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Abstract: The effects of two types of flow control devices, vortex generators (VGs) and Gurney flaps 
(GFs), on the power output performance of a multi-megawatt horizontal axis wind turbine is 
presented. To that end, an improved blade element momentum (BEM)-based solver has been 
developed and BEM-based computations have been carried out on the National Renewable Energy 
Laboratory (NREL) 5 MW baseline wind turbine. The results obtained from the clean wind turbine 
are compared with the ones obtained from the wind turbine equipped with the flow control devices. 
A significant increase in the average wind turbine power output has been found for all of the flow 
control device configurations and for the wind speed realizations studied in the present work. 
Furthermore, a best configuration case is proposed which has the largest increase of the average 
power output. In that case, increments on the average power output of 10.4% and 3.5% have been 
found at two different wind speed realizations. The thrust force and bending moment in the root of 
the blade have also been determined and compared with the values of the clean wind turbine. A 
residual increase in the bending moment of less than 1% has been found. 

Keywords: wind turbine power; vortex generators (VGs); gurney flaps (GFs); flow control; blade 
element momentum (BEM) model 

 

1. Introduction 

The rise of installed wind power in Europe for the last fifteen years, along with the increasing 
significance of offshore wind energy, shows the relevance of research in the field of flow control for 
large wind turbines. The considerable increase of wind turbine rotor size and weight in recent years 
has made it impossible to control as they were controlled 20 years ago. Rotors of 120 meters, or even 
more, are now a reality. Johnson et al. [1] compiled some of the most important flow control 
techniques that could be used in wind turbines to assure a safe and most favourable operation under 
different atmospheric conditions. To maximize the lifetime energy captured by the wind turbine is a 
key factor in the wind energy field. 

Many different flow control devices have been developed in the last decades. Most of them were 
created for aeronautical issues and this was its first research field and application [2]. They are also 
frequently used in turbo machinery [3]. Nowadays researchers are working to optimize and 
introduce these types of devices in multi-megawatt wind turbines. Wood [4] developed a four layer 
scheme which allows classifying the different concepts that are part of all flow control devices. In the 
study of Shires and Kourkoulis [5] a tangential air jet was used on a vertical axis wind turbine 
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(VAWT) blade to control the separation of the flow and, therefore, to increase the aerodynamic 
performance. Additionally, the dynamic stall control was investigated by Xu et al. [6] on a S809 airfoil 
(NREL’s S-Series airfoils, Golden, CO, USA) by the implementation of a co-flow jet. 

Depending on their operating principle control techniques can be classified as active or passive 
[7]. Passive control techniques represent an improvement in the turbine’s efficiency and in load 
reduction without external energy consumption. Active control techniques need an additional energy 
source to obtain the desired effect on the flow and, unlike vortex generators (VGs) and other passive 
devices, active flow control needs complex algorithms to obtain the maximum benefit (see Becker et 
al. [8]). Johnson et al. [1] conducted an analysis and discussed 15 different devices for wind turbine 
control. Some of them are still being tested on full-scale turbines. 

A VG is defined as a passive flow control system which modifies the boundary layer (BL) fluid 
motion bringing momentum from the outer flow part into the inner flow part of the wall-bounded 
flows. Its main goal is to delay the separation of the flow and increase the maximum lift coefficient 
CL,max. VGs are intended in order to re-energize the BL by transferring momentum between the free 
stream velocity and the near wall region. VGs have been investigated for more than fifty years for a 
wide range of applications in aerodynamics and airplane wings [9]. They are small vanes, usually 
triangular or rectangular (Figure 1), inclined at an angle to the oncoming flow and placed as close as 
possible of the leading edge (LE). They are generally assembled spanwise on the suction side of the 
blade and present the advantage that they can be added as a post-production fix to blades that do not 
perform as expected. Its height is usually similar to the boundary layer thickness at the VG position. 

(a) (b) 

Figure 1. A prismatic airfoil equipped with vortex generators (VGs). (a) Row of triangular VGs; (b) A 
detailed view of the VG pairs. 

Fernandez-Gamiz et al. [10] and Urkiola et al. [11] studied the behaviour of a rectangular VG on 
a flat plate and the streamwise vortices produced to investigate how the physics of the wake behind 
VGs in a negligible streamwise pressure gradient flow can be reproduced in CFD simulations. In the 
work carried by Gao et al. [12] on a 30% thick DU97-W-300 airfoil (Delft University family airfoils, 
Delft, The Netherlands), the maximum lift coefficient was increased from 1.5 to approximately 2 due 
to the implementation of passive VGs. When the angle of attack increases, both the lift and drag 
coefficients rise to values higher than the ones reached in the steady state conditions. A vortex 
structure grows and the airfoil goes into a stall situation, then the loss of lift is larger than in steady 
operation [13]. The non-linear and unsteady aerodynamic behaviour of a multi-megawatt horizontal 
axis wind turbine (HAWT) is a problem from structural and electric generation points of view. The 
use of VGs can led to a reduction of periodic loads, thus improving power output and cyclic fatigue 
life, as described in Gebhardt et al. [14]. Øye [15] compared the measured power curves with VGs 
and without them on a 1 MW wind turbine. Although quite rough methods were used for the VG 
design optimization, the experiment showed that, for a stall-regulated wind turbine, power increased 
nearly 24% by using VGs through field tests. Furthermore, Sullivan [16] conducted an experiment on 
a 2.5 MW wind turbine to test the effects of adding VGs on the power conversion performance. An 
increase of 11% in the annual energy production was found. 

VGrs are usually mounted in a spanwise array on the suction side of the blade and have the 
advantage that they can be added as a post-production fix to blades that do not perform as expected. 
On the other hand, their main disadvantage is that drag increases (CD) due to the implantation of this 
device, an undesirable feature for this kind of application. Great care is also needed to be taken in 
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their integration with the blade so as not to deteriorate the performance of the wind turbine or the 
aeroelastic conditions. An in-depth review of the use of VGs for of boundary-layer flow-separation 
control is presented in [17]. 

The Gurney flap (GF) is a simple vane with a height between 1% and 2% of the airfoil chord 
length c, located perpendicular to the lower or upper side of the airfoil near the trailing edge. 
According to Liebeck [18], GFs increase the total lift of the airfoil while reducing the drag once 
appropriately sized. Storms [19] found a lift increase of around 13% for a GF size of 0.5%c with 
minimal or no drag penalties for low and moderate lift coefficient values. The studies of van Dam et 
al. [20,21], based on the research of Meyer et al. [22], studied the effects of serrated and split GFs to 
avoid the vortex shedding. 

In order to study the impact of VGs and GFs on wind turbines, to optimize their position and 
distribution, CFD tools can be used such as in the work by Troldborg et al. [23] where computational 
simulations of a wind turbine rotor with and without a row of VGs on the blades were carried out. 
In those simulations, a 10 MW wind turbine rotor and airfoils were fully resolved by a grid, while the 
VGs were modeled using a modified version of the BAY model developed by Bender et al. [24]. 
According to Troldborg et al. [23], it is not computationally feasible to directly simulate a full wind 
turbine blade equipped with many VGs due to the large range of scales present in a rotor equipped 
with VGs. Therefore, modelling a fully-meshed rotor with VGs and GFs becomes prohibitively 
expensive because of its small size compared with the rotor dimensions. 

2. Blade Element Momentum Method 

The blade element momentum (BEM) method is the most frequently-used tool to calculate the 
wind turbine rotor’s aerodynamic performance since it is computationally economical and, 
consequently, very fast [25]. In addition, the BEM method gives reasonable results provided that 
usually high-quality airfoil data are accessible for the lift, drag, and moment coefficients, and also at 
different Reynolds numbers. The method assumes that all sections of the rotor are independent of 
each other and, consequently, can be treated individually. The momentum loss is produced by the 
axial loads of the flow passing the blades, causing a pressure drop over the blade section. Since the 
induced velocity generated by the action of the loads is known, the local angle of attack at a given 
radial sector on a blade can be calculated. As described in Hansen [26], two corrections to the BEM 
method are required to obtain good-quality results. The Prandtl’s tip loss factor correction is the first 
one, which solves the hypothesis of an infinite number of blades. The second correction is applicable 
when the axial induction factor achieves values greater than about 0.2–0.4, where the simple 
momentum theory fails. This is known as Glauert [27] correction and consists of an empirical relation 
between the thrust coefficient Ct and the axial induction factor a. 

The BEM-based algorithm was developed and programmed by the authors of the current study 
based on the numerical iterative approach of Hansen [26]. All of the necessary equations were derived 
and computed based on the steps proposed by the classical BEM method. The usual basic steps for 
BEM calculations were as follows: 

(1) Initialization by guessing the values of a and a’, and the axial and tangential induction factors, 
respectively. 

(2) Calculate the flow angle Φi. 
(3) Calculate the local angle of attack α. 
(4) Read off CL (α) and CD (α). 
(5) Compute the normal Cn and tangential Ct load coefficients. 
(6) Re-calculate a and a’. 
(7) State a tolerance for a and a’ and if it has changed more than that tolerance, go to (b), or else 

finish. 
(8) Compute the local loads. 

The power coefficient Cp calculation has been implemented as follows: 
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For each ri station in the blade the working point is evaluated in order to calculate the torque 
and the power captured by this station. The input conditions are given by the wind velocity and the 
rotor speed. Once the working point defined by ܽ௜	and ܽ௜ᇱ is well known for each ri station, the torque 
contribution of this station can be calculated with the following equation: ݀ܶ݁ݑݍݎ݋௜ = .ܤ .ߩ ଴ܸ(1 − ܽ௜)(1 + ܽ௜ᇱ)2. sin .(௜ߔ) (௜ߔ)ݏ݋ܿ . .ݓ ܿ௜. .௜ݎ C୲. dݎ୧ (1) 

When the algorithm must calculate the working point (ܽ௜ ,	ܽ௜ᇱ), usually an iterative equation 
system is applied. The stop condition is usually given by a maximum number of steps or enough low 
values of change in the working point (ܽ௜,	ܽ௜ᇱ). The presented algorithm is a Gauss Seidel-like equation 
solver and consists of the following equations: ߔ௜ = arc tan (1 − ܽ௜) ∙ ଴ܸ(1 + ܽ௜ᇱ) ∙ ߱ ∙  ௜ (2)ݎ

∝= ௜ߔ − ൫+ ௅ܥ ௧௪௜௦௧,௜൯ (3)ߚ = ஽ܥ (4) (∝)݂ = ௡ܥ (5) (∝)݂ = ௅ܥ ∙ cos(ߔ௜) + ஽ܥ ∙ sin(ߔ௜) (6) ܥ௧ = ௅ܥ ∙ sin(ߔ௜) + ஽ܥ ∙ cos൫ߔ௜௜൯ (7) 

ߪ = ܤ ∙ ܿ௜2 ∙ ߨ ∙  ௜ (8)ݎ

ܽ௜ = 14 ∙ sinଶ ߪ௜ߔ ∙ ௧ܥ + 1 (9) 

ܽ௜ = 14 ∙ sinଶ ߪ௜ߔ ∙ ௧ܥ + 1 (10) 

The variables used are described in Table 1. In the present implementation, the solver has 
followed the flow charge described in Figure 2 for each iteration. 

Table 1. Description of current variables. 

Variable Name Units 
Vo Wind speed m/s 
ai Axial induction factor - ܽ௜ᇱ Tangential induction factor - 
β Pitch angle in the blade root rad 

βtwist,i Twist angle for each position of ri rad 
ri Airfoil spanwise position (radius) m 
w Rotor rotational speed rad/s 
ρ Air density Kg/m3 
B Number of blades - 
ci Airfoil chord length m 

dTorque Torque on the annular element Nm 
Cn Normal load coefficient - 
Ct Tangential load coefficient - 
Φ Flow angle rad 
α Angle of attack rad 
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Figure 2. Schematic flowchart of the improved BEM algorithm with the recursive function of Equation 
(11) for the flow angle variable ߔ instead of a and a’. 

Following the proposed scheme of Figure 2, for each ߔ௜  value at iteration k, the previous 
equation system from Equations (2) to (10) gives a new ߔ௜ value for iteration k + 1. It is simple to 
propose a grid of values of ߔ	from 0 to 2π, and calculate the function	ߔ(݇ + 1) defined by Equation 
(11). When this function crosses the line	ߔ(݇ + 1) =  it is possible to say that the solver has ,(݇)ߔ
obtained the value of Φ that solves the equation system from Equations (2) to (10): ߔ(݇ + 1) =  (11) ((݇)ߔ)݂

In this way, for a given value of Φ, it is possible to obtain the values of ܽ௜	and ܽ௜ᇱ. Once these 
two parameters have been estimated with Equations (2) to (10), the torque contribution of this station 
is calculated. These calculations can be repeated for all of the stations in the blade and, finally, the 
total torque can be calculated by the numerical integration of these torque contributions for a given 
rotor speed, wind speed, and given pitch values. Once the total torque has been estimated for a given 
state, (wind speed, rotor speed, and pitch angle), the power captured by the wind turbine can be 
directly estimated by multiplying the rotor speed by the total torque. This algorithm allows the 
calculation of the working point of each station without any numerical oscillations or instabilities 
because all possible values of ߔ(݇)  are calculated. Hence, there is no possibility of numerical 
convergence problems. 

3. NREL 5 MW Reference Wind Turbine 

The NREL 5 MW reference wind turbine is being widely used in research studies of the wind 
energy field since it represents a baseline of the modern and future offshore HAWT [28]. Many 
investigations have been carried out based on this wind turbine concept, including studies about 
rotor aerodynamics, controls, offshore dynamics, and design code development. This conception of 
a 5 MW wind turbine is based on the data from the DOWEC study [29,30]; with a concept from the 
UpWind project [31]. The airfoils and chord schedule used in the present work are the same as [28], 
also adopted from the DOWEC project. More exhaustive information about the DU Delft University 
family of airfoils used can be found in Timmer et al. [32]. The reported NREL 5 MW airfoil 
distribution is shown in Table 2. 

Table 2. Airfoil distribution along the blade of the NREL 5 MW wind turbine described in [28]. 

Station r Airfoil Type
1 2.8667 Cylinder1 
2 5.6000 Cylinder1 
3 8.3333 Cylinder2 
4 11.7500 DU40 
5 15.8500 DU35 
6 19.9500 DU35 



Energies 2017, 10, 742 6 of 15 

 

7 24.0500 DU97W300 
8 28.1500 DU91W(2)250 
9 32.2500 DU91W(2)250 

10 36.3500 DU93W210 
11 40.4500 DU93W210 
12 44.5500 NACA64XX 
13 48.6500 NACA64XX 
14 52.7500 NACA64XX 
15 56.1667 NACA64XX 
16 58.9000 NACA64XX 
17 61.6333 NACA64XX 

3.1. Flow Control Devices and Experimental Data Description 

All of the experimental data have been taken from the AVATAR (Advance Aerodynamic Tools 
for Large Rotors) European project. The results from wind tunnel tests at the Low-Speed Tunnel of 
TU Delft at a Reynolds number of Re = 2 × 106 are used in the current work. For a detailed description 
of the experimental techniques and analysis, refer to Timmer et al. [32]. The data used in the present 
study refers to the following airfoils: DU97W300, DU91W(2)250, and DU93W210. The configuration 
of the flow control devices is described in Table 3 with the inclusion of a triangular, vane-type VG 
array on the upper airfoil surfaces data combining with GFs. The suffixes VG20 and VG30 represent 
that VGs are mounted on the airfoil suction side at a distance from the LE of 20% and 30% of c, 
respectively. The GF2 suffix corresponds to a GF with height of 2% of c implemented on the airfoil. 
The notation for each case is denoted in the third column of the Table 3. 

Table 3. Types of flow control devices and locations on the airfoils. 

Airfoil Type Flow Control Device Case Name 

DU97W300 

VG’s leading edge at 20% chord upper surface DU97W300VG20 
VG’s leading edge at 30% chord upper surface DU97W300VG30 
VG’s leading edge at 20% chord upper surface and 
zigzag tape t = 0.35 mm at x = 5% chord upper 
surface 

DU97W300VG20zigzag 

DU91W(2)250 

VG’s leading edge at 20% chord upper surface. 
Gurney flap with height of 2% chord at lower 
surface trailing edge. 

DU91W(2)250VG20GF2 

VG’s leading edge at 30% chord upper surface. 
Gurney flap with height of 2% chord at the lower 
surface trailing edge. 

DU91W(2)250VG30GF2 

DU93W210 
VGs (height 5 mm) at 20% chord upper surface DU93W210VG20 
VGs (height 5 mm) at 40% chord upper surface DU93W210VG40 
VGs (height 7 mm) at 60% chord upper surface DU93W210VG60 

4. Wind Speed Model 

The wind speed realizations utilized in the BEM computations, as shown in Figure 3, have been 
calculated with the TurbSim tool (v1.06.00, NREL, Golden, CO, USA) [33]. The wind speed series 
have been generated with the following parameters, and the turbulence model is the normal 
turbulence model (NTM) following the IEC 61400 norm [34]: 

• Mean wind speeds in the hub ݑത: 5 and 10 m/s; 
• Spectral model: IECKAI (B); and 
• Hub height: 90 m. 

TurbSim uses an adapted version of Veers [35] to generate the time series based on the spectral 
representation. The IECKAI (IEC Kaimal) model is defined in IEC 61400-1 2nd ed. [34] and 3rd ed. 
[36] and assumes neutral atmospheric stability. The spectra for the wind field are given by Equation 
(12): 
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SK൫f൯= 4LKσ௄2 ത(1ݑ/ + 6݂LK/ݑത)ହ/ଷ (12) 

where f and LK are the cyclic frequency of turbulent wind field and the integral scale parameter, 
respectively, corresponding to a value of f = 50.000 Hz and LK = 340.2 m. The mean wind velocity at 
the hub height is indicated by ݑത. 

The velocity spectra of the IECKAI model are assumed to be invariant across the grid. In practice, 
a small amount of variation in the u-component standard deviation occurs due to the spatial 
coherence model. Figure 3a,b represent the wind speed series used in the present study according to 
the NTM with a 5 m/s of average velocity and with a 10 m/s average velocity, respectively. These two 
different wind speed realizations were chosen to investigate the effects of the VGs and GFs, since it 
is a good way to evaluate the wind turbine power output at low and medium wind speeds. 

 
(a) (b) 

Figure 3. Wind speed realization calculated with Turbsim. (a) NTM at 5 m/s of average wind speed; 
(b) NTM at 10 m/s of average wind speed. 

The wind speed dataset is sorted using the “method of bins”. This method divides the wind 
speed range into 0.5 m/s contiguous bins centered on integer multiples of 0.5 m/s. Figure 4 shows the 
corresponding histograms of the percentage of occurrences per bin for both cases at 5 and 10 m/s 
averaged wind speed. 

(a) (b) 

Figure 4. Percentage of occurrences per bin. (a) 5 m/s averaged wind speed; (b) 10 m/s averaged wind 
speed. 

5. Methodology 

The primary tools used in the current work to investigate the effects of the passive flow control 
devices on the NREL 5 MW baseline wind turbine are engineering models. The present procedure is 
described in the following steps: 

(1) First of all, BEM-based computations were carried out in order to characterize the dynamic 
behavior of the NREL 5 MW wind turbine, including BEM calculation improvements described 
in Section 2. 
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(2) Following the specifications of the utility scale multi megawatt wind turbine NREL offshore 5 
MW baseline described in [28], all of the wind turbine rotor properties were introduced as input 
characteristics. The polar curves of airfoils with no flow control device were taken from [32] and 
[29]. The data of the airfoil with the flow control devices are described in Section 3.1. 

(3) The surfaces of the power coefficient Cp were calculated for all cases of the present study 
according to the matrix distribution described in Table 4. 

(4) Once the Cp surfaces have been generated, BEM-based computations are run for all of the cases 
and the power curve vs. wind speed is calculated to compare the power curve of the clean 
turbine with the curve of the cases with the flow control devices implemented. 

(5) Afterwards, the wind speed realizations explained in Section 4 are introduced to calculate the 
average wind turbine power output for all cases. 

(6) The results of the average wind turbine power output for all cases and at two different wind 
speed realizations are compared with the mean power output of the clean wind turbine, the one 
without any flow control devices implemented. 

Table 4 illustrates a matrix with the distribution of the cases. The clean wind turbine was taken 
as the baseline case, without any devices implemented. The cases are different depending on the 
blade span position where the passive devices were implemented, the airfoil type, and the device 
location from the LE of the airfoil. The suffix st means the blade station where the passive devices 
were introduced. According to the airfoil distribution described in Table 2, the stations 7–11 were 
selected with their corresponding airfoil types. For simplicity, a test ID number will be used in the 
legends of the plots and tables. As an example, the case ID1 represents the NREL 5 MW wind turbine 
with VGs implemented in the upper surface of the airfoil DU97W300 at 20% of c from the LE and 
corresponding to blade station 7. 

Table 4. Cases studied according to flow control device span distribution. St.: station. 

Test ID Test Cases St. 7 St. 8 St. 9 St. 10 St. 11 
0 Clean      
1 DU97W300VG20st7 x     
2 DU97W300VG30st7 x     
3 DU97W300VG20zigzag x     
4 DU91W(2)250VG20GF2st8  x    
5 DU91W(2)250VG20GF2st9   x   
6 DU91W(2)250VG20GF2st8st9  x x   
7 DU91W(2)250VG30GF2st8  x    
8 DU91W(2)250VG30GF2st9   x   
9 DU91W(2)250VG30GF2st8st9  x x   

10 DU91W(2)250VG20st8  x    
11 DU91W(2)250VG20st9   x   
12 DU91W(2)250VG20st8st9  x x   
13 DU91W(2)250VG30st8  x    
14 DU91W(2)250VG30st9   x   
15 DU91W(2)250VG30st8st9  x x   
16 DU93W210VG20st10    x  
17 DU93W210VG20st11     x 
18 DU93W210VG40st10st11    x x 
19 DU93W210VG40st10    x  
20 DU93W210VG40st11     x 
21 DU93W210VG40st10st11    x x 
22 DU93W210VG60st10    x  
23 DU93W210VG60st11     x 
24 DU93W210VG60st10st11    x x 
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6. Results and Discussion 

In order to investigate the influence of the flow control devices on the power of the NREL 5 MW 
reference wind turbine, BEM-based computations have been carried out following the steps 
explained in the previous section. The BEM computations have been derived and the power has been 
computed. Table 5 shows the results of the average wind turbine power calculations for the clean 
wind turbine and for the cases with flow control devices. Equation (13) shows how this average 
power is calculated: 

௔ܲ௩௘௥௔௚௘ = ∑ ܲ( ଴ܸ,௝) ∙௝ୀே௕௜௡௦௝ୀଵ ܰ ( ଴ܸ,௝)∑ ܰ ( ଴ܸ,௝)௝ୀே௕௜௡௦௝ୀଵ  (13) 

 V0,j: is the instantaneous wind speed according to the realizations shown in Figure 3. 
 Nbins: number of bins per data. 
 P(V0,j): power at the wind speed V0,j. 
 N(V0 j): number of data at the wind speed V0,j. 

where the P(V0,j) has been determined by Equation (14): ܲ൫ ଴ܸ,௝൯ = ߩ12 ∙ ߨ ∙ ܴଶ ∙ ଴ܸ,௝ଷ ∙ ,ߚ)௣ܥ ) (14) 

Firstly, the average power was calculated for the clean wind turbine at the two wind speed 
realizations presented in Figure 3, without any flow control device mounted on the blade. The results 
are presented in Table 5. At NTM5 wind speed realization the average power output was 4.85570 × 
105 W and at NTM10 3.417917 × 106 W. The same procedure was carried out for the wind turbine 
cases with the flow control devices following the test cases described in Table 4. In all wind turbine 
cases an increment in the wind turbine power output is achieved, but it is more notable at low wind 
speed. The greatest mean power value (before defining the best combination case ID25) at the NTM5 
wind speed realization was achieved by case ID6, with a value of 5.34667 × 105 W, which supposes 
an increase of 10.111% in comparison with the value obtained by the clean wind turbine. At NTM10 
wind speed realization the largest average power value (before defining the best combination case 
ID25) is again reached by case ID6 with an increase with respect to the clean case of 3.388%. The other 
cases with the flow control devices mounted at different stations experience a similar increase. The 
symbol Δ in Table 5 represents the increments in the average power output of all cases, from ID1 to 
ID25, in comparison with the clean wind turbine at NTM5 and NTM10 wind speed realizations. 

Table 5. Average wind turbine power output for the clean wind turbine in comparison with the cases 
with flow control devices. Calculations have been made at two different wind speed realizations, 
NTM5 and NTM10. Δ indicates the average power variation of each ID case with respect to the clean 
case. 

TEST ID TEST CASES NTM5 (W) Δ (%) NTM10 (W) Δ (%)
0 Clean 485,570 - 3,417,917 - 
1 DU97W300VG20st7 531,586 9.477 3,521,719 3.037 
2 DU97W300VG30st7 531,680 9.496 3,522,083 3.048 
3 DU97W300VG20zigzag 531,594 9.478 3,521,749 3.038 
4 DU91W(2)250VG20GF2st8 534,666 10.110 3,533,699 3.387 
5 DU91W(2)250VG20GF2st9 531,784 9.517 3,522,488 3.060 
6 DU91W(2)250VG20GF2st8st9 534,667 10.111 3,533,699 3.388 
7 DU91W(2)250VG30GF2st8 534,571 10.091 3,533,342 3.377 
8 DU91W(2)250VG30GF2st9 531,784 9.517 3,522,488 3.060 
9 DU91W(2)250VG30GF2st8st9 531,813 9.523 3,533,342 3.377 

10 DU91W(2)250VG20st8 531,784 9.517 3,522,488 3.060 
11 DU91W(2)250VG20st9 531,784 9.517 3,522,488 3.060 
12 DU91W(2)250VG20st8st9 531,811 9.523 3,522,597 3.063 
13 DU91W(2)250VG30st8 531,813 9.523 3,522,601 3.063 
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14 DU91W(2)250VG30st9 531,784 9.517 3,522,488 3.060 
15 DU91W(2)250VG30st8st9 531,813 9.523 3,522,601 3.063 
16 DU93W210VG20st10 531,786 9.518 3,522,499 3.060 
17 DU93W210VG20st11 531,784 9.517 3,522,488 3.060 
18 DU93W210VG40st10st11 531,786 9.518 3,522,499 3.060 
19 DU93W210VG40st10 531,785 9.518 3,522,492 3.060 
20 DU93W210VG40st11 531,784 9.517 3,522,488 3.060 
21 DU93W210VG40st10st11 531,785 9.518 3,522,492 3.060 
22 DU93W210VG60st10 531,932 9.548 3,523,067 3.076 
23 DU93W210VG60st11 531,784 9.517 3,522,488 3.060 
24 DU93W210VG60st10st11 531,932 9.548 3,523,067 3.077 
25 Best combination case 536,074 10.401 3,538,934 3.541 

The case indicated in the last line of Table 5 has been determined as a combination of the best 
cases from ID1 to ID24 for each airfoil type and blade station. The largest value in the average power 
for the cases with the flow control devices implemented into the airfoil DU97 is achieved by the case 
ID2; DU97W300VG30st7, consequently, was selected to be included into the best case ID25. Following 
the same criterion of the maximum mean power output, ID6 and ID24 cases have been chosen for the 
best combination case. Therefore, the wind turbine of ID25 was defined by the cases ID2, ID6, and 
ID24, and the average power was calculated and compared with the average power values of the 
clean wind turbine. At the wind speed realization of NTM5, the ID25 case achieves an increase of 
10.401% and, at NMT10, the increase is 3.541% in comparison with the clean wind turbine. Both 
increments are the largest ones in comparison with the other cases from ID1–ID24. Those results are 
in concordance with the previous study by Sullivan [16], where an increase of approximately 11% in 
the power production was achieved. 

Best Combination Case Comparison vs. Clean Case 

Figure 5a illustrates the power curves vs. the wind speed for the case with no passive devices 
implemented into the blade in comparison with case ID25. The curve of the wind turbine with the 
best combination case ID25 follows the trend of the curve of the clean wind turbine. However, at the 
wind speeds before the rated power is achieved, the power output increases slightly in the ID25 case, 
as shown in the enlargement view embedded in Figure 5a. The power coefficient Cp has also been 
computed for both the clean wind turbine and the ID25 case and is represented in Figure 5b against 
the wind speed. The improvement of the Cp for the ID25 case is observable in comparison with the 
clean case. In Figure 5a,b, the calculations of the wind turbine power output and the power 
coefficients provided by [28] have also been added. Those parameters have been determined by FAST 
which is an NREL computer-aided engineering (CAE) tool for horizontal axis wind turbines widely 
used in wind turbine aero-elasticity calculations. The BEM-based computations of the current study 
follow the trends of the calculations made by [28] for both power output and Cp variables. 

The wind turbine power output production has also been investigated along with the duration 
of the wind speed realizations described in Section 4. The upper part of Figure 6a,b illustrates the 
comparison between the clean case and the previously-denoted best case ID25 of the power 
distribution with time for both wind profiles NTM5 and NTM10. In the bottom of Figure 6a,b an 
enlargement view of the power profiles has been inserted to show the increments of the ID25 case 
power with respect to the clean case. At the NTM5 wind realization, the power produced by the ID25 
case follows the profile formed by the clean case with time but with a positive gap. However, at the 
NTM10 wind profile the power of the ID25 case is constant and equal to the wind turbine rated power 
of 5 MW in contrast to the power profile achieved by the clean case, which is irregular and lower than 
the rated power. The gain in the power output production due to the passive flow control devices 
implementated in the ID25 case is clearly visible for both wind speed realizations. 
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(a) (b) 

Figure 5. Comparison of the (a) power curves and (b) Cp calculations of the clean turbine with the best 
case ID25 and the calculations made by Jonkman [28]. 

 
(a) (b) 

Figure 6. Wind turbine power distribution with time. (a) The wind speed realization of NTM5;  
(b) The wind speed realization of NTM10. 

After applying the BEM algorithm to all control volumes, the tangential and normal load 
distributions are known and global parameters, such as thrust and bending moment at the root of the 
blade, can be computed. The mean values of both the thrust and bending moment have been 
calculated for each wind speed realization. The thrust T has been calculated by Equation (15) taking 
into account the thrust distribution along the blade and the bending moment M is determined by 
Equation (16): ܶ = න 4ோ଴ ∙ ߨ ∙ ௜ݎ ∙ ߩ ∙ ( ଴ܸ)ଶ ∙ ߱ ∙ ܽ௜ ∙ (1 − ܽ௜) ∙ ܨ ∙  ௜ (15)ݎ݀
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The Prandtl’s tip loss correction factor F has been determined by Equation (17), for both thrust 
and bending moment calculations: ܨ = ଶగ cosିଵ(݁ି௙) where  ݂ = ஻ଶ ோି௥೔௥೔ ୱ୧୬ (17) 

The variables used for thrust and bending moment estimations, and the corresponding 
dimensions, are shown in Table 1. All of the calculations are based on the 5 MW reference wind 
turbine described in [28], where R is the rotor radius. Figures 7 and 8 illustrate the comparison 
between the clean case and the ID25 case for the thrust and bending moment results at the wind 
speed realizations of NTM5 and NTM10, respectively. The thrust force is represented by the green 
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color line and the bending moment by the magenta line. An enlargement view has been included in 
the bottom of each plot in order to show a detailed view of the variation between the clean case and 
the ID25 case. At both wind speed realizations the increase in the thrust force is notable due to the 
flow control devices implemented in the ID25 case. As expected, the bending moment in the root of 
the blade is also increased, but at a lower scale. 

 
(a) (b) 

Figure 7. Wind turbine performance at NTM5 wind speed realization. (a) Thrust force, and (b) 
bending moment at the root of the blade 

 
(a) (b) 

Figure 8. Wind turbine performance at NTM10 wind speed realization. (a) Thrust force; (b) Bending 
moment at the root of the blade. 

Table 6 represents the mean values of thrust and blade root bending moment calculations for 
the clean case and for the ID25 case. The thrust was calculated by integrating the thrust distribution 
along the blade by Equation (15) for each wind speed realization. Afterwards, the average thrust force 
was determined according to the wind speed realization duration in Figure 3. The increments in the 
thrust force of case ID25 with respect to the clean case were estimated to be 1.639% and 1.473% at the 
average wind speeds of NTM5 and NTM10, respectively. As expected, those increments of the 
average thrust in the ID25 case led to an augmentation of the bending moment in the root of the 
blade. The augmentations in the average bending moment for both wind speed realizations are 
represented in the last column of Table 6 and were estimated to be less than 1% in comparison against 
the clean case. 
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Table 6. Thrust force and bending moment average values for the clean and the ID25 cases at two 
different wind speed realizations. ΔT and ΔM indicate the variation of thrust and bending moment, 
respectively, with respect to the clean case, in %. 

Wind Type 
Thrust (N) Bending Moment (Nm) 

Clean ID25 ΔT (%) Clean ID25 ΔT (%)
NTM5 155155 157698 1.639 6705529 6766144 0.904 
NTM10 511960 519500 1.437 22072422 22251318 0.810 

7. Conclusions 

BEM-based computations have been carried out to investigate the effects of GFs and VGs on the 
power performance of a 5 MW wind turbine. A new BEM-based algorithm has been developed and 
all of the necessary equations have been computed based on the classical BEM method. This 
improved method has been designed to avoid numerical oscillations or instabilities. 

An overall increase on the average wind turbine power output has been found in the current 
study due to the implementation of GFs and VGs at different blade stations. At lower average wind 
speeds of NTM5 the increment in the power output wanders around 10% for all the cases illustrated 
in Table 5. That increase decays to 3% at NTM10 of average wind, which is still significant. The best 
results, in terms of average power, are reached by the case denoted by ID25, which is a combination 
of the best cases found from ID1 to ID24 cases. The rise in the average wind turbine power production 
is 10.4%, in comparison with the clean wind turbine at a wind speed of NTM5 and 3.5% at NTM10. 

The wind turbine rotor thrust has also been computed at two wind speed realizations for the 
ID25 case in comparison against the clean wind turbine. An increase of 1.6% at NTM5 and an increase 
of 1.5% at NTM10 in the ID25 case average thrust have been achieved in comparison with the thrust 
force of the clean wind turbine. The enhancement is more prominent at low average wind speeds 
than at the speeds close to the rated power. 

As expected, the increase in the wind turbine power output due to the passive flow control 
device implementation leads to an augmentation of the average bending moment in the root of the 
blade of the ID25 case in comparison against the clean wind turbine. At the wind speed realization 
of NTM5 the increase was estimated as 0.9% and as 0.8% for NTM10. However, that enhancement in 
the bending moment is acceptable, taking into account the rise in the average power output 
production of 10.4% and 3.5% for both wind speed realizations, NMT5 and NTM10, respectively. 

The results of the current study show that careful analysis of the flow control device type and 
location on the airfoil, combined with a selection of an appropriate spanwise location on the blade, 
can yield an effective device flow control system to increase the wind turbine power output with a 
low penalty in the root bending moment. 
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