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Abstract: This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller
(DMC-UPFC) with an advanced control method for UPFC, based on the Lyapunov direct method,
presenting good results in power quality assessment. This control method is used for real-time
calculation of the appropriate matrix switching state, determining which switching state should be
applied in the following sampling period. The control strategy takes into account active and reactive
power flow references to choose the vector converter closest to the optimum. Theoretical principles
for this new real-time vector modulation and control applied to the DMC-UPFC with input filter
are established. The method needs DMC-UPFC dynamic equations to be solved just once in each
control cycle, to find the required optimum vector, in contrast to similar control methods that need
27 vector estimations per control cycle. The designed controller’s performance was evaluated using
Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP)
system and matrix hardware. Simulation and experimental results show decoupled transmission
line active (P) and reactive (Q) power control with zero theoretical error tracking and fast response.
Output currents and voltages show small ripple and low harmonic content.

Keywords: Unified Power Flow Controllers (UPFC); Direct Matrix Converter (DMC); digital control;
real time Lyapunov

1. Introduction

Direct matrix converters (DMCs) are alternative power converters to DC-link back-to-back
connected inverter-rectifier with capacitive energy storage. Therefore, DMCs can be advantageously
used in unified power flow controllers (UPFCs). UPFCs emerged in the 1990s by L. Gyugyi as the most
versatile FACTS (Flexible AC Transmission Systems) equipment [1,2]. FACTS technology uses power
electronic devices—namely power semiconductors—with turn-off capability associated to their firing
circuits and modern control techniques to enforce the active and reactive power in electrical systems.
These power controllers work in real time to regulate the energy transit in the transmission lines up to
its thermal limits [3].

The UPFC with a classic topology, based on two AC-DC converters back to back connected
through a common DC link, needs a large high-voltage DC storage capacitor bank to allow shunt and
series compensation and bidirectional power flow [4–6]. The UPFC controls some line parameters

Energies 2017, 10, 779; doi:10.3390/en10060779 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en10060779
http://www.mdpi.com/journal/energies


Energies 2017, 10, 779 2 of 13

(such as impedance, bus voltage, voltage angle) guaranteeing fast, dynamic performance of the power
transmission network and ensuring a reliable and precise control of both line active, P, and reactive, Q,
power flow [6–8].

Several research works with UPFC show conventional control methods based on power systems
with linearized models, valid around an operating point, whose dynamic control and performance
evaluation are presented in [9–12]. However, these control methods present poor dynamic responses
and/or undesired active-reactive power coupling. Improved approaches are based on nonlinear
controllers, allowing a better tuning of linear controller parameters, and have the capability to adapt
to the continuously changing power system dynamics [13–15]. In [14], nonlinear robust direct power
controllers allow dynamic response improvement based on sliding mode control techniques to select
adequate space vectors to control active and reactive power in real time.

In recent years, alternative UPFC topologies have emerged based on the direct three phase AC-AC
matrix converter [11–16]. This power converter eliminates the DC link capacitors, thus reducing cost,
size, and maintenance, while increasing reliability and lifetime. The DMC processes electrical energy
directly needing almost no energy storage, allows bidirectional power flow, guarantees near sinusoidal
input and output currents, and controls the voltage’s amplitude and frequency at an adjustable power
factor [17,18]. These AC/AC converters guarantee that the active power exchanged on the UPFC
series connection is always supplied/absorbed by the shunt connection, and still have the capability
to allow independent reactive control on the UPFC shunt and series converter sides. However, as
there is almost no DMC stored energy, input and output powers are strongly coupled, hardening the
control design.

The main contribution of this paper is, therefore, a new real-time vector modulation and control for
the DMC-UPFC. This control method uses an algorithm based on the power system model equations
and the direct method (2nd method) of Lyapunov to guarantee asymptotic stability. The control
strategy is based on the desired references for active, P, and reactive, Q, power flow and uses a cost
functional to choose the converter output vector closest to the optimum [19] considering P and Q
requirements. The power controllers choose the converter output vector by minimizing the distance
between the virtual control vector and all available converter vectors. This digital control method
allows a significant reduction in the computing time of the digital signal processing (DSP) unit in many
industrial applications [20].

A theoretical analysis of the new real time Lyapunov-based controller, applied to the DMC-UPFC
with input filter, is presented (Section 3). Dynamic and steady-state performance of the P and Q
power control method is evaluated and discussed using detailed simulations and experimental
implementation (Sections 4 and 5). Results show a controller insensitive to power system non-linearity
and active and reactive power control with zero error tracking and fast response times (Section 6).
Results also show a low total harmonic distortion (THD) in the output voltages and currents ensuring
a good performance of this controller in power quality applications. The controllers are insensitive to
power system non-linearity, presenting very low sensitivity to cross-coupling effects.

2. Modeling of the UPFC Power System

The proposed power system model of the DMC operating as a UPFC is presented in the simplified
scheme of Figure 1.

In this power transmission network, VS and VR are the sending-end and receiving-end voltages,
respectively, of GS and GR generators feeding load Zload. The DMC is connected to the transmission
line 2 through shunt and series coupling transformers, respectively T1 and T2. Also, as shown in
Figure 1, ZL1 and ZL2 are the impedances of the transmission lines 1 and 2, respectively, represented as
a series inductance and resistance.
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Figure 1. Transmission network with DMC-UPFC. 

2.1. UPFC Power System Dynamic Model 

Figure 2 shows the connection diagram of the DMC-UPFC system to the transmission line. This 
diagram includes a three-phase LCR input low pass filter to re-establish a voltage-source boundary 
to the DMC input and to enable smoother input currents. A three-phase shunt input transformer (Ta, 
Tb, Tc), a three-phase series output transformer (TA, TB, TC) and a three-phase DMC are also included. 
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Figure 2. A detailed diagram with DMC-UPFC. 

To design DMC-UPFC decoupled active and reactive power controllers, the dynamic Equation 
(1) is considered. This equation represents the active and reactive power of sending end generator 
GS, in dq coordinates [21]. 
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where VSd, VSq are the mains voltage components, and Id, Iq the line currents, both in dq coordinates 
(Figure 1). 

Choosing a dq rotating reference frame so that the mains voltage (VSq) is equal to zero, P and Q 
will be given by Equation (2). 
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The control vector components to ensure convergence of the power references values are 
obtained considering the time derivative of Equation (3), assuming constant VSd. 

Figure 1. Transmission network with DMC-UPFC.

2.1. UPFC Power System Dynamic Model

Figure 2 shows the connection diagram of the DMC-UPFC system to the transmission line.
This diagram includes a three-phase LCR input low pass filter to re-establish a voltage-source boundary
to the DMC input and to enable smoother input currents. A three-phase shunt input transformer (Ta,
Tb, Tc), a three-phase series output transformer (TA, TB, TC) and a three-phase DMC are also included.
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To design DMC-UPFC decoupled active and reactive power controllers, the dynamic Equation (1)
is considered. This equation represents the active and reactive power of sending end generator GS, in
dq coordinates [21]. [

P
Q

]
=

[
VSd VSq
VSq −VSd

][
Id
Iq

]
(1)

where VSd, VSq are the mains voltage components, and Id, Iq the line currents, both in dq coordinates
(Figure 1).

Choosing a dq rotating reference frame so that the mains voltage (VSq) is equal to zero, P and Q
will be given by Equation (2). [

P
Q

]
=

[
VSd Id
−VSd Iq

]
(2)

The control vector components to ensure convergence of the power references values are obtained
considering the time derivative of Equation (3), assuming constant VSd.
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d
dt

[
P
Q

]
= VSd

d
dt

[
Id
−Iq

]
(3)

Considering a symmetrical and balanced three-phase system, an equivalent per-phase model of
a DMC-UPFC transmission system, shown in Figure 3, is obtained, where the voltage sources, the
coupling transformers and the DMC are all considered ideal. Based on this simplified circuit, the
dynamics of three-phase currents ij in the transmission line is:

dij

dt
=

VSj + VCj − R2ij −VR0j

L2
, j = 1, 2, 3 (4)
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From these dynamics, it can be seen that P and Q can be controlled by VCd and VCq, being VR0d 
and VR0q system disturbances. 

2.2. Direct Matrix Converter Model 

To apply a closed-loop space-vector technique, the ideal three-phase direct matrix converter 
may be considered as an array of nine bi-directional switches, Skj. These switches have turn-on and 
turn-off capability, allowing the connection of each one of three output phases directly to a given 
three-phase input voltage. 

Considering also ideal power semiconductors, each DMC bi-directional switch Skj (k, j ∈ {1, 2, 
3}) can assume two possible states: “Skj = 1” (switch closed) or “Skj = 0” (switch opened), being the 
nine DMC switches represented as a 3 × 3 matrix (7). Taking into account circuit topology 
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Applying the Kirchhoff laws to the equivalent circuit gives the equations of the AC line currents
in dq coordinates:

d
dt

[
Id
Iq

]
=

[
− R2

L2
ω

−ω − R2
L2

][
Id
Iq

]
+

1
L2

[
VSd + VCd −VR0d
+VCq −VR0q

]
(5)

In (5), Thevenin equivalent inductance and resistance (L2 and R2) are estimated by L2 = X2/ω,
R2 = RL2 + RL1||RZload.

Substituting line currents (5) in (3) and simplifying the result, Equation (6) is obtained:

d
dt

[
P
Q

]
=

[
− R2

L2
−ω

ω − R2
L2

][
P
Q

]
+

VSd
L2

[
VSd + VCd −VR0d

VCq −VR0q

]
(6)

From these dynamics, it can be seen that P and Q can be controlled by VCd and VCq, being VR0d
and VR0q system disturbances.

2.2. Direct Matrix Converter Model

To apply a closed-loop space-vector technique, the ideal three-phase direct matrix converter may
be considered as an array of nine bi-directional switches, Skj. These switches have turn-on and turn-off
capability, allowing the connection of each one of three output phases directly to a given three-phase
input voltage.

Considering also ideal power semiconductors, each DMC bi-directional switch Skj (k, j ∈ {1, 2, 3}) can
assume two possible states: “Skj = 1” (switch closed) or “Skj = 0” (switch opened), being the nine DMC
switches represented as a 3 × 3 matrix (7). Taking into account circuit topology restrictions, no input
phase short-circuits and no open output phases, there are only 27 possible switching combinations [14]. S11 S12 S13

S21 S22 S23

S31 S32 S33

 3

∑
j=1

Skj = 1 k, j ∈ {1, 2, 3} (7)



Energies 2017, 10, 779 5 of 13

According to Figure 2 the output and input voltages are related by matrix S, being[
vA vB vC

]T
= S

[
va vb vc

]T
. Then, it is necessary to represent the output voltages and

the input currents yielding 27 switching patterns, as time variant vectors in αβ coordinates [14].
The relationship between input phase currents and output phase currents depends on the transposition

of matrix S:
[

ia ib ic

]T
= ST

[
iA iB iC

]T
.

3. DMC-UPFC Lyapunov-Based Control

The proposed control strategy based on the direct method of Lyapunov stability starts by defining
a positive definite Lyapunov candidate function VX = eX

2/2, where eX is the tracking error of the X
variable, eX = XRef − X. To ensure a globally asymptotically-stable control solution from Lyapunov’s
direct method of stability [22], the time derivative

.
VX of the positive-definite Lyapunov function VX

must be globally negative-definite
.

VX < 0, or eX
.
eX < 0. This can be achieved by imposing an error

dynamic such as:
.
eX + kXeX = 0⇒ .

eX = −kXeX (8)

where kX is a positive definite constant, resulting in eX
.
eX = −kXe2

X < 0. Equation (8) ensures
asymptotic stability, as the eX error tends to zero with time constant 1/kX, and robustness as the error
dynamic in (8) is independent of the system parameters.

3.1. Active and Reactive Power Control

The control objective is to track the power references PRef, QRef, so that eX = [eP, eQ]T, the tracking
errors (or deviations) being eP = PRef − P and eQ = QRef − Q:[

eP
eQ

]
=

[
PRef − P
QRef −Q

]
≈
[

0
0

]
(9)

To guarantee no cross-coupling between P and Q power controllers, fast response times and
asymptotic stability, Lyapunov candidate functions are defined as VP = eP

2/2, VQ = eQ
2/2. Therefore,

the controller must enforce: [
eP
0

0
eQ

]
d
dt

[
eP
eQ

]
<

[
0
0

]
(10)

This can be accomplished if it is considered:

d
dt

[
eP
eQ

]
= −

[
kP
0

0
kQ

][
eP
eQ

]
= −

[
kP
0

0
kQ

][
PRef − P
QRef −Q

]
(11)

where kP, kQ are positive definite constants. Replacing the eP, eQ time derivates using (6), Equation (12)
is received:

d
dt

[
PRef
QRef

]
−
[
− R2

L2
−ω

ω − R2
L2

][
P
Q

]
− VSd

L2

[
VSd + VCdRef −VR0d
−VCqRef + VR0q

]
= −

[
kP
0

0
kQ

][
PRef − P
QRef −Q

]
(12)

Solving Equation (12) for VCdRef and VCqRef the DMC controller must impose the output voltages
VCdRef and VCqRef.[

VCdRef
VCqRef

]
=

L2

VSd

([
kP
0

0
−kQ

][
PRef − P
QRef −Q

]
+

d
dt

[
PRef
−QRef

])

+
1

VSd

[
R2 ωL2

−ωL2 R2

][
P
Q

]
−
[

VSd −VR0d
−VR0q

] (13)
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This equation defines the reference values VCdRef, VCqRef that must be injected in the line by the
series transformer of the space-vector PWM controlled DMC.

3.2. Input Reactive Power Control

Applying Blondel-Park transformation to the input filter state variables presented in Figure 3
and neglecting the effects of the damping resistors, Equation (14) can be written, where Vid, Viq, iid, iiq
represent input voltages and input currents in dq components (at the shunt transformer secondary),
and VdM, VqM, idM, iqM are DMC voltages and input currents in dq components, respectively,

diid
dt

= ωiiq −
1
2l

VdM −
1

2
√

3l
VqM +

1
l

Vid

diiq
dt

= −ωiid +
1

2
√

3l
VdM −

1
2l

VqM +
1
l

Viq

dVdM
dt

= ωVqM −
1

2
√

3C
iiq +

1
2C

iid −
1

2C
idM +

1
2
√

3C
iqM

dVqM

dt
= −ωVdM +

1
2
√

3C
iid +

1
2C

iiq −
1

2
√

3C
idM −

1
2C

iqM

(14)

This transformation guarantees all input variables of the matrix converter are time invariant in
the rotating reference frame.

The control objective is to have Qi = QiRef = 0. The control input is iqM and the output is iiq,
as Qi = −Vidiiq at constant Vid. Defining the tracking error eQi = QiRef − Qi = −Qi, to guarantee
Lyapunov asymptotic stability in this 2nd order system, the controller must enforce an exponentially
stable error dynamics tending to zero such as

..
eQi + k1

.
eQi + k2eQi = 0, where k1 and k2 are positive

definite constants. Therefore:

d2eQi

dt2 + k1
deQi

dt
+ k2eQi = 0⇒ d2QiRef

dt2 − d2Qi
dt2 + k1

deQi

dt
+ k2eQi = 0⇒

d2QiRef

dt2 + k1
deQi

dt
+ k2eQi =

d2Qi
dt2

(15)

Solving (14) for d2Qi
dt2 , Equation (16) is obtained:

d2Qi
dt2 =

d
dt

[
d
(
−Vidiiq

)
dt

]
= −Vid

d
dt

[
d
dt

iiq

]
= −Vid

d
dt

(
−ωiid +

1
2
√

3l
VdM −

1
2l

VqM +
1
l

Viq

)
⇒

d2Qi
dt2 = −Vid

(
−ωdiid

dt
+

1
2
√

3l
dVdM

dt
− 1

2l
dVqM

dt
+

1
l

dViq

dt

) (16)

Simplifying (16) and replacing the value of d2Qi
dt2 in (15), Equation (17) is obtained:

1
Vid

d2QiRef

dt2 +
k1

Vid

deQi

dt
+

k2

Vid
eQi =(

ω2 +
1

3lC

)
iiq −

ω

l
VdM −

ω√
3l

VqM +
ω

l
Vid −

1
3lC

iqMRef −
1
l

dViq

dt

(17)

where iqMRef is the value of iqM (control input) that satisfies (15). Solving (17) for the reference value
iqMRef of the q component of the matrix current iqM, Equation (18) is obtained:

iqMRef =
3lC
Vid

(
d2QiRef

dt2 + k1
deQi

dt
+ k2eQi

)
+
(
3lCω2 + 1

)
iiq+

3Cω(Vid −VdM)−
√

3CωVqM − 3C
dViq

dt

(18)
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Equations (13) and (18) require distinct space-vectors to impose VCdRef, VCqRef and iqMRef,
as discussed in Section 2.2. The optimum space-vector is computed in the next section by minimizing
a cost functional of the reference voltages and current errors.

3.3. Optimum Space-Vector

A weighted cost functional of squared tracking errors is used to select in real time the optimum
space-vector (one out of the 27 possible switching combinations) which should be applied to the DMC
operated as UPFC in the following sampling period.

The vector selection strategy minimizes the cost functional given in (19).

C(ts) =
√

GVCd e2
VCd

+ GVCq e2
VCq

+ GIiq e2
iqM

(19)

where eVCd = VCdRef − VCdv, eVCq = VCqRef − VCqv and eiqM = iqMRef − iqMv, represent the errors
between the references and values obtained with each switching combination, and GVCd , GVCq and
GIqM are the respective weights.

In each sampling time ts, the real-time modulation control method first calculates the reference
components, VCdRef(ts), VCqRef(ts) and iqMRef(ts) given in (13) and (18). Then, the weighted cost
functional (19) is evaluated for each one of the 27 matrix vectors to select the one presenting the
minimum value of the cost functional.

4. Implementation of DMC-UPFC Controller

The implementation scheme of the proposed DMC-UPFC controller is presented in the block
diagram of Figure 4. In this scheme, the control of the instantaneous P and Q powers requires the
measurement of the instantaneous output voltages and currents. The control of the matrix input
reactive power requires the measurement of the input currents, and the measurement of the mains and
capacitor voltages.Energies 2017, 10, 779 8 of 14 
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The real time Lyapunov-based controller (Figure 4) algorithm, implemented in a digital signal
processor, is presented in the flowchart in Figure 5. As shown in the diagram, the control method main
loop calculates the values of VCdRef(ts), VCqRef(ts) and iqMRef(ts) once, while the cost functional, C(ts), is
evaluated 27 times to find the vector with components VCd(ts), VCq(ts) and iqM(ts) that minimizes the
weighted cost functional. This selects the space-vector which minimizes the cost functional, and is
applied to the DMC-UPFC in the following sampling time (ts + ∆T).
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Relative to predictive controllers [19], the control process proposed here reduces the
microprocessor computational effort.

5. Simulation and Experimental Evaluation

This section presents simulation and experimental results to evaluate the performance of the
proposed control method. First, using detailed simulation models for the three-phase direct matrix
converter, series and shunt transformers, sources, transmission lines, loads and real-time Lyapunov
controller algorithm, the DMC-UPFC is simulated using the MATLAB/Simulink SimPowerSystems
toolbox. Matrix converter semiconductors were simulated as SimPowerSystems switches with
appropriate snubbers.

In order to validate the simulation results with experimental results, a low-power prototype DMC
was built [23], using three semiconductor modules from DANFOSS, each one with six 1200 V, 25 A
insulated-gate bipolar transistors (IGBT) with anti-parallel diodes, in a common collector arrangement,
driven by optical isolated drives (TLP250). The second order input filter component values are:
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l = 4.2 mH, C = 6.6 µF, r = 25 Ω. This prototype was connected to the laboratory low-voltage network
operating as a UPFC, (Figure 4) using three-phase transformers T1, T2 (2 kVA transformers with voltage
ratio 220/115 V and 66.5/66.5 V, respectively). Voltage sensors were used to measure the voltages
(LEM LV 25-P), while current sensors were used to measure the DMC currents (LEM LA25NP).

To carry out real-time control of the power in the transmission lines, a real-time DSP board (DS1103
model of dSPACE) with the proposed control algorithm was used to select the suitable vector at every
sampling time. The DS1103 was able to execute the vector modulation, control algorithm, and output
the 9 DMC bidirectional switch control signals at a sustained sampling time (Ts) of 18 µs. This sampling
time is suited to switching the DMC at frequencies around 5 kHz, but is not enough to guarantee
safe commutation between the DMC bidirectional switches, as this requires much faster changing
signals. Therefore, to ensure safe commutation, the four-step output current commutation strategy
was used [18], implemented in a field-programmable gate array (FPGA) using a Xilinx (Virtex 5) board,
as represented in Figure 4.

Experimental results were obtained considering that the input phase-to-phase DMC voltage
equalled 120 VRMS; the load power equalled 1.5 kW (1 pu), the transmission lines 1 and 2
were emulated by inductances LL1 = 12 mH, LL2 = 15 mH and series resistances RL1 = RL2 =
0.2 Ω, respectively.

Also, experimental and simulation results for the P and Q power UPFC controller were obtained
from the step response to changes in PRef and QRef references (∆PRef and ∆QRef, respectively).
Figure 6a,b show, respectively, simulation and experimental results for the proposed controller,
considering P and Q power step responses to ∆PRef = +0.4 pu and ∆QRef = +0.2 pu, with initial
reference values PRef = 0.4 pu, QRef = 0.2 pu.
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Figure 6. Active and reactive series power response for P and Q steps (first ∆PRef = +0.4 pu and after
∆QRef = +0.2 pu). (a) Simulation results; (b) Experimental results (Ch1 = Ch2 = 0.5 pu/div).

Both results show clearly that there is no cross-coupling between active and reactive power,
being both independently controlled, and showing a fast response with a small ripple in steady state.
The results of Figure 7a,b are simulation and experimental results, respectively, for the proposed
control method, when the same initial conditions as in Figure 6 are retained, but with different time
instants. Once again, these results prove the good performance of the power controller.

Figure 8a,b show the simulation and experimental results, respectively, of the active and reactive
powers, and also the line currents, considering P and Q power step responses to ∆PRef = +0.4 pu and
∆QRef = −0.2 pu, when initial reference values are PRef = 0.4 pu, QRef = 0.2 pu. These results show no
cross-coupling, steady-state errors below ripple errors, and fast response times for different changes of
power references. Line currents are almost sinusoidal with small ripple content.
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Results of Figures 8b and 9a show line and input direct matrix converter currents in steady-state,
for PRef = 0.4 pu, QRef = 0.2 pu. Line currents are almost sinusoidal with small ripple content, while
matrix currents shows some ripple content as usual in DMC [15].Energies 2017, 10, 779 11 of 14 
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Figure 9. Line currents (iB, iC) and input matrix converter currents (ib, ic) for ∆PRef = +0.4 pu and
∆QRef = +0.2 pu: (a) Simulation results; (b) Experimental results (Ch1 = Ch2 = Ch3 = Ch4 =1.0 pu/div).
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The experimental power spectral density of transmission line converter current (Figure 10) shows
that the main harmonics are nearly 35 dB below the 50-Hz fundamental.
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Figure 11a,b show, respectively, the harmonic spectrum of the line current and load voltage.
These quantities present a low harmonic content (THD less than 5%) of 4.86% and 4.53%, respectively,
which compares favourably with the improved methods proposed in [24] to enhance power quality in
matrix converters (the THD of input currents is higher than 6.29% in [24]).Energies 2017, 10, 779 12 of 14 
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Figure 11. Harmonic content of the line currents (a) and of the load voltages (b).

Compared to linear [24], sliding-mode [15], and predictive [20] controllers, the Lyapunov
controlled matrix-based UPFC presents the lowest THD of currents, even lower than linear controllers;
while for cross-coupling and response times, they present better results, as do sliding-mode
and predictive controllers. Concerning steady-state errors, all controllers theoretically show no
steady-state errors, while the Lyapunov controller’s asymptotic stability guarantees that the controller
will enforce an exponentially stable dynamic, tending to zero error, which is not guaranteed by
predictive controllers.

Simulation and experimental results show that P and Q power flow can be effectively controlled
using the DMC-based UPFC and the proposed power control method.

A DMC-based UPFC was implemented in the laboratory to verify the proposed power controller,
as shown in Figure 12.
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6. Conclusions

This paper designs a new real-time space-vector control, based on the Lyapunov stability direct
approach, for active and reactive power flow using direct matrix converters connected to the power
transmission line operating as Unified Power Flow Controllers. This controller guarantees stability of
the power system and improves the power quality by optimizing the space-vector error cost functional.

The presented simulation and experimental results show that active and reactive power flow can
be advantageously controlled using the proposed control method. Results show steady-state errors
below ripple errors, no cross-coupling, insensitivity to non-modeled dynamics, fast response times
and low THD in output currents (less than 5%).
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