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Abstract: This paper studies the complex bifurcation phenomena of a voltage-controlled Buck-inverter
cascade system. A state-flow chart is drawn to illustrate the complex relations among the linear operating
modes. Combined with the state transition function of each mode, the time response of the system
can be obtained. For period-one steady state, the periodic mapping function and its fixed point are
further derived, on the basis of which the Jacobi matrix is developed and its maximum eigenvalue is
analyzed to understand the bifurcation diagram. By globally analyzing the state space using this cell
mapping method, the coexistence of attractors is revealed in the Buck-inverter system. All theoretical
results have been verified experimentally on a prototype system. The results obtained can be used for
guiding the design and analysis of the Buck-inverter system. The analyzing method can be helpful
for studying other power electronics systems with compound topologies.
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1. Introduction

Buck-inverter cascade configuration is widely used in wireless power transfer (WPT) and
inductive heating applications for high frequency magnetic field generation [1–3]. Usually, the inverter
is used to drive a resonant network to generate high-frequency alternating current along the transmitter
coil [2] or the heating coil [4], and the Buck converter is used to regulate the output power. However,
due to the interactions between the Buck converter and the load resonant inverter, and the nonlinear
switching effect of the switches, nonlinear characteristics are inevitable issues to consider when
designing a Buck-inverter system [5].

In fact, nonlinear characteristics are common in power electronics systems. Various nonlinear
phenomena in power electronics have been found in the past two decades. The initial research
focused on DC/DC unit converters. Period-doubling bifurcation and chaos were found in Buck,
Boost, Buck-Boost and Sepic converters, etc. [6–12]. Particularly, the coexistence of the attractor’s
phenomenon was found in Buck converters. Starting from different initial values, the converters
converged to different steady states [13,14]. Flip bifurcation and chaos were found in a three-state
boost switching regulators, and the results show the system exhibited a typical route to chaos via
period-doubling [15]. Later, nonlinear phenomena in AC/DC converters were studied. Reference [16]
studied the fast-scale instability in a power-factor-correction (PFC) Boost converter, and bifurcation near
the switching moment was observed. Nonlinear phenomena in DC/AC inverters were first studied
in [17], and border collision bifurcation occurred when varying the control parameters. Furthermore,
Hopf bifurcation was also observed in DC/AC inverters, and it has been verified that Hopf bifurcation
is also a route to chaos [18]. Reference [19] studied chaos and the coexistence of attractors’ phenomena
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in a full-bridge converter. The results show that the period-one attractor co-exists with the period-three
attractor at some critical parameter values. Moreover, there are also some studies of nonlinear behaviors
in high-order converters [20–22]. Bifurcation and chaos were found in parallel Buck or Boost converters.
Unlike parallel converters, the authors of [23,24] studied the nonlinear characteristics of a load resonant
DC/DC combined converter, which is a cascade system with a DC/AC inverter series connected to
an AC/DC converter, and a symmetry-breaking bifurcation was introduced in this research. All of
the above studies showed that complex nonlinear phenomena can exist in various power electronics
converters because of the switching transitions among different circuit topologies [24,25]. Studies on
the nonlinear behaviors help us to better understand the operation principles of the power electronics
systems and can furthermore lead to innovative techniques in dealing with the nonlinearities.

When analyzing the nonlinear phenomena of the converters, a discrete mapping modeling
method is commonly used. The method can quickly determine the periodic state, so as to plot bifurcation
diagrams [6,11,12]. For combined parallel and series converters, the nonlinear phenomena are much
more complex than in single unit converters, which have been proven to be more difficult in
being modeled and analyzed [26,27]. In this paper, to better analyze the operating principle of the
Buck-inverter cascade system, a state-flow chart has been introduced to illustrate the complex relations
among the linear operating modes. In order to globally analyze the coexistence of attractors, the cell
mapping method is also introduced. Utilizing these methods, bifurcation diagrams with the reference
voltage and the input voltage as bifurcation parameters are studied and verified by the maximum
Jacobi matrix eigenvalues. In particular, the coexistence of attractors is observed theoretically and
verified experimentally.

The paper is structured as follows: the operating principle, state-flow chart and Jacobi matrix
analysis of the Buck-inverter system is derived in Section 2; bifurcation diagrams and theoretical
verification by the maximum Jacobi matrix eigenvalues are shown in Section 3; the coexistence of
attractors are revealed and investigated globally with the cell mapping analytical method in Section 4;
the experiment verification of the bifurcation diagrams and coexistence of attractors are presented in
Section 5; and finally, the conclusions are drawn in Section 6.

2. Modeling of Voltage-Controlled Buck-Inverter

2.1. Operating Principles of Voltage-Controlled Buck-Inverter

The diagram of the voltage-controlled Buck-inverter cascade system is shown in Figure 1. The main
topology consists of two parts. One is a Buck converter and the other is a full-bridge load resonant
inverter. A voltage closed loop is added to the output voltage of the Buck converter to adjust the
output power of the system. E is the input DC source. S and D are the switch and the fly-wheeling
diode of the Buck circuit, respectively. L and C constitute a low pass filter. RL is the equivalent series
resistance of L. S1, S2, S3 and S4 constitute a full-bridge inverter. Lp and Cp constitute a series resonant
circuit to obtain a high frequency sinusoidal alternating current in the coil Lp. Rp is the equivalent load.
To achieve a soft switching operating mode, switches S1–S4 should commutate at the instance when
the current ip crosses zero [28,29]. In the voltage feedback control loop, uref is the reference voltage and
uc is the output voltage of the Buck converter which is sensed by a voltage divider with a ratio of k
and subtracted from the reference voltage uref. a is the gain of the error amplifier which can also be
regarded as a proportional controller.

The control voltage ucon shown in Figure 1 can be written as:

ucon = a(ure f − kuc) (1)

The saw-tooth carrier signal in one control period is given as:

uramp = UL + (UH −UL)t, t ∈ [0, Tb] (2)
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where t is the time variable; Tb (Tb = 1/fb, fb is the frequency of the Buck converter) is the period of the
saw-tooth signal; UL and UH are its lower and upper threshold values respectively.

The negative voltage feedback control strategy of the Buck circuit is:

ug =

{
1 ucon ≥ uramp

0 ucon < uramp
(3)

To achieve soft switching, a fixed frequency which is consistent with the natural frequency of the
resonant network is used to control the inverter. The control sequence in one period can be written as: u14 = 1, u23 = 0, t ∈

[
0, Ti

2

]
u23 = 1, u14 = 0, t ∈

(
Ti
2 , Ti

] (4)

where t is the time variable, and Ti (Ti = 1/fi, fi is the frequency of the resonant inverter) is the control
period of the resonant inverter.

2.2. State-Flow Chart of Buck-Inverter System

Usually, when analyzing power electronics systems, we divide the system into a series of operation
modes according to the on/off state of the controlled and non-controlled switches and study the modes
one by one [30,31]. Accordingly, the Buck-inverter system shown in Figure 1 can be piecewise linearized
into six possible working modes because the Buck converter works in continuous current mode (CCM)
and discontinuous current mode (DCM):

(1) Mode 1: S, S1, S4 on and D, S2, S3 off;
(2) Mode 2: D, S1, S4 on and S, S2, S3 off;
(3) Mode 3: S, S2, S3 on and D, S1, S4 off;
(4) Mode 4: D, S2, S3 on and S, S1, S4 off;
(5) Mode 5: S1, S4 on and S, D, S2, S3 off;
(6) Mode 6: S2, S3 on and S, D, S1, S4 off.
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Figure 1. Diagram of a voltage-controlled Buck-inverter cascade system. 
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Figure 1. Diagram of a voltage-controlled Buck-inverter cascade system.

The equivalent circuits of these six working modes are shown in Figure 2a–f respectively.
To reveal the complex relations among the working modes, the state-flow chart of the six working

modes is drawn and shown in Figure 3, where t0 is the time when iL falls to zero when the Buck
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converter works in DCM. d is the duty cycle of Buck converter. The system starts from Mode 1.
The direction of the arrows indicates the flow of the working modes, while the texts on the arrows
indicate the mode switching conditions. Black lines indicate the flow cases when only considering the
CCM of the Buck converter, while red lines indicate the further flow cases when considering the DCM
of the Buck converter.
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Figure 2. Equivalent circuits of the six working modes of the Buck-inverter system: (a) Mode 1;
(b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.

Choose X = [iL uc ip up]T and U = [E] as the state vector and the input vector of the Buck-inverter
respectively. Then the state space model of these six working modes can be derived according to
Kirchhoff’s law: 

.
X = A1X + B1U, Mode1
.

X = A2X + B2U, Mode2
.

X = A3X + B3U, Mode3
.

X = A4X + B4U, Mode4
.

X = A5X + B5U, Mode5
.

X = A6X + B6U, Mode6

(5)

where A1 = A2 =


−RL

L
−1
L 0 0

1
C 0 −1

C 0
0 1

LP

−Rp
LP

−1
LP

0 0 1
CP

0

, A3 = A4 =


−RL

L
−1
L 0 0

1
C 0 1

C 0
0 −1

LP

−Rp
LP

−1
LP

0 0 1
CP

0

,

A5 =


0 0 0 0
0 0 −1

C 0
0 1

LP

−Rp
LP

−1
LP

0 0 1
CP

0

, A6 =


0 0 0 0
0 0 1

C 0
0 −1

LP

−Rp
LP

−1
LP

0 0 1
CP

0

, B1 = B3 =


1
L
0
0
0

, B2 = B4 = B5 = B6 =


0
0
0
0

.
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The analytical solution of each linearized mode can be described as follows according to [32]

X(t) =



Φ1(t)X10 + (Φ1(t)− I)A1
−1B1E Mode 1

Φ2(t)X20 Mode 2
Φ3(t)X30 + (Φ3(t)− I)A3

−1B3E Mode 3
Φ4(t)X40 Mode 4
Φ5(t)X50 Mode 5
Φ6(t)X60 Mode 6

(6)

where i (i = 1, 2, 3, 4, 5, 6) is the mode number and Φi (t) = eAit, Xi0 is the initial states of each
working mode.

According to the mode transition chart shown in Figure 3 and the state transition function of
each working mode shown in Equation (6), the dynamical time responses of the Buck-inverter system
can be derived for any given initial states with the strategies of the Buck converter and the resonant
inverter as shown in Equations (3) and (4).

As discussed in [32], if the steady state mode series are known, the steady state responses are able
to be predicted analytically. However, for the Buck-inverter cascade system, if Tb is different from Ti,
the steady state mode series will be unknown especially when Tb and Ti are relatively prime. In this
case, the steady state periodic mapping function cannot be derived and neither can the Jacobi matrix.
The nonlinearity of the system can only be studied through numerical simulations. In order to better
understand the bifurcation characteristics of the system, we assume Tb = Ti and the phase difference is
zero in the following sections.
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2.3. Stability Analysis of Period-One Steady State

The maximum Jacobi matrix eigenvalue is an effective way to verify the stability of the system
at period-one steady state [33,34]. If the absolute value of the maximum Jacobi matrix eigenvalue is
larger than 1, the period-one operating point is unstable (there is bifurcation or chaos).

To simplify, assume that the Buck converter works in CCM, since the analysis process is the same
when Buck works in DCM. When the Buck converter goes into period-one steady state, the state flow
is different from when the duty cycle d of the Buck converter is larger or smaller than 0.5. When
d is larger than 0.5, the state flow in the steady period is: Mode 1, Mode 3, Mode 4. And the time
spans of the three modes are ξ1 = Tb/2, ξ3 = dTb − Tb/2 and ξ4 = Tb − dTb respectively. When time
variable t is smaller than Tb/2, the Buck-inverter works in Mode 1, and then it goes into Mode 3 when
t = Tb/2. Finally, the system goes into Mode 4 when t = dTb. Otherwise, when d is smaller than 0.5,
the state-flow in the steady period is: Mode 1, Mode 2, Mode 4. And the time spans of the three modes
are ξ1 = dTb, ξ2 = Tb/2 − dTb and ξ4 = Tb/2 respectively. When the time variable t is smaller than dTb,
the Buck-inverter works in Mode 1, and then goes into Mode 2 when t = dTb. Finally, the system goes
into Mode 4 when t = Tb/2.

The analytical solution of each linearized mode in one period can be described as follows when d
is larger or smaller than 0.5.

d ≥ 0.5 : X(t) =


Φ1(t)X0 + (Φ1(t)− I)A1

−1B1E t ∈
[
0, Tb

2

]
Φ3

(
t− Tb

2

)
X
(

Tb
2

)
+
(

Φ3

(
t− Tb

2

)
− I
)

A3
−1B3E t ∈

(
Tb
2 , dTb

]
Φ4(t− dTb)X(dTb) t ∈ (dTb, Tb]

d < 0.5 : X(t) =


Φ1(t)X0 + (Φ1(t)− I)A1

−1B1E t ∈ [0, dTb]

Φ2(t− dTb)X(dTb) t ∈
(

dTb, Tb
2

]
Φ4

(
t− Tb

2

)
X
(

Tb
2

)
t ∈

(
Tb
2 , Tb

]
(7)

where i (i = 1, 2, 3, 4) is the mode number, X0 = X(t)|t=0 and Φi (t) = eAit.
Equation (7) results in six discrete mapping functions:

fi,ξi(X) = Φi(ξi)X + A−1
i (Φi(ξi)− I)BiU i = 1, 2, 3, 4. (8)

Let X0 be the initial state and n = 0, 1, 2, . . . be the index of the discrete map. Xn and Xn+1 are
the initial state and final state of each operating period, respectively. The duty cycle between the n to
n + 1 interval is dn, then ξ1 = Tb/2, ξ3 = dnTb − Tb/2 and ξ4 = Tb − dnTb when d is larger than 0.5 while
ξ1 = dnTb, ξ2 = Tb/2− dnTb and ξ4 = Tb − Tb/2 when d is smaller than 0.5. Based on (8), the stroboscopic
mapping model F can be obtained as:

d ≥ 0.5 : Xn+1 = F(Xn, ξ1, ξ3, ξ4) = f4,ξ4 ◦ f3,ξ3 ◦ f1,ξ1(Xn)

= Φ4(ξ4)
(

Φ3(ξ3)
(

Φ1(ξ1)Xn + (Φ1(ξ1)− I)A−1
1 B1U

)
+ (Φ3(ξ3)− I)A−1

3 B3U
)

d < 0.5 : Xn+1 = F(Xn, ξ1, ξ2, ξ4) = f4,ξ4 ◦ f2,ξ2 ◦ f1,ξ1(Xn)

= Φ4(ξ4)
(

Φ2(ξ2)
(

Φ1(ξ1)Xn + (Φ1(ξ1)− I)A−1
1 B1U

)) (9)

where f ◦ g(t) = f (g(t)).
Since the closed loop control of voltage is used in the Buck converter, the switching function

S(Xn,dn) can be derived as:

d ≥ 0.5 :

S(Xn , dn)
de f
= a

(
ure f − kX(dnTb)

)
− (α + βdn)

= a
(
ure f − k

((
Φ3(ξ3)

(
Φ1(ξ1)Xn + (Φ1(ξ1)− I)A−1

1 B1U
)
+ (Φ3(ξ3)− I)A−1

3 B3U
)))
− (α + βdn)

d < 0.5 :

S(Xn , dn)
de f
= a

(
ure f − kX(dnTb)

)
− (α + βdn)

= a
(
ure f − k

(
Φ1(ξ1)Xn + (Φ1(ξ1)− I)A−1

1 B1U
))
− (α + βdn)

(10)
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where Xn is the initial state of period n (n ∈ N); k is voltage divider ratio; a is the gain of the error
amplifier; vector P = [0100] is a selection matrix of the Buck converter output voltage, α = UL,
β = UH − UL. The on and off state of the switch S should change at the moment S(Xn,dn) = 0.

As can be seen from Equation (10), when the initial state of period n is determined, the duty cycle
of the mapping period can be derived, and then according to Equation (9), the discrete mapping of the
system can be obtained.

As mentioned before, the maximum Jacobi matrix eigenvalue is used to study the stability of
the system at period-one steady state. The states repeat periodically when the system operates in
period-one [32], i.e., Xn+1 = Xn. So the periodic fixed point can be derived as:

d ≥ 0.5 :

x∗ =
(

I −Φ4

(
Tb
2

)
Φ1

(
Tb
2

))−1
Φ4(Tb − dnTb)

(
Φ3

(
2dn Tb−Tb

2

)(
Φ1

(
Tb
2

)
− I
)

A1
−1B1E +

(
Φ3

(
2dn Tb−Tb

2

)
− I
)

A3
−1B3E

)
d < 0.5 :

x∗ =
(

I −Φ4

(
Tb
2

)
Φ1

(
Tb
2

))−1
Φ4

(
Tb
2

)(
Φ2

(
Tb
2 − dnTb

)
(Φ1(dnTb)− I)

)
A1
−1B1E

(11)

According to Equations (9) and (10), the Jacobi matrix can be derived, as Equation (12) shows,
when d is larger than 0.5 [35]:

J(Xn) =
∂F

∂Xn
− ∂F

∂dn

(
∂S
∂dn

)−1( ∂S
∂Xn

)
(12)

where ∂F
∂Xn

= Φ4

(
Tb
2

)
Φ1

(
Tb
2

)
, ∂F

∂dn
= TbΦ4(Tb − dnTb)B3E, ∂S

∂Xn
= −akPΦ3

(
2dnTb−Tb

2

)
Φ1

(
Tb
2

)
,

∂S
∂dn

= −akP
(

A3TbΦ3

(
2dnTb − Tb

2

)(
Φ1

(
Tb
2

)
Xn +

(
Φ1

(
Tb
2

)
− I
)

A1
−1B1E

)
+ TbΦ3

(
2dnTb − Tb

2

)
B3E

)
− β

When d is smaller than 0.5, the Jacobi matrix can be derived as:

J(Xn) =
∂F

∂Xn
− ∂F

∂dn

(
∂S
∂dn

)−1( ∂S
∂Xn

)
(13)

where ∂F
∂Xn

= Φ4

(
Tb
2

)
Φ1

(
Tb
2

)
, ∂F

∂dn
= TbΦ1

(
Tb
2 − dnTb

)
B1E, ∂S

∂Xn
= −akPΦ1(dnTb),

∂S
∂dn

= −akP(A1TbΦ1(dnTb)Xn + TbΦ1(dnTb)B1E)− β

Substituting Equations (11)–(13), the maximum Jacobi matrix eigenvalues can be obtained at the
periodic fixed point, from which the stability of the system can be derived.

3. Bifurcation Studies of Buck-Inverter and Maximum Jacobi Matrix Eigenvalue Verification

In this section, bifurcation diagrams of the Buck-inverter will be presented and verified by the
Jacobi matrix eigenvalue. The parameters of the system are shown in Table 1.

Table 1. Parameters of the system.

Parameter Value Parameter Value

L 99.39 µH a 1
C 48.6 µF Lp 327.84 µH
RL 0.7 Ω Cp 193.16 nF
fb 20 kHz Rp 2.19 Ω
fi 20 kHz UL 1 V
k 1 UH 4 V

Bifurcation diagrams are a typical tool for analyzing nonlinear dynamic behaviors. Usually,
it is obtained by stroboscopic sampling, and plotted between the input sensitive parameter in the
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X-axis and the behavior of a state space variable in the Y-axis [36]. Herein, the inductor current iL is
taken as the state variable, while the reference voltage uref and the input voltage E are taken as the
sensitive parameters.

In order to obtain the bifurcation diagram, a stroboscopic sampling algorithm was added to the
time responses of the system to pick out the data at the beginning of each operating period Tb (Tb = Ti)
of iL. For each set of sensitive parameter, 100 data points were sampled when the system was running
in steady state. The initial states of each set of sensitive parameters are the steady state of the previous
(For example, when we derived the time response when uref = 13 V, the previous uref is 12.9 V. We just
took the steady state (not zero vector) when uref = 12.9 V as the initial state). The obtained bifurcation
diagram is shown in Figure 4, where Figure 4a,c take uref and E as the sensitive parameters respectively
(In Figure 4a, E is set to be 20 V while uref is set to be 12.5 V in Figure 4c).
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As can be seen from Figure 4a, as the reference voltage uref increases, complex bifurcation occurs.
The system exhibits period-one behavior for low values of uref, which remains stable up to uref ≈ 12.8 V.
Then it bifurcates into period-two operating mode. This dynamic lasts up to uref ≈ 14.5 V and transits
to period-four orbits from uref ≈ 14.5 V to 15.8 V except for a chaotic window at about 15.1 V to 15.8 V.
At uref ≈ 15.8 V, the system goes back to period-one and lasts up to 17 V. As for the bifurcation diagram
shown in Figure 4c, bifurcation occurs at about E ≈ 15.5 V, and goes back to period-one at E ≈ 18.8 V.

Figure 4b,d shows the maximum Jacobi matrix eigenvalue of the system with respect to the
sensitive parameters. As can be seen from Figure 4b,d, the maximum Jacobi matrix eigenvalue
only considers the stability of the periodic fixed point, and cannot determine whether the system is
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bifurcation or chaos when the absolute value is larger than 1. Comparing Figure 4a–d, the bifurcation
diagrams correspond well to the maximum Jacobi matrix eigenvalues, and the unstable states
(bifurcation of chaos) occur when the absolute value of the maximum Jacobi matrix eigenvalue
is larger than 1. So the bifurcation diagrams are verified by the maximum Jacobi matrix eigenvalue,
and this accuracy is further verified by the results of the experiment.

4. Cell Mapping Method and the Coexistence of Attractors of the Buck-Inverter

Initial sensitivity and parameter sensitivity are two typical properties of nonlinear systems [36].
Above, the bifurcation diagrams in Figure 4a,c show the parameter sensitivity of the Buck-inverter that
the system converges to different steady states (e.g., period-one, period-two or chaos) when uref and E
varies. In this section, we will study the initial states sensitivity of the Buck-inverter, considering that
the system starts from different initial states (as mentioned before, the bifurcation diagrams shown
in Figure 4a,c are derived by setting the steady state of the previous parameters as the initial states).
References [13,14,19] show that the Buck converter and inverter have coexistence of attractors, and that
the attractors are different corresponding to different initial values. As for the Buck-inverter, there are
four state variables. In order to find the attractors quickly, we here introduce an analytical method: the
cell mapping method.

The cell mapping method can be used to find the domain of a nonlinear system [37]. Since there
is no need to repeat the calculations when the cell enters into a known cell, the method can find the
domain quickly. To help understand the cell mapping method, a two-dimension system is used to
illustrate. Firstly, the cell can be defined as Cc(i,p,s), where c indicates the cell number, i, p and s indicate
the index of the attractors, the period number and steps to enter the period, respectively.

The cell mapping process is shown in Figure 5, where C5, C6 and C7 of red blocks indicate a
period-three cycle with the step as zero, while C4 (the green block) indicates a way to period-three
with the step as one. C1 (the blue block) indicates a period-one cycle with the step as zero. Considering
the cell C2, C3 and C8 of white blocks, C3 and C8 can also be the way to a period-three cycle, with the
difference being that C3 need two steps to get to the period-three cycle, while C8 needs one step. C2 is
the way to period-one, and the step is one.

As mentioned above, cell mapping is a quick and effective way to search the domain of the
attractors, assuming the colorful blocks C1, C4, C5, C6, C7 are known cells, so C2, C3 and C8 need only
one step to derive the overall trajectory. For example, C3 mapping to C4 needs one step, so we can
derive that C3 belong to period-three domain, since C4, C5, C6 and C7 all belong to the period-three
domain, so we do not need to repeat the mapping, e.g., mapping from C4 to C5.
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As the parameters of the Buck-inverter has been determined in Table 1, the possible attractors can
also be quickly derived. Set uref = 11, 12.5 and 16.6 V and E = 20 V, the possible initial value ranges are
derived from the simulation study, and this is also verified by the results of the experiment: iL = [0, 8]
A; uc = [0, 20] V; ip = [−10, 10] A; up = [−300, 300] V. Then we divide the coordinate axis (iL, uc, ip, up)
into a countable number of intervals with uniform size (the uniform size may be different with respect
to different axes), and assume the intervals belong to same domain of attractors. Here, we divide iL,
uc, ip and up into 8, 20, 21 and 61 intervals, so that the entire cell number is 204,960, and then we can
derive the possible attractors of the global domain, and derive the cell numbers of different attractors.
The results are shown in Table 2, where the “Others” indicates that the period is beyond the maximum
searching period (in this paper, the maximum searching period is set to be 10), or the steady state is
chaos. It should be noted that the states of chaos are stochastic, so in the experimental verification
section, we only cared about the period attractors.

As can be seen from Table 2, only period-one attractors exist in the system when uref = 11 V, while
the coexistence of period-one and period-three attractors happens in the system when uref = 12.5 V,
and coexistence of period-one, period-three and period-four attractors appears in the system when
uref = 16.6 V. These attractors are verified by the results of the experiment.

Table 2. Cell numbers and attractors of different uref.

uref Attractors Cell Numbers

11 V Period-one 204,960

12.5 V
Period-one 116,473

Period-three 70,974
Others 17,513

16.6 V

Period-one 102,467
Period-three 47,625
Period-four 35,219

Others 19,649

5. Experimental Verification

To verify the bifurcation diagrams and coexistence of attractors as shown above, an experiment
prototype was built with the measured main parameters shown in Table 1.

With the input disturbance (which is a change of the initial values by disturbance), the coexistence
of attractors can be found. Normally, if the system has only one steady state, the different initial values
will definitely lead the system to the same steady state. However, if the system has a coexistence of
attractors, then the steady states are not the same.

Three points mentioned in Section 4 of uref, i.e., 11 V, 12.5 V and 16.6 V, have been tested.
The experiment results are shown in Figure 6a–f respectively. Where channel 1 is the inductor current
iL. channel 2 is the control signal of switch S1. Channel 3 is the reference voltage uref.

It can be seen from Figure 6 that the coexistence of attractors really exists in the Buck-inverter.
Figure 6b,c show that when uref = 12.5 V, the system may result in period-one orbit or period-three
orbit with different initial values. Figure 6d–f show that when uref = 16.6 V, the system may result in
period-one orbit or period-three orbit or period-four orbit with different initial values. As for uref = 11 V,
only period-one attractors in the system are shown in Figure 6a. Compared with the theoretical results
shown in Figure 4 and Table 2, it can be seen that the bifurcation characteristics and coexistence of
attractors match very well. So the bifurcation diagrams and coexistence of attractors are verified.



Energies 2017, 10, 708 11 of 13

Energies 2017, 10, 708 12 of 14 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Experiment results of the coexistence of attractors phenomena: (a) uref = 11 V with period-

one orbit; (b) uref = 12.5 V with period-one orbit; (c) uref = 12.5 V with period-three orbit; (d) uref = 16.6 

V with period-one orbit; (e) uref = 16.6 V with period-three orbit; (f) uref = 16.6 V with period-four orbit. 

6. Conclusions 

This paper studies the bifurcation phenomena of a voltage-controlled Buck-inverter cascade 

system. A state-flow chart has been introduced to illustrate the complex relations among the linear 

operating modes, on the basis of which the time responses of the system have been derived. The 

bifurcation diagrams have been obtained with respect to the reference voltage and the input voltage, 

and verified by the maximum Jacobi matrix eigenvalues. Specifically, the coexistence of attractors has 

been revealed and investigated globally utilizing the cell mapping method of analysis. Both the 

bifurcation diagrams and the coexistence of attractors have been verified by the experiment results. 

It can be concluded that in a cascade power electronics system, complex nonlinear behaviors 

may exist. When we design such systems, the method presented in this paper can be applied to learn 

their bifurcation characteristics in the full range of variations of the key parameters such as load, 

input voltage and reference voltage, etc. Then boundaries of operation can be defined by checking 

the system in the bifurcation zone as to whether the performance requirements can be satisfied or 

not. Parameter optimization or specific control strategies dealing with the nonlinear phenomena 

should be further investigated and implemented if the system performance cannot meet the 

requirements. 

  

Figure 6. Experiment results of the coexistence of attractors phenomena: (a) uref = 11 V with period-one
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with period-one orbit; (e) uref = 16.6 V with period-three orbit; (f) uref = 16.6 V with period-four orbit.

6. Conclusions

This paper studies the bifurcation phenomena of a voltage-controlled Buck-inverter cascade system.
A state-flow chart has been introduced to illustrate the complex relations among the linear operating
modes, on the basis of which the time responses of the system have been derived. The bifurcation
diagrams have been obtained with respect to the reference voltage and the input voltage, and verified
by the maximum Jacobi matrix eigenvalues. Specifically, the coexistence of attractors has been revealed
and investigated globally utilizing the cell mapping method of analysis. Both the bifurcation diagrams
and the coexistence of attractors have been verified by the experiment results.

It can be concluded that in a cascade power electronics system, complex nonlinear behaviors may
exist. When we design such systems, the method presented in this paper can be applied to learn their
bifurcation characteristics in the full range of variations of the key parameters such as load, input
voltage and reference voltage, etc. Then boundaries of operation can be defined by checking the system
in the bifurcation zone as to whether the performance requirements can be satisfied or not. Parameter
optimization or specific control strategies dealing with the nonlinear phenomena should be further
investigated and implemented if the system performance cannot meet the requirements.
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