critical velocity was 

identified as the selected holding speed. The Lagrangian multipliers were introduced to search the 

energy-efficient driving strategies of a long-haul freight train with discrete control inputs. And the 

optimal strategy of a freight train on the level track is power-coasting-power between two stations 

[18,19]. For a train on the continuously varying gradient, an iteration method was utilized to find 

optimal solution to the train energy-efficient operation [20]. 

With the improvement of computer processing speed, dynamic programming (DP) was applied 

to the train trajectory optimization. A nonlinear train optimal control problem considering the 

efficiency of the train traction system was solved via Discrete Dynamic Programming (DDP) [21,22]. 

Miyatake et al. [23,24] used Bellman’s DP to deal with optimization of the running profile of metro 

and electric trains. To overcome the dimension explosion of DP, sequential quadratic programming 

(SQP) was applied to the trajectory optimization of a railway vehicle [25,26]. 

The calculus of variation is also used to solve the train’s minimal-energy driving strategy 

problem. There were two levels in the train control model: discrete control, i.e., the optimal controls 

such as power, coasting and braking; continuous control such as the traction force varying with the 

train velocity. A hybrid automata was used to describe the hierarchical control model [2,27]. 

Mixed-integer linear programming (MILP) that was appropriate for the engineering application 

was utilized in an automatic train operation (ATO) system to obtain the optimal control sets [28]. The 

gauss pseudospectral method was applied in the single and multiple trains trajectory optimization 

[28,29], which was a new approach in the train trajectory optimization in recent years. 
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1.1.2. Intelligent Methods 

Recently many intelligent approaches have been applied to the train trajectory optimization 

problem, which have the advantage of providing rapid solution to the Multi-Input Multi-Output 

(MIMO) problems with multiple objectives and constraints. For example, Genetic Algorithm (GA) 

was used to search for the optimal train speed profile [30]. Based on the necessary conditions derived 

from MP, GA was proposed to search for the proper coasting points to realize the energy-efficient 

operation of a train [31]. Zhao et al. [32] presented a multiple train trajectory optimization based on 

GA to make a compromise between energy use and punctuality when delays occurred. Huang et al. 

[33] proposed the Multi-population Genetic Algorithm (MPGA) to solve the train energy-efficient 

operation problem by optimizing the train operation for multiple interstations. Meanwhile, fuzzy 

predictive control (FPC) was applied to the ATO by Feng [34]. Bai et al. [35] employed FPC to 

optimize the trajectory of freight trains with diesel locomotives. Ant colony optimization (ACO) was 

also applied to obtain the single train optimal speed profile [30]. 

1.2. Main Contribution 

Train trajectory optimization was studied using various approaches in the previous work [2–35]. 

Meanwhile, references [8–11] studied the optimal controls of the freight train along the single steep 

downhill track section, which is not effective for the long steep downhill sections. In brief, the 

trajectory optimization of the train operation considering the LDSD hasn’t been discussed yet. In this 

paper, the abovementioned problem will be worked out. 

This paper provides four main contributions to the literature. Firstly, the mathematical model of 

the train energy-efficient operation problem considering LDSD has been established. Then the 

analytical solution is derived. Secondly, the pneumatic braking (or mechanical braking) force is 

separated from the integration braking force (including electrical braking and pneumatic braking) 

while deriving the necessary conditions for the energy-efficient operation of the train. Analysis of the 

adjoint variable shows that the periodic braking strategy should be applied on the LDSD section. 

Thirdly, we transform the time constraint with respect to the auxiliary reservoir air-filled time (see 

Section 2.3) to the speed constraint, which could be considered the path constraint in the optimal 

control problem. Fourthly, the optimal control at the terminal position of the LDSD section is verified.  

Although we obtain the analytical solution to the train speed and optimal control, it’s not enough 

to calculate the optimization trajectory. Based on the above conclusions, we give the linkage rules of 

the speed holding section incorporating LDSD. Then an iterative numerical algorithm is proposed to 

obtain the optimal speed profile. The comparative simulation results show that the proposed 

algorithm in this paper saves more energy, which can provide the train driver the significant 

guidance with respect to the energy-efficient operation issue. 

1.3. Main Structure of this Paper 

This paper is organized as follows: Section 2 proposes the motion model of a freight train with 

its constraints, which is considered as an optimal control problem; Sections 3 and 4 give the way to 

solve the aforementioned optimal control problem; Section 5 analyzes the influence of the journey 

time on the energy consumption between stations; in Section 6, the numerical algorithm is proposed 

to solve the optimal control problem; Section 7 illustrates the algorithm in the case studies; in Section 

8, conclusions and future work are given. 

2. Freight Train Model and Problem Formulation 

2.1. Real Characteristics of a Freight Train 

Electric locomotives such as China railways HXD1 and HXD2 are utilized for freight transport 

in the Chinese main line railway sector. If the traction force at low speed stage is set too large, the 

motor in the locomotive will idle, which would cause wheel slippage. The electrical braking force is 

similar. 
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Here, an HXD2 is chosen as the simulation locomotive, which is shown in Figure 1. The HXD2 

that is the source power of a freight train is driven on the track by the adhesion traction force. 
locv  is 

the linear velocity of the wheel in the locomotive. wv  is the angular velocity of the wheel in the 

locomotive, and 
loc wv r v  , where r is the radius of the wheel. N  is the opposite force from the 

track and ( )cf v  is the traction force generated by the motor. ( )rf v  is the rolling friction. 

locv

A

wv

( )rf v

( )cf v

motion direction

N

r

 

Figure 1. An analytical schematic of a locomotive’s three forces. 

The rolling friction is caused by the motion of the wheels of the locomotive. Assume that A is 

the contact point between the wheel and the track. Since the motion direction of A is opposite to that 

of the locomotive, then ( )rf v  occurs to prevent the motion of A as follows: 

( )r jf v N  (1) 

where N is equal to the weight of the locomotive, j  is the rolling friction coefficient of the wheel. 

It is necessary to point out that j  is from a number of field tests [36], i.e., 

10 0.11
0.38

10 0.2
j

v

v






 (2) 

where v  is equal to locv . When a locomotive is hauling, j  is the rolling friction coefficient. 

In Figure 2a, ( )cf v  is the traction force of the locomotive (blue solid line) and ( )rf v  is the 

adhesion traction force of the locomotive (red dash line), which is divided into two parts. The first 

part (the traction force) that varies linearly with the speed 65 /tv km h  is called the “constant torque 

zone”, while the second part (the traction force) that is inversely proportional to the speed 

65 /tv km h  is called the “constant power zone”. Thus, the adhesion traction force varies nonlinearly 

with the speed. During the low speed stage, the real traction force of a locomotive is less than ( )cf v  

owing to the restriction of the adhesion force. At the high speed stage, the real traction force of a 

locomotive is equal to ( )cf v . In short, it can be expressed as: 

0 ( ) min{ ( ), ( )}t c rf v f v f v  (3) 

where 0 ( )tf v  is the real traction force of a freight train.  
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(a) (b) 

Figure 2. Traction/Braking force and adhesion force of a locomotive (HXD2): (a) traction force and 

adhesion force; (b) braking force and adhesion force. 

Similar to Equation (2), when a locomotive is using electrical braking, the rolling friction 

coefficient z  is as follows [36]: 

45.6
0.0624

260
z

v
  


 (4) 

where v  is equal to locv . The rolling friction coefficient is: 

( )rz zf v N  (5) 

In Figure 2b, the braking force of the HXD2 locomotive is defined as ( )ebf v , i.e., regenerative 

braking force (yellow solid line). When the electrical braking is applied, the motor in the locomotive 

will generate electricity. As a result, the electricity is fed back to the traction network so that other 

trains can utilize it. There are two stages in the electrical braking characteristics. The first changes 

linearly with the speed 70.6 /bv km h , while the latter changes nonlinearly with the speed 

70.6 /bv km h , i.e., inversely proportional to the speed. ( )rzf v  that is the adhesion braking force of 

the locomotive (red dash line) changes nonlinearly with the velocity of the locomotive determined 

by (5). Thus, the real braking force of the locomotive can be obtained: 

0 ( ) min{ ( ), ( )}d eb rzf v f v f v  (6) 

where 0 ( )df v  is the real regenerative braking force. 

For a freight train, there are two types of braking force. One is the regenerative braking force. 

The other is mechanical braking force, which is illustrated in [37]. The mechanical braking force is 

presented as follows (see Figure 3). 

  
(a) (b) 

Figure 3. Mechanical braking force and adhesion force of a freight train: (a) locomotive; and (b) 

wagon. 
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In Figure 3, the adhesion force is greater than the mechanical braking force. For a freight train 

along the track, the mechanical braking force isn’t influenced by the adhesion force. The real 

mechanical braking force can be described [36] using the following expression: 

0 ( )m c h hf v K   (7) 

where c  is the service braking coefficient (equal to 0.17 in this paper). hK  is the force of the brake 

shoe. For a locomotive, it’s 580 kN. For a fully loaded wagon, it’s 195 kN. h  is the friction coefficient, 

which varies nonlinearly with the speed of the train. For a locomotive [36], we have: 

2 150
0.307

3 150
h

v

v






 (8) 

For a fully loaded wagon [36], we have: 

2 150
0.378

3 150
h

v

v






 (9) 

2.2. Train Model 

The freight train model is proposed in this section. Every wagon in the freight train can possibly 

run on a section of track with a different gradient. For an example, the front wagon may run on an 

uphill section while the middle one is on a downhill section. Therefore, a multi-particle model of a 

freight train is more appropriate in this paper instead of a single-particle one. The train marshalling 

with one locomotive and n − 1 wagons is shown in Figure 4. 

...
...

...

...

v

1x
2x

2nx 

ix1n
x


n
x

C

C
C

C

C
L

C-Wagon

L-Locomotive

 

Figure 4. Multi-particle model of a freight train. 

Due to the Figure 4 and considering the position of the train (x) as an independent variable, the 

dynamic equations are as follows: 

t t 0( ( )) ( ( )) ( ( )) ( ( )) ( )( )

( )

d d m mf v x f v x f v x w v x g xdv x

dx v x

     
  (10) 

( ) 1

( )

dt x

dx v x
  (11) 

where x is the position of the train, and 1x x , ( )v x  is the velocity of the train at x, and ( )t x  is the 

journey time of the train at x. The control variables: t [0,1]  , [0,1]d  ,  0,1m  , and 0t d   , 

0t m   . ( ( ))tf v x  and ( ( ))df v x  are the unit traction and electrical braking force of all locomotives 

in the freight train (N/kg), respectively. When M is considered as the mass of the freight train, we 

have 0( ( )) ( ) /t tf v x f v M  and 0( ( )) ( ) /d df v x f v M ( ( ))mf v x  is the unit mechanical braking force of 

the freight train (N/t) with the relationship 
0

1

( ( )) ( ) /
n

m im
i

f v x f v M


 (N/t), 0 ( )imf v (N) is the real 

mechanical braking force of the ith wagon or locomotive. 0 ( ( ))w v x (N/t) that is the train unit basic 

resistance consists of rolling resistance and aero-dynamic resistance. ( )g x  is made up of two 

components: unit gradient resistance ( )gradg x (N/t) and unit curve resistance ( )curveg x (N/t). 

0 ( ( ))w v x , ( )g x  can be described as: 

2
0 ( ( )) ( ) ( )w v x a bv x cv x    (12) 



Energies 2017, 10, 794  7 of 26 

 

( ) ( ) ( )grad curveg x g x g x   (13) 

where a, b and c are positive constant coefficients, and the equivalent unit gradient resistance and 

curve resistance are 
1

( ) ( ) /
n

grad grad i i
i

g x g x m M


     and  
1

( ) ( ) /
n

curve curve i i
i

g x g x m M


  , im  is the mass 

of ith wagon or locomotive. For simplicity, there is ( )v v x . 

Remark 1. The control variable of pneumatic braking is binary, which is different from the continuous control 

variable of traction and electrical braking. Theoretically, the control variable of pneumatic braking varies 

continuously with the pressure reduction of the train brake pipe. However, the pressure reduction is discretized 

based on the operation rules of the freight train in China. The train driver is required to apply the discrete 

pressure reduction to the freight train. Hence, while modelling the freight train, the discrete pressure reduction 

is taken into account. And the pneumatic braking force with minimum pressure reduction could make the train 

speed decrease. Then the binary control variable is introduced-  0,1m  . If 0m  , the pneumatic braking 

is not applied. If 1m  , the pneumatic braking is applied. 

2.3. Problem Formulation 

Let 0 and X  be the initial and terminal positions of the freight train. The velocity of the freight 

train should be 0 at the origin and destination station: 

(0) 0v     ( ) 0v X   (14) 

Assume the journey time from 0 to X is T. The constraint is: 

(0) 0t     ( )t X T  (15) 

Exceeding the line speed limit is not allowed for safety concerns: 

( ) ( )v x V x  (16) 

where ( )V x  is the static speed limit at position x . 

The pressure in the freight train brake pipe increases while the mechanical braking is released 

[37]. It takes time to recharge the brake pipe to the target pressure (600 kPa). The time is called the 

auxiliary reservoir air-filled time. To ensure enough braking force is available in the next braking 

period, the air-filled time should not be greater than the speed rising time [38]: 

z ct T  (17) 

where zt  and cT  are the speed rising time and the auxiliary reservoir air-filled time, respectively. 

Considering the LDSD section, the energy-efficient operation problem of a freight train that is to 

find an optimal train trajectory minimizes the energy consumption. Due to the principle of the 

optimal control, a cost function is defined as follows: 

0

( )
min ( )

X
t t

d d d

t

f v
J f v dx


 



 
  

 
  (18) 

where t  is the energy efficiency ratio of the traction system, d  is the energy efficiency ratio of the 

electrical braking system,   is the regeneration efficiency representing the feedback energy 

percentage of the electrical braking.  

Remark 2. The aim of this paper is to minimize the energy consumption of the traction system (including 

power and regenerative braking). Our aim is not the same as minimizing total energy consumption of the 

traction power supply system because the energy efficiency ratios vary with the train speed and the loads, i.e., 

power and electrical braking. In practice, we could try to turn off some motors in the locomotive at the cruising 

phase to make the traction system run near the peak efficiency at high load. Then the energy efficiency ratios 

could be approximatively considered as a constant. 
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Remark 3. The regeneration efficiency is introduced for two purposes while modelling the freight train, which 

is illustrated below: 

(1) In most electric trains, the regenerative braking energy can be fed back to the traction power supply system 

if other trains along the railway line could utilize it. Currently, freight trains are not equipped with on-

board energy storage devices. Hence, the regeneration efficiency is decided by the availability of other trains. 

In the realistic traction power supply system, the regeneration efficiency is a variable. The railway 

operation scheme (including the timetable and number of freight trains that are running along the railway 

line) should be investigated to obtain the accurate regeneration efficiency. Based on the operation data in 

months or years, we could calculate the regeneration efficiency. In China, the railway electrification system 

is 2 × 25 kV alternating current (AC) single phase with a frequency of 50 Hz. Two phases of the three-

phase AC power from the public power grid are used to supply for the electric trains. The phases at different 

feeders of the substations will be switched between A–C, C–B, B–A, to maintain the overall balance of the 

public power grid (see Figure 5). Since the double-track railway including up rail and down rail is very 

common in China, the traction network of up rail and down rail connects in parallel. We can optimize the 

timetable to make the up train and down train run on the same LDSD section. For example, for a fully 

loaded train that is running on the up rail of the LDSD section, if electrical braking is applied, the 

electricity generated by the up train will be fed back to the traction network. At the same time, if the down 

train with empty wagons is going uphill with power on the LDSD section or the fully loaded up train is 

powering on the normal gradient (see Figure 5),   of the energy generated by up train will be absorbed 

by the down train. 

(2) In this paper, our aim is to calculate the optimal speed trajectory considering the LDSD section. Our work 

in this paper is the operation optimization for a single train. The regeneration efficiency is introduced into 

the optimal control problem to evaluate the ratio of coasting and regenerative braking. To simplify the 

optimal control problem in this paper, the regenerative efficiency is considered as a constant. 

T1

R1

F1

A B C
traction substation

T1

R1

F1
1 2 3 4

up rail

down train

section post section post

normal 
gradient LDSD

normal 
gradient

down rail

T1=traction network
R1=rail
F1=feeder

 

Figure 5. Regenerative energy flow in the traction power supply system. 

The problem can be formulated as follows: 

Find a series of optimal controls and switching locations to make the cost function (18) 

minimized. Meanwhile, the dynamic constraints (10) and (11), the path constraints (16), (17), the 

boundary constraints (14) and (15), must be satisfied. 

3. Solution 

Section 2 gives the formula of the train energy-efficient operation problem. This section discusses 

the analytical solution to the train trajectory optimization. 

3.1. Necessary Condition of the Train Energy-Efficient Operation 

Combining (10), (11) and (18), the Hamiltonian is as follows: 

 1 2
0

( )
( ) ( ) ( ) ( ) ( ) ( )t t

d d d t t d d m m

t

f v
H f v f v f v f v w v g x

v v

  
    


           (19) 
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where 1  and 2  are the Lagrange Multipliers. 

To simplify (19), a new adjoint variable is introduced: 

2t v    (20) 

which converts Equation (19) as follows: 

  1
0

( 1)
( ) ( ) ( ) ( ) ( )t t d d d m m

t t t

H f v f v f v w v g x
v

  
   

  

 
        

 
 (21) 

To maximize (21), a set of six optimal controls is presented: 

• Full power (FP): 1t  , 0d m    when 1  . 

• Partial power (PP): [0,1]t  , 0d m    when 1  . 

• Coasting (C): 0t d m      when 1d t    . 

• Partial electrical braking (PEB): 0t  , [0,1]d  , 0m   when d t   . 

• Full electrical braking (FEB): 0t  , 1d  , 0m   when 0 d t    . 

• Full braking (FB): 0t  , 1d m    when 0  . 

3.2. Transformation of the Time Constraint 

In this subsection, a theorem about the air-fill time is given. Before that, the necessary definitions 

and assumption are given. 

Definition: Let ( )v x  be the instantaneous speed from A to B. Let the position of A and B be Ax  

and Bx . Let the position of C and D be Cx  and Dx . cT  is equal to the integration from Ax  to Bx : 

1

( )

B

A

x

c
x

T dx
v x


  (22) 

where ( ) ( )A Av x x   and ( ) ( )Bv x V x  . 

Assumption: suppose ( ) ( )v x x  does not hold, then, there is ( ) ( )v x x  to assure the existing 

of the optimal solution. 

The Lipschitz continuity should be satisfied: 

1 2 1 2( , ) ( , )F v x F v x L v v    (23) 

where 0L  . 

Theorem 1. Let ( )x  be the optimal release speed while the mechanical braking is removed. Let ( )v x  be the 

velocity of the train speed.   and v  is the function of the train position x. If and only if ( ) ( )v x x , the 

optimal solution to the problem exists. And cT  equals to the time from A to B (see Figure 6) by applying full 

electrical braking (FEB). 

Proof of Theorem 1. Proof by contradiction is presented as follows: 

Depending on the assumption, ( )x  and ( ) ( )x x   , i.e., ( ) ( )A Av x x . ( )x  and ( )x  

are constants. To make the time from ( )Av x  to ( )Dv x  equal to cT , there must be a point satisfying: 

( ) ( )C Cv x v x  (24) 
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v

x
0

normal gradient LDSD normal gradient

C FB FEB FB FEB

PP PP

A

B

( )x

speed limit

C

FPFEB

( )v x

( )v x

( )x

D

.

 

Figure 6. Full electrical braking analysis of the freight train on the long-distance steep downhill (LDSD) 

section. 

In Figure 6, the instantaneous speed ( )v x  is always greater than ( )v x  from 
Ax  to 

Cx : 

( ) ( )v x v x  (25) 

If Cx x  , there is: 

( ) ( )v x v x  (26) 

which converts Equation (10) into the following expression: 

0( ( )) ( ( )) ( )( )
( , )

( )

df v x w v x g xdv x
F v x

dx v x

  
   (27) 

where ( )Cv x  and 
Cx  are the initial states of the differential Equation (27), i.e., ( )Cv v x , 

Cx x . 

1 2, ( )Cv v v x  , Cx x  , 0  , given the initial condition: Equation (26) and ( )Cv v x , only one 

solution exists at [ , ]C Cx x  . 

However, Equation (26) implies that there are two solutions when Cx x . This contradicts the 

Lipschitz continuity (existence and uniqueness theorem of the differential equation). Then we have: 

If Cx x , there is: 

( ) ( )v x v x  (28) 

which implies ( ) ( )v x v x . Meanwhile: 

1 1

( ) ( )

D B

A A

x x

z c
x x

t dx dx T
v x v x

  
   (29) 

Obviously, Equation (29) does not hold if ( ) ( )v x v x  and the assumption does not hold. If and 

only if ( ) ( )v x x , Theorem 1 holds. Finally, the time constraint is transformed to the speed 

constraint. 

3.3. Solution to the Optimal Control Problem with the Speed Constraint 

The necessary condition of the freight train energy-efficient operation is given in Section 3.1. 

Further study is proposed to solve the problem with the speed constraint. According to Equation (15) 

and Theorem 1, two complementary slackness factors ( ( )M x  and ( )T x ) are introduced [14,38]: 

 
 

( ) ( ) ( ) / 0

( ) ( ) ( ) / 0

v x V x dM x dx

v x x dT x dx

 

 
 (30) 

where ( ) ( )v x V x , ( ) / 0dM x dx  ; ( ) ( )v x V x , ( ) / 0dM x dx  . ( ) ( )v x x , ( ) / 0dT x dx  ;

( ) ( )v x x , ( ) / 0dT x dx  . 
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The derivative of the Lagrange Multipliers considering the slackness factors is: 

1d H

dx t

 
 


 (31) 

2 ( ) ( )d H dM x dT x

dx v dx dx

 
   


 (32) 

In (31), the Hamiltonian does not depend on t explicitly, the partial derivative of H is zero: 

1 0
d H

dx t

 
  


 (33) 

thus, 1 C  , where C is a constant. Equation (20) introduces an adjoint variable to replace the 

Lagrange Multiplier 2 . Differentiating (20) yields the following: 

2

1
( )

t

d d v 


  (34) 

which can be rewritten as: 

2

1
( )

t

d vd dv  


   (35) 

Combining (19), (32) and (35):  

 0 1

3

( ) ( )( )(1 )
( ) ( ) ( ) ( )

m md t t t t

t t d d

w v f v
d f v f v dx dM x dT x

v v v v v v

      
  

   
       

  

 (36) 

In Section 3.1, only the general relationship between the adjoint variable and the train optimal 

controls is derived, i.e., the necessary condition. However, it’s not enough to calculate the precise 

speed trajectory of the freight train energy-efficient operation. In this section, Equation (36) of the 

adjoint variable is obtained to determine the optimal controls for the train operation. 

3.4. Analysis of the Special Optimal Controls 

To make the freight train operation energy-efficient, there are six optional optimal controls. 

Among them, there are three unique optimal controls, i.e., PP, PEB and FB. We will discuss the special 

optimal controls to get more details about the train energy-efficient operation. 

3.4.1. Partial Power 

When the freight train runs on the interval with PP, there are the adjoint variable 1  , and its 

corresponding optimal control [0,1]t  , 0d m   . As a result, there is: 

1

0
3

1
( ) ( ) ( )t t td w v dx dM x dT x

v v v v

  


 
    

 
 (37) 

Since   is constant, / 0d dx  . Let ( ) 0dM x   and ( ) 0dT x  , (37) can be expressed as: 

1

0
3

1
( ) td

w v
dx v v


   (38) 

Equation (38) is rewritten as: 

2
0 1( ) 0tv w v     (39) 

where 
1  and 

t  are constants. When 1  , there exists one or more optimal constant velocities. 

To find those, a speed function is defined as follows: 

2
0( ) ( )v v w v   (40) 
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Due to Equations (12) and (40) can be rewritten as: 

2( ) ( 2 )v v b cv    (41) 

Obviously, ( )v  is monotone increasing for ( ) 0v   . When 1  , only one optimal constant 

speed cv  that makes Equation (39) hold. 

Let the target speed of the train operation be tv . When 1  , there is: 

 min , ( )t cv v V x  (42) 

The mathematical description of the normal gradient where a freight train can maintain a 

constant speed is presented: 

0( ) ( ) ( ) 0t t t tf v g x w v     (43) 

when the freight train runs on the interval with partial electrical braking (PEB), we have the adjoint 

variable d t   , and its corresponding optimal control: 0t  , [0,1]d  , 0m  . Substituting

  into Equation (36) with d t    yields the following: 

1

0
3

( ) ( ) ( )d t t t td w v dx dM x dT x
v v v v

    


 
    

 
 (44) 

Similarly, there is: 

2
0 1( ) 0dv w v     (45) 

which can be rewritten as: 

1( ) 0d v     (46) 

when a freight train is using partial electrical braking, there is only one optimal constant electrical 

braking speed for Equation (46) due to the monotone increasing of ( )v . 

Let the target speed of the train operation be tdv . When d t   , there is: 

 min , ( )td dv v V x  (47) 

The mathematical description of other type of the normal gradient where a freight train can 

maintain a constant speed is presented: 

0( ) ( ) ( ) 0d d td tdf v g x w v     (48) 

3.4.2. Full Braking 

When the freight train runs on the interval with full braking (FB), 0  , and the corresponding 

optimal control: 0t  , 1d  , 1m  . Due to the definition of the LDSD, there is: 

0( ) ( ) ( ) 0d df v g x w v     (49) 

where 1d  , ( )v V x , 0 d t    . 

When pneumatic braking is applied, there is: 

0( ) ( ) ( ) ( ) 0d d m mf v f v g x w v       (50) 

where 1d  , 1m  . 

3.5. Uniqueness Analysis of the Optimal Control at the Terminal Position of the LDSD Section 

Since the freight train operation on a LDSD section is different from that on a normal gradient, 

the driving strategies that are utilized on the normal gradient can’t be used to get through the LDSD 

section. It’s necessary to analyze the optimal controls for the LDSD section. 
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In this section, a theorem about the uniqueness of the optimal control on the LDSD section will 

be proved, which gives out the optimal control at the terminal position of the LDSD. 

Theorem 2. Assume that a freight train is at the terminal position of the LDSD (see Figure 6). While ( )cv V x , 

we obtain that the adjoint variable is 0 d t    , and the optimal control is FEB, the velocity of the train 

is equal to the line speed limit.  

Proof of Theorem 2. Proof by contradiction: 

Assumption: the optimal control at the terminal position of the LDSD is not FEB. Then the possible 

optimal controls are FP, PP, PEB, C or FB. The comparison of FEB and other optimal controls is 

presented in Figure 7. In Figure 7a–7d, ( )x  is the pneumatic braking release speed by applying 

“FB+FEB”. 

• FP 

If the freight train is accelerated to ( )V x  with FP (see Figure 7a), the air-filled time holds on via 

Theorem 1. Then, there is ( ) ( )av x x , where ( )a x  is the pneumatic braking release speed by 

applying “FB+FP”. Since the acceleration of FP is greater than that of FEB, ( )a x  is far less than ( )x  

so that there is sufficient air in the auxiliary reservoir for the next pneumatic braking. Therefore, it’s 

very possible that ( )a x  is less than 30 km/h [39], which will cause large longitudinal impact on the 

wagon couplers. Meanwhile, the freight train is running on the energy-efficient slope, i.e., LDSD 

section. It does not necessarily consume energy from the traction network. In summary, FP is not the 

optimal control at the terminal position of the LDSD.  

• PP 

Equation (38) can be rewritten as: 

1

3

( ) tvd

dx v

  
  (51) 

In Figure 7b, ( )b x  is assumed as the holding speed or pneumatic braking release speed with 

the relationship ( )b cx v  . If the trip time is given, Section 3.4.1 implies that there is only one optimal 

holding speed cv  to make / 0d dx  . Meanwhile, ( )v is monotone increasing. When ( )b cx v  , 

there is / 0d dx  , i.e.,   is monotone decreasing. 

For a freight train that is running at 
1x  with PP ( 1 1( ) ( )bv x x ), the corresponding adjoint 

variable 
1( ) 1x  . If the train runs from 

1x  to 
2x  with PP, we have 2 2( ) ( )bv x x  and 

2( ) 1x  . 

Since ( )b x  is the holding speed, then 1 2( ) ( ) ( )b b bx x x    . Once   is monotone decreasing, 

then the adjoint variable 
2( ) 1x  . Obviously, the optimal control for the freight train at 

2x  is not 

PP. However, this contradicts with the assumption: the train should be running on the LDSD with 

PP after pneumatic braking is released. Thus, PP is not the optimal control. 

• PEB 

In a similar way, it can be proved that the velocity of the train is not maintained if PEB is applied 

on the LDSD section, which contradicts with the assumption-the train should be running at constant 

speed 
dv  based on Section 3.4.2. Then, PEB is excluded. 

• C 

According to Equation (18), there is 1min 0J   at the coasting phase (see Figure 7c). On the other 

hand, while FEB is applied, the energy consumption is: 

 
2

2
0

min ( )
X

d d dJ f v dx    (52) 

where 2X  is the running distance by applying FEB. 
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It is clear that 2 1min minJ J . Thus, it’s more energy-efficient to apply FEB. Meanwhile, if FEB 

is applied, the electricity generated from the motor in the locomotive can be fed back to the traction 

network so that other trains absorb it. If C is applied, the pneumatic braking speed ( )c x  that may 

be very low leads to large longitudinal impact on the couplers. Thus, C is not the optimal control. 

• FB 

Assume that ( )d x  is the pneumatic braking release speed by applying “FEB+FB” (see the blue 

line in Figure 7(d)). We have ( ) ( )dx x  . Compared with the energy consumption of accelerating 

the train speed from cv  to ( )V x , more traction energy is consumed if the train speed is accelerated 

from cv  to ( )d x  (the blue line). Therefore, FB is not the optimal control. In summary, the 

assumption does not hold. The only optimal control is FEB. Theorem 2 states uniqueness of the 

optimal control at the terminal position of the LDSD. 

v

x0

LDSD

FB

FEB

PPFP

cv

( )V x

normal gradient

( )x

( )a x
FP

 

v

x0

LDSD

FB

FEB

PPFP

cv

( )V x

normal gradient

( )x

( )b x

PP

1x 2x

 
(a) (b) 

v

x0

LDSD

FB

FEB

PPFP

cv

( )V x

normal gradient

( )x

( )c x
C

 

v

x0

LDSD

FBFEB PPFP

cv

( )V x

normal gradient

( )x

FB FEB FP

( )d x

 
(c) (d) 

Figure 7. Comparative analysis of the optimal controls: (a) FEB and FP; (b) FEB and PP; (c) FEB and 

C; (d) FEB and FB. 

4. Linkage of the Speed Holding Section 

4.1. Direction of the Linkage 

Let the speed holding section be the interval with PP or PEB. The corresponding velocities are

cv  and dv . The optimization trajectory from the initial position ( 0 ) to the terminal position ( X ) is 

divided into three parts. Figure 8 shows the linkage of the three different parts. 

As Theorem 1 and Theorem 2 should be satisfied in the optimization trajectory calculation, a 

backward integration (profile 1) is adopted to calculate the speed profile in the LDSD section. And a 

forward integration is adopted to calculate the speed profile in the normal gradient section. The two 

profiles meet at the switching position 1x  (see Figure 8), while the adjoint variables of the two speed 

profiles also meet at 1x . 
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Meanwhile, another backward integration (profile 2) is adopted to calculate the speed profile 

from the terminal position ( X ) to the end position of the LDSD section. Backward profile 1 and 

backward profile 2 meet at the switching position 2x . And the adjoint variables of the two speed 

profiles also meet at 2x . 

v

0

LDSD

cv

( )V x

normal gradient

dv

normal gradient

1x 2x

Forward profile
Backward profile 1
Backward profile 2

x

x X

 

Figure 8. Forward and backward speed profile. 

4.2. Sufficient Conditions of State Variable Inequality Constraint 

Seierstad and Sydsaeter [40] proposed a sufficient theorem to deal with the state variable 

inequality constraint (Equations (16) and (17)). Since   is the function of the train position x , a 

piecewise continuous function  1 2( ) ( ), ( ), , ( )nx x x x    L  is assumed to be existed on the span [0, ]X

which has a piecewise continuous derivative − /d dx  (see Equation (36)) except for a finite number 

of discontinuous points. At the points of discontinuity 1 2, k  L  of ( )x , 1 20 k X      L , 

the following jump condition is satisfied: 

( , ( ))
( ) ( )

i

j i j i

x

h x v x
b

v 

    




 


 (53) 

where: 

• i
  and i

  denote the left-hand side and the right-hand side of the train position i . 

• 1,2, ,j n . 

• 1,2, ,i k . 

• 0b  . 

• ( , ( )) ( ) ( ) 0h x v x V x v x    or ( , ( )) ( ) ( ) 0h x v x x v x   .  

According to the Equation (30), the jump condition of   are as follows: 

(1) While ( ) ( )v x V x , ( ) / 0dM x dx  ,   jumps.  

(2) While ( ) ( )v x x , ( ) / 0dT x dx  ,   jumps. 

4.3. Linkage Case 

Two typical cases are used to illustrate the linkage of the speed holding section incorporating 

the LDSD section, i.e., ( )cv V x  and ( )cv V x .   is the function of the train position x . The 

relationship of   and x  is presented. 

4.3.1. Case 1 

(1) In Figure 9, the optimal control of the freight train switches from PP to C before entering the 

LDSD section. Based on the linkage direction in Section 4.1, the intersection of forward profile 

(C) and backward profile 1 (FEB) is 0x x . 
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(2) Entering the LDSD section, the speed of the freight train keeps increasing even if FEB is applied. 

The adjoint variable (  ) is still decreasing. While 0  , ( ) ( )v x V x . Although the jump 

condition of   is satisfied, the jump will not happen yet due to the optimal controls. At the next 

moment, 0  , FB is applied. We have ( ) ( )v x V x . 

(3) Once FB is applied, pneumatic braking is released until ( ) ( )v x x . Then ( ) / 0dT x dx  , 

jumps at 1
 . We have 10 ( ) d t     , then FEB is applied. And FEB is kept until ( ) ( )v x V x

and 0  . Then FB is applied again. 

(4) While the freight train is running at the terminal position of the LDSD section, we have

3 3( ) ( )v V   . For ( ) / 0dM x dx  ,   jumps from 3
  to 3

 . Then FP is applied while the 

freight train is leaving the LDSD. Finally, the freight train is accelerated to cv . 

v
cv

0

x

x

0

normal gradient LDSD

1


C

1


1


FB FEB FB FEB

3


PP FP

3


d t 

FEB

( )V x

cv

normal gradient

PP

2


2


0x x

( )x

 

Figure 9. Linkage of the speed holding section considering the LDSD section ( ( )cv V x ). 

4.3.2. Case 2 

(1) In Figure 10, the optimal control of the freight train switches from PP to C before entering the 

LDSD section. Based on the linkage direction in Section 4.1, the intersection of forward profile 

(C) and backward profile 1 (FEB) is 0x x . 

(2) While 0  , ( ) ( )v x V x . At the next moment, 0  , FB is applied. We have ( ) ( )v x V x . 

(3) Once FB is applied, pneumatic braking is released until ( ) ( )v x x . Then ( ) / 0dT x dx  , 

jumps at 1
 . We have 10 ( ) d t     , FEB is applied. And FEB is kept until ( ) ( )v x V x  and

0  . Then FB is applied again. 

(4) While the freight train is running at the terminal position of the LDSD section, we have

2 2( ) ( )v V   . For ( ) / 0dM x dx  ,   jumps from 2
  to 2

 . Then FP is applied while the 

freight train is leaving the LDSD. Finally, the freight train will coast to dv . And the optimal 

control between PEB section and PP section is C. 
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0
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d t 

FEB C PP

dv
( )V x

cv
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( )x

normal gradient

1


2


2


 

Figure 10. Linkage of the speed holding section considering the LDSD section ( ( )cv V x ). 

5. Relationship between Journey Time and Energy Consumption 

In the previous articles [2,11,41], the conflicted relationship between the journey time and energy 

consumption was studied. From the perspective of traction energy consumption, we draw a 

conclusion: the total energy consumed (E) is a rigorously monotone decreasing function of the given 

journey time ( 0T ). The relationship is presented in the following mathematical equation: 

0( )E T  (54) 

where 0( ) 0T   . 

The relationship can be illustrated in Figure 11. 

 

Figure 11. Energy consumption and journey time. 

The conclusion will be adopted to analyze the relationship of the interval time allocation and the 

freight train’s energy consumption. Depending on Theorem 2 and Section 4.3, the optimal driving 

strategy on the LDSD section should be the periodic braking, i.e., FEB+FB+FEB (see Figure 12), which 

increases the number of freight trains that pass Interval 2 and this decreases the total energy 

consumption from 0 to X. 

E

0
0T
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cv

cv
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normal gradient
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2x

 

Figure 12. Interval time allocation and energy consumption. 

Analysis: in Figure 12, suppose there are two driving strategies on the LDSD section. 

(1) Strategy 1: FEB+FB+FEB, the pneumatic braking release speed is equal to 1( )x . 

(2) Strategy 2: C+FB+C, the pneumatic braking release speed is equal to 2( )x . 

The trip from 0 to X is divided into three intervals as follows. cv  and cv  are the holding speed 

(PP) of Interval 1 and Interval 3. sT  is the journey time of Interval 2. Given the total journey time 

setT , the journey time of Interval 1 and Interval 3 is set sT T . 

As 1 2( ) ( )x x  , the journey time of Strategy 1 is less than that of Strategy 2 in Interval 2, which 

means that the average speed of the freight train with Strategy 1 is greater than that with Strategy 2. 

Obviously, the number of the pneumatic braking instances with Strategy 1 should be less than that 

with Strategy 2 because the average speed with Strategy 1 is greater. Therefore, the number of freight 

trains that pass Interval 2 in the fixed time has increased. Meanwhile, if Strategy 1 is applied in 

Interval 2, the journey time sT  , then the journey time of the rest intervals ( )set sT T  . And the 

holding speed drops down from cv  to cv . According to the relationship between the energy 

consumption and the journey time (see Figure 11), the traction energy consumption of Strategy 1 is 

less than that of Strategy 2. Meanwhile, Strategy 1 and Strategy 2 will generate electricity on the LDSD 

section and feed back to the traction network. In Interval 2, the full electrical braking distance of 

Strategy 1 is greater that of Strategy 2 and the average electrical braking force of Strategy 1 is also 

greater than that of Strategy 2. Then we could infer that Strategy 1 generates more energy than that 

of Strategy 2. Hence, considering the energy consumption of Interval 1~Interval 3, we can conclude 

that Strategy 1 is more energy-efficient. 

6. Numerical Algorithm 

In this paper, the necessary condition of the train energy-efficient operation is derived. The 

linkage of the speed holding section is given. The constraints (13), (16) and (17) are considered in the 

optimal control problem. However, to obtain an optimal trajectory of the train operation under the 

given time, the constraint (15) should be taken into consideration. An iterative algorithm is proposed 

to calculate the optimal trajectory of the freight train energy-efficient operation incorporating the 

LDSD section. It’s difficult to choose an initial holding speed ( cv ) with PP, in the first iteration, 

suppose the initial holding speed is: 

c

set

X
v

T
  (55) 

The detailed procedure of the algorithm is as follows: 

(1) Calculate the shortest time ( 1T ) from 0 to X, obtain the flat-out running trajectory. 

• If 1setT T , then go to step (2). 

• If 1setT T , optimization terminates, the flat-out running trajectory is returned. 
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(2) Initializing cv , then solve dv  by combining (39) and (45). Find the speed holding interval with 

PP and PEB, exclude the speed holding intervals where the freight train can’t keep constant 

speed with FP. If ( )cv V x  and ( )dv V x , the solution is (42) and (47). 

(3) Generate the slope partition table which consists of the initial and terminal position of the speed 

holding interval. Suppose the set ( U ) represents the slope partition table. We have

 1 2, , , , ,i nU P P P P L L , where, n  is the number of the speed holding interval. 

(4) Linkage of the speed holding intervals. 

• Linkage of the adjacent speed holding intervals. 

Suppose i n , and j i , 1k i  . Connect jP  and kP . If the connection of the two 

speed holding intervals fails, then jump to the linkage of the non-adjacent speed holding 

intervals. 

• Linkage of the non-adjacent speed holding intervals (see Figure 13). 

Suppose 1j n  , k n . The last speed holding interval that connects with jP

successfully is mP (1 m j  ). m  is equal to 2n  . Connect mP  and kP . If the connection 

fails, repeat until the connection succeeds in the domain of m , i.e., [1, )m j . 

Suppose k n  and 1j k  , then 1k k  , and connect jP  and kP . If the connection fails, 

repeat until the connection succeeds in the domain of j , i.e., [1, 1)j k  . 

x
0

v

PP

C

FP

nP1nP 2nP ...... kPjP
cv

dv

PEB

 

Figure 13. Linkage of the non-adjacent speed holding interval. 

(5) The speed profile and optimal controls during the whole trip are recorded. Calculate the train 

operation time from 0 to X . We have T . 

(6) Evaluate the terminal condition: 

5setT T s   (56) 

If (56) is satisfied, optimization terminates. Or, if setT T , increase cv ; if setT T , decrease cv . 

(7) Repeat steps 2–6 until the terminal condition is satisfied. 

(8) Return the optimal trajectory, optimal controls and energy consumption. 

(9) Optimization terminates. 

7. Case Study 

This section illustrates the methodology with case studies. The optimization algorithm is 

implemented on a computer equipped with 2.4 GHz Core i7 processor and 4GB RAM. Matlab 2014b 

is adopted to simulate the train operation. 

The energy-efficient operation of a freight train with one locomotive (HXD2) and 100 fully loaded 

wagons is studied. The track interval from Yanqing to Chawu is chosen as the case study line, which 

is part of Daqin Railway Line with the track length X = 69.445 km. The main parameters of the freight 

train are presented in Table 1. The speed limits are listed in Table 2. The real traction and braking 

force are illustrated in Section 2.1. 
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Table 1. Parameters of the freight train in the simulation. 

Parameter Value Unit 

Train marshalling 1 locomotive + 100 wagons - 

Locomotive mass 200 t 

Locomotive length 38 m 

Maximum velocity 120 km/h 

Maximum traction force 777 kN 

Locomotive unit basic resistance 211.772 0.063765 0.002737v v   N/t 

Energy efficiency ratio of the traction system 0.9 - 

Energy efficiency ratio of the electrical 

braking system 
0.9 - 

Regenerative coefficient 0.9 - 

Mass per one wagon 100 t 

Length per one wagon 12.2 m 

Wagon unit basic resistance 29.0252 0.047088 0.001226v v   N/t 

Auxiliary reservoir air-filled time 130 s 

Table 2. Line speed limits. 

Origin Location (km) Terminal Location (km) Value (km/h) 

0 2.9 35 

2.9 67 75 

67 67.720 70 

67.720 70 35 

7.1. Train Operation Simulation under Different Journey Time 

The optimization algorithm is implemented based on Section 6. The optimal trajectories under 

the four groups of the journey time are calculated, which are shown in Figure 14. 

Low speed limit

LSDS section

 

Figure 14. Optimal velocity trajectories and track height. 
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The track gradient is transformed to the track height for observation convenience. Assume that 

the track height is 0 km at the origin location, then the track height of other location is equal to the 

sum of multiplying the gradient value by the gradient length from 0 km to current train location. 

Now we obtain four optimal trajectories by using the multi-particle model of the freight train. 

At the start phase, the freight train is running with FP. The velocity of the freight train must be kept 

less than the speed limit (2 km/h below the speed limit). To prevent the rear of the freight train from 

exceeding the speed limit, the velocity is accelerated until the last wagon passes the low speed limit 

(see Figure 14). To make the train operation energy-efficient, the optimal control should be switched 

from PP to C before entering the LDSD section. In the LDSD section, periodic braking is applied and 

the optimization trajectories are the same under the four groups of given time because the jump 

condition (see Sections 4.2 and 4.3) should be satisfied. The simulation results of the optimization 

algorithm are listed in Table 3. 

Table 3. Simulation results under different journey time. 

Journey 

Time(s) 
cv  (km/h) 

Energy Consumption 

(kWh) 

Regenerative 

Energy(kWh) 

Total Energy 

Consumption(kWh) 

5704.20 25.5 1701.85 5583.39 −3323.20 

4914.49 40 1784.06 5608.62 −3263.70 

4779.73 45 1821.44 5627.82 −3243.60 

4682.57 50 1873.84 5667.86 −3227.23 

The operation energy of different times is listed in Table 3. The total energy consumption is 

defined as: 

t dJ J J    (57) 

where J  is the total energy consumption, tJ  is the energy consumption of the freight train 

operation with FP and PP, dJ  is the regenerative braking energy of the train operation with 

electrical braking. In Table 3, the total energy consumption is less than 0, which implies that the train 

generates more energy than it consumes in the given track interval. Meanwhile, reducing the journey 

time will cause the energy consumption and total energy consumption to increase. The relationship 

of journey time and energy consumption/total energy consumption is presented in Figure 15. 

  
(a) (b) 

Figure 15. Relationship between energy consumption/total energy consumption and journey time: (a) 

Energy consumption and journey time; (b) total energy consumption and journey time. 

In Figure 15a, the traction energy consumption drops down while the trip time of the train 

increases. Less energy is consumed if the train runs more slowly. It seems the train driver should 

drive very slowly. However, from the railway system’s perspective, reducing the journey time not 

only allows more freight trains to operate on the railway line, but also creates more economic benefit. 
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Dispatchers of the railway should make a compromise between the energy consumption and the trip 

time. 

Similarly, the total energy consumption is also monotonically decreasing while the journey time 

of the train increases even if the regenerative energy consumption is considered. It means that more 

energy will be fed back to the traction network if the trip time is longer. 

7.2. Comparison between The Proposed Algorithm and Other Methodologies 

In Section 7.1, the optimal trajectories under different journey time are calculated. The simulation 

result shows that the energy consumption is monotonically decreasing while the holding speed cv  

declines. Based on the simulation results of the proposed optimization algorithm, the energy 

consumption converges to a minimum value if the holding speed is very close to 0. 

In this section, (FPC) and field operation data are compared with the proposed algorithm under 

the same trip time (95 min), which are illustrated in two case studies. Figure 16 is the simulation result 

of the proposed algorithm. 

 

Figure 16. Optimal speed profile of train energy-efficient operation considering LDSD section (trip 

time: 95 min). 

In Figure 16, 25.5 /cv km h , the operation time is 5704.20 s (≈ 95 min), more details are shown 

in Table 3. At the origin location, the initial adjoint variable ( ) is large and it’s decreasing quickly 

with the location of the train increasing. Here,   ranges from −1 to 2. The optimal controls are 

decided by the value of the adjoint variable. For an example, if   declines from 1 to 1d t    , 

then the optimal control switches from PP to C. Applying coasting before entering the LDSD section 

makes the freight train operation more energy-efficient because more potential energy is converted 

to kinetic energy. While the train is running on the LDSD section, FEB and FB are applied 

alternatively because of the jump of the adjoint variable. The force that varies with location of the 

train is also shown in Figure 16. 

7.2.1. Fuzzy Predictive Control 

The (FPC) algorithm was designed in [34]. There are two controls for the algorithm: the deviation 

of the current train speed and target speed, the acceleration of the freight train. They are put into the 
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fuzzy logic controller for fuzzy reasoning and optimizing. And the algorithm calculates the control 

sequences in the future 2–3 km. The simulation result under the given trip time (95 min) is presented 

in Figure 17. 

 

Figure 17. Speed profile of a freight train based on FPC (trip time: 95 min). 

In Figure 17, P = Power. The freight train tracks the target speed before entering the LDSD section. 

The speed rises up while the train is running on the LDSD section. Periodic braking should be applied 

to prevent the train from exceeding the speed limits. The train energy consumption for traction is 

1821.50 kWh. The regenerative braking energy 5492.60 kWh. 

7.2.2. Field Operation Data 

We obtained the field operation data from Yanqing to Chawu, which consists of the train speed 

and location. The journey time is 95 min. The speed profile is shown in Figure 18 with P = Power, EB 

= Electrical Braking, PB = Pneumatic Braking. 

 

Figure 18. Speed profile of a freight train based on the field operation data (trip time: 95 min). 
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Besides that, the simulation results of the three strategies (optimal algorithm, FPC and field 

operation) and the energy-saving ratio comparison of the three strategies are listed in Tables 4 and 

Table 5. 

Table 4. Simulation results of the three strategies. 

Strategies 
Journey 

Time (min) 

cv

(km/h) 

Energy Consumption 

(kWh) 

Regenerative 

Energy (kWh) 

Total Energy 

Consumption (kWh) 

Optimal 

algorithm 
95 25.5 1701.85 5583.39 −3323.20 

FPC 95 - 1821.50 5492.60 −3121.84 

Field operation 95 - 1906.50 5231.21 −2801.59 

Table 5. Energy-saving ratio comparison of the three strategies. 

Strategies FPC (%) Field Operation (%) 

Optimal algorithm 6.5 18.6 

FPC - 11.4 

The driving strategy is usually determined by the current train running status and the track 

gradient, curve, speed limit in the future 2–3 km while a driver is operating the freight train. 

Meanwhile, excellent driving experience is also significant, which ensures the energy-efficient 

operation of the train. For an example, an experienced driver will apply coasting before the train 

enters the LDSD section (see Figure 18). However, the driver operates the train intuitively without 

calculating the precise traction/braking force and the switching location of the optimal controls. Then 

18.6% and 11.4% reduction of the train energy consumption can be achieved respectively compared 

with that of the field operation and FPC. FPC is a local optimization algorithm which predicts the 

optimal controls in the finite distance ahead of the train. However, the proposed algorithm in this 

paper is a global optimization algorithm. We can conclude that the optimal algorithm saves more 

energy than that of FPC (6.5%). 

8. Conclusions 

In this paper, an analytical solution and numerical algorithm are proposed to solve the energy-

efficient operation problem considering the LDSD section issue. A new path constraint-auxiliary 

reservoir air-filled time constraint is taken into consideration in the optimal control model of the train 

energy-efficient operation. The adjoint variable is utilized to illustrate the optimal control set and 

calculate the optimization trajectory of the two adjacent speed holding sections. Analysis of the 

adjoint variable shows that periodic braking (FEB+FB+FEB) should be applied on the LDSD section, 

which can effectively reduce the operation time on the LDSD section and save the energy 

consumption of the entire trip. The numerical algorithm is adopted to calculate the optimization 

trajectory under the given trip time. Case studies indicate that the proposed algorithm in this paper 

saves 6.5% and 18.6% of the energy consumption comparing with that of FPC and field operation, 

which has a better performance with respect to energy saving. 

The numerical algorithm of the train energy-efficient operation has been implemented in 

MATLAB. From the perspective of engineering application, the proposed algorithm in this paper 

could be utilized to calculate the off-line optimal speed trajectory for the driver advisory system. 

Based on the improved numerical algorithm considering the signal system, temporary speed limit 

and current train status, the driver advisory system calculates the dynamic optimal speed trajectory 

and provides the driver dynamic advice about the energy-efficient driving strategies. 
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