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Abstract: Although traditional fault diagnosis methods can qualitatively identify the failure modes
for power equipment, it is difficult to evaluate the failure probability quantitatively. In this paper, a
failure probability calculation method for power equipment based on multi-characteristic parameters
is proposed. After collecting the historical data of different fault characteristic parameters, the
distribution functions and the cumulative distribution functions of each parameter, which are applied
to dispersing the parameters and calculating the differential warning values, are calculated by using
the two-parameter Weibull model. To calculate the membership functions of parameters for each
failure mode, the Apriori algorithm is chosen to mine the association rules between parameters and
failure modes. After that, the failure probability of each failure mode is obtained by integrating the
membership functions of different parameters by a weighted method, and the important weight of
each parameter is calculated by the differential warning values. According to the failure probability
calculation result, the series model is established to estimate the failure probability of the equipment.
Finally, an application example for two 220 kV transformers is presented to show the detailed process
of the method. Compared with traditional fault diagnosis methods, the calculation results not only
identify the failure modes correctly, but also reflect the failure probability changing trend of the
equipment accurately.

Keywords: failure probability; multi-characteristic parameters; the Weibull model; differential
warning value; association rule; failure modes

1. Introduction

With the development of smart grid, the Chinese power industry is entering the era of Big
Data [1–3]. Establishing the fault diagnosis models based on Big Data technology is of great importance
since it can realize the comprehensive utilization of multi-source data and improve the accuracy of
the fault diagnosis results, which is beneficial for ensuring reliability and safe operation, optimizing
the condition-based maintenance (CBM) strategies, and increasing the remaining useful life (RUL) of
power equipment.

With the development of online monitoring technology and information technology, the volume
and variety of the condition monitoring data of the fault characteristic parameters have increased
dramatically in recent years [4]. The fault diagnosis technology has become more automatic and
intelligent than before by using multi-source data. For example, evidence fusion theory [5,6], support
vector machine (SVM) [7], artificial neural network (ANN) [8–10], and other methods have been widely
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applied to fault diagnosis for power equipment. Though many research achievements have been
reached, there are still some shortcomings, which are summarized as follows:

(1) Although the volume and variety of the monitoring data are large enough, most of the data
changes in the normal range. That is to say, there are little fault data or abnormal data. However,
many existing diagnosis methods often require a large amount of fault data to build and optimize
the models. The low value density of the condition monitoring data limits the application of
those methods [11–13].

(2) Most existing methods have failed to reveal the association between the failure modes and various
characteristic parameters. The equipment failure modes are difficult to identify correctly when
some kinds of parameters are changed. Additionally, the values of some key parameters and
factors in the models are difficult to estimate. Thus, they are always determined by empirical
values or expert experience, which may cause large errors.

(3) The insulation performance of power equipment is degraded gradually by the long-term impact
of mechanical and electrical stress, which causes an increasing trend in the failure probability of
the equipment. Many existing fault diagnosis methods can only qualitatively identify the failure
modes of the equipment under abnormal conditions, but not quantitatively evaluate the failure
probability and the changing trends of normal equipment. In fact, the equipment under normal
conditions still has a risk of failure.

With the increasing reliability requirements of the power supply, the traditional fault diagnosis
methods cannot meet the requirements of the fault diagnosis of the power system. How to make
full use of the multi-characteristic parameters to improve the accuracy and the effectiveness when
establishing the model becomes a significant challenge. This paper presents a failure probability
calculation method for power equipment based on multi-characteristic parameters, which achieves the
accurate identification of fault modes and quantifies the change trend of the failure probability of the
power equipment.

This manuscript is organized as follows: In Section 2, the probability density functions and the
cumulative distribution functions of different fault characteristic parameters are obtained, and the steps
to disperse the parameters and calculate the differential warning values are presented. In Section 3,
the method for association rules mining and the membership function calculations for parameters are
given. In Section 4, the model to estimate the failure probability of the failure modes, as well as the
equipment’s failure probability, are introduced. In Section 5, the procedure of the method is listed in
detail. An application example for two 220 kV power transformers is presented in Section 6, and the
conclusions are drawn in Section 7.

2. The Discrete Intervals and the Differential Warning Values Calculation

2.1. The Weibull Model

The probability density function and the cumulative probability distribution function of the
two-parameter Weibull distribution are shown in Equations (1) and (2), respectively [14].
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where x is the value of a kind of fault characteristic parameter; α and β are the scale and shape
parameters. When these two parameters are determined, the Weibull model is uniquely determined. α

and β can be estimated by using the maximum likelihood estimation method [15], and the steps are
as follows:
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(1) The parameter time series X = [x1, x2, . . . , xn] are Substituted into the logarithmic likelihood
function equation shown in Equation (3). The likelihood functions are established in Equation (4):

ln L(X) = ln
m

∏
i=1

β

α

( xi
α

)β−1
exp

[
−
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α

)β
]

(3)

{
∂ ln(X)

∂α = 0
∂ ln(X)

∂β = 0
(4)

(2) Substitute Equation (3) into Equation (4), then α and β are calculated.

Taking the dissolved gas in transformer oil as an example, the dissolved gas content data in
recent three years of different 220 kV transformers in a region were collected. The gas includes
hydrogen, methane, ethane, ethylene, and acetylene, whose chemical formulae are H2, CH4, C2H4,
C2H6, and C2H2, respectively. According to the steps, the parameters of the Weibull model are
estimated and shown in Table 1, and the probability density function curves and frequency histograms
of the five types of gas are shown in Figure 1, respectively.

Table 1. The parameters calculation results of the Weibull model.

Parameters H2 CH4 C2H6 C2H4 C2H2

α 17.03 10.26 2.94 1.68 1.46
β 0.81 1.06 0.79 0.81 0.89
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From Figure 1, the probability density functions are consistent with the actual distribution of each
gas, which indicates the effectiveness of the Weibull model.

2.2. The Discrete Intervals Calculation

The fault characteristic parameters value is continuous, but the association rule mining algorithms
require discrete input. Thus, the parameters should be discretized to different classes before data
mining [16]. This paper presents a discrete method for parameters based on the distribution probability
of the equipment condition. The steps are as follows:

(1) According to [17], the equipment condition is divided into normal condition, attentive condition,
abnormal condition, and serious condition. The distribution probability of the different conditions
P =

[
pnorm patten pabn pser

]
are calculated after collecting the actual condition data of all

of the same type of equipment.

(2) The cumulative distribution probability F =
[

FI FII FIII 1
]

is obtained by accumulating
the distribution probability P.

(3) FI, FII, and FIII are brought into the inverse cumulative probability distribution function based on

the two-parameter Weibull model expressed in Equation (5). Three values Xp =
[

xI xII xIII

]
are calculated and four discrete intervals s1–s4 are obtained, as shown in Figure 2.

x = α[− ln(1− F)]1/β (5)
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The distribution probability and the cumulative probability of the 220 kV transformers are
collected and listed in Table 2, and the calculation result of the discrete intervals of the five types of the
gas are shown in Table 3.
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Table 2. The data of 220kV transformers.

Equipment Condition Normal
Condition

Attentive
Condition

Abnormal
Condition

Serious
Condition

Distribution probability 95.46% 3.53% 0.94% 0.07%
Cumulative probability 95.46% 98.99% 99.93% 1

Table 3. The discrete intervals of the gas (uL/L).

Gas xI xII xIII

H2 82.44 139.89 257.84
CH4 29.75 43.22 66.57
C2H6 6.79 11.08 19.54
C2H4 5.19 8.10 13.55
C2H2 12.21 20.12 35.84

2.3. The Differential Warning Values Calculation

The abnormal increasing of fault characteristic parameters, such as the dissolved gas in oil, will
increase the failure probability of the equipment. To ensure the safe and reliable operation of the power
equipment, the warning value of each characteristic parameter is given by standard or by guide. If the
parameter value exceeds the warning value, it indicates that the equipment is under poor condition
or has a fault. For example, the warning value of hydrogen content is 150 uL/L, and the acetylene
content is 5 uL/L for the 220 kV power transformers [17].

However, due to the operating environment, the service age and health status of each equipment
are different, and the actual warning value of the equipment may deviate from the warning value
in [17]. According to the method in [18], this paper presents a differential warning values calculation
method for the equipment. The steps are as follows:

(1) Count the average failure probability Pave of the same types of equipment in a region.
(2) The probability Pave is substituted into the inverse cumulative probability distribution functions

with different characteristic parameters, as shown in Equation (5), and the differential warning
value Vdi f of each parameter is obtained.

Table 4 is the differential warning value of the dissolved gas when the average failure probability
of the 220 kV transformers is 0.18.

Table 4. The differential warning value of the gas (uL/L).

Gas Differential Warning Value

H2 37.52
CH4 17.06
C2H6 3.27
C2H4 2.67
C2H2 5.80

3. Membership Function of the Fault Characteristic Parameter

3.1. The Association Rules Mining for Failure Modes and the Fault Characteristic Parameters

Different failure modes will have different effects on the change trend of the fault characteristic
parameters, which are quantified by association rule mining algorithms, such as Apriori and FP-Growth
algorithms [19,20]. The Apriori algorithm scans the whole database in each loop to calculate the
support and confidence coefficient of the candidate item sets. The association rule mining by the
Apriori algorithm includes the following steps.
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(1) The fault data, which have m kinds of fault characteristic parameters and g kinds of failure modes,
are collected. All of the parameters are discretized in four classes.

(2) The dataset of fault data is established and denoted as Df = [G, df1, df2, ···, dfm], where G is the
transaction of the failure modes, G = [G(1), . . . , G(g)]. The dfi = [dfi(1) dfi(2), dfi(3), dfi(4)] is the
transaction of the fault characteristic parameter i (i = 1, . . . , m).

(3) The Df is divided into m datasets according to each parameter, namely Df1 = [G, df1], Df2 = [G, df2],
. . . , Dfm = [G, dfm].

(4) Set the minimum support (Supmin) the minimum confidence coefficient (Confmin), the Apriori
algorithm is applied to finding out all of the frequent two-item sets G → d f , the support

coefficient Sup
(

G → d f

)
, and the confidence coefficient Con f

(
G → d f

)
based on Equations (6)

and (7):

Sup
(

G → d f

)
=

count
(

G → d f

)
count

(
D f

) (6)

Con f
(

G → d f

)
=

count
(

G → d f

)
count

(
D f

) (7)

where Count(·) is the counting function of the item set.

Support is used to measure the statistical importance of association rules in the entire dataset.
The greater the support, the more frequent the item sets or rules appear in Df. If Sup

(
G → d f

)
is no

less than the Supmin, G → d f is regarded as a frequent item set. Otherwise, G → d f is regarded as an
infrequent item set.

Confidence is used to measure the trustworthiness of association rules. If an association rule
G → d f satisfies both Sup

(
G → d f

)
≥ Supmin and Con f

(
G → d f

)
≥ Con f min, G → d f will be

regarded as a strong association rule. Otherwise, it is a weak association rule.

3.2. Membership Function Calculation Method

According to association rules between the failure modes and the parameters, the distribution
probability, that is, the confidence coefficient between each item set is obtained. For any kind of failure
mode j and characteristic parameter i, Equation (8) is satisfied:

4

∑
k=1

Con f
(

G(j)→ d f i(k)
)
= 1 (8)

The membership function of the characteristic parameter i for the failure mode j is expressed in
Equation (9):

Fij =



Cij(1)
xI
· x x ∈ s1

Cij(1) +
Cij(2)
xII−xI

· (x− xI) x ∈ s2

Cij(1) + Cij(2) +
Cij(3)

xIII−xII
· (x− xII) x ∈ s3

Cij(1) + Cij(2) + Cij(3) +
Cij(4)

xM−xIII
· (x− xIII) x ∈ s4

1 x > xM

(9)

where Cij(sk) = con f
(

G(j)→ d f i(sk)
)

, x is the value of characteristic parameters. xM is the value
under the condition that the cumulative distribution probability is (FIII + 1)/2.
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4. The Failure Probability of Failure Modes and the Equipment

4.1. The Failure Probability of the Failure Mode

According to the method referred to in Section 3, the membership function of different failure
modes resulting from different fault characteristic parameters can be figured out. Those different
membership functions have different contribution to the failure probability of the failure modes.
Therefore, the failure probability of each failure mode is calculated by a weighted method. For example,
the failure probability of the jth failure mode is calculated by Equation (10):

PG(j) = F ·W =
m

∑
i=1

Fij ·ωij (10)

m

∑
i=1

ωij = 1 (11)

where Fij and ωij are the membership function and important weight from the ith characteristic
parameter to the jth failure mode, respectively. The important weight ωij of each fault characteristic
parameter for different failure modes is calculated in Section 4.2.

4.2. The Calculation for Important Weight

The existing weight calculation methods, such as analytic hierarchy process (AHP) [21], may lack
accuracy because of the dependence of subjective judgments from experts. To ensure the rationality of
the result, a method for weight calculation is presented according to the differential warning values of
the characteristic parameters, which is shown as follows:

(1) Obtain the differential warning values of the different characteristic parameters.
(2) Count the number (N) of samples in which the characteristic parameters are greater than, or equal

to, their differential warning values shown in Equation (12):

N =


N11 N12 · · · N1m
N21 N22 · · · N2m
· · · · · · · · · · · ·
Nm1 Nm2 · · · Nmg

 (12)

For every Nij, it is the number of samples of the ith characteristic parameter to the jth failure mode.
The important weights of all of the fault characteristic parameters for the jth failure mode are obtained
by the normalized calculation expressed in Equation (13):

ωij =
Nij

m
∑

i=1
Nij

(13)

According to Equations (12) and (13), the result of the importance weight W is obtained based
on the calculation of the fault data and the differential warning value rather than the experience of
experts so that the accuracy and rationality are ensured.

4.3. The Failure Probability of the Equipment

Every type of the failure mode will cause equipment failure, and the series network is
established between equipment failure probability and the failure probability of the failure modes [14].
The calculation method of the equipment failure probability is given by Equation (14):
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Pequ = 1−
g

∑
j=1

(
1− Pj

)
(14)

where Pequ is the equipment failure probability, and Pj is the failure probability of the jth failure mode.

5. The Procedure of the Method

The flow of the method is shown in Figure 3. The key steps are as follows:

(1) According to the method in Section 2, the probability density functions and cumulative
distribution functions of different fault characteristic parameters based on a two-parameter
Weibull distribution model are calculated. Based on the inverse cumulative distribution function,
the condition distribution probability and the average failure probability of the equipment
are applied to calculating the discrete intervals and the differential warning value of each
characteristic parameter.

(2) According to the method in Section 3, the Apriori algorithm is applied to finding the association
rules in the fault data between failure modes, as well as different parameters and calculating
of the confidence coefficient of the frequent item sets. After that, the cumulative probability
distribution function of each characteristic parameter is obtained.

(3) The membership function and the important weight of each parameter are obtained in Section 4.
(4) The failure probability of all of the failure modes are calculated by a weighted calculation, and

the series model is proposed to calculate the failure probability of the equipment.
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discharging (G3), and high-energy discharging (G4). The quantitative distribution of each failure mode
is shown in Figure 4.Energies 2017, 10, 704 9 of 15 
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6.2. The Failure Probability and Important Weight

After setting the minimum support Supmin = 0.02 and the minimum confidence Confmin = 0.02,
the association rules among all of the failure modes and the different ways by which the gas dissolves
are calculated by Apriori algorithm. Taking methane and ethane as examples, the frequent item sets
and the confidence results are shown in Figure 5a,b.
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The membership functions of different kinds of gas are calculated, and the curves of the functions
are shown in Figure 6.
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The important weights of the five types of gas to the four failure modes are calculated and shown
in Figure 7.

It is obvious that the weight of acetylene is small in overheating failure modes while the alkanes
is larger. Additionally, the weight of hydrogen is much larger than the weight of other gases in
discharging failure modes.
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Shown in Figure 8 are the time series data, which include 236 samples from 1 January 2016 to
30 June 2016, of the dissolved gas content of a 220 kV transformer (named T1) where the value of
ethylene is zero.
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The data of the five kinds of dissolved gas are brought to each kind of membership function, and
the failure probability of the four failure modes and the failure probability of T1 are calculated by
Equations (10) and (14). The calculation result is shown in Figure 9.

It is clear from Figure 9 that the hydrogen content in T1 abnormally increased from the 45th day
to the 63rd day, and surpassed the warning value (37.52 uL/L) so that the failure probability of
the low-energy discharging (G3) and low-temperature overheating (G1) increased, resulting in the
increment of the equipment failure probability. With the hydrogen content decreasing after the
63rd day, the equipment failure probability decreased to a lower level, and remained lower than 0.3.
The calculation results are consistent with the actual situation of T1.

6.4. Case Study 2

The monitoring data of a 220 kV transformer (named T2) in 2015 are listed in Table 5. The overheat
defect was detected in the oil pump on the 96th day, and it became serious after the 99th day.
The diagnosis resulting from three-ratio method is 022 which means the failure mode of T2 is
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high-temperature overheating (G2). The content of total hydrocarbon is the sum of CH4, C2H6,
C2H4 and C2H2.Energies 2017, 10, 704 12 of 15 
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Table 5. The content of the dissolved gas in T2 (uL/L).

Day H2 CH4 C2H6 C2H4 C2H2 Total Hydrocarbon

1st 0 1.6 0 0.6 0 2.2
31st 14 6.6 26 1.4 0 34
96th 73 110 41 190 0 341
99th 77 120 44 210 0.8 374.8

105th 95 130 55 220 1.2 406.2
107th 76 140 64 230 1.1 435.1
110th 86 137 48 230 1.1 416.1
146th 135 230 83 320 1.4 634.4
196st 140 240 85 410 1.1 736.1

The failure probability calculation result of T2 is shown in Figure 10, which indicates that failure
probability was increasing rapidly from the 31th day to the 96th day, and the failure mode of T2 was
G1 or G2. After the 96th day, the failure probability of T2 approached 1, which means that T2 had a
serious overheating fault. The result is consistent with the actual situation.
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6.5. Comparative Analysis

To make a comparison between the method in this paper and the traditional methods, this paper
presents two types of common fault diagnosis methods based on classifier and the threshold values.

6.5.1. The Fault Diagnosis Method Based on a Classifier

Three kinds of common classifiers are presented to establish the fault diagnosis models,
respectively, namely, decision tree classifier (J48), random forest classifier (RF), and SVM. After
the training process of each model, the accuracy results of the three models are obtained and listed
in Table 6. According to the precision results, the models based on RF and SVM are selected for
fault diagnosis.

Table 6. Precision results of each model.

Day Precision of the Model

J48 0.873
RF 0.997

SVM 0.952

6.5.2. The Fault Diagnosis Method Based on the Threshold Value

The content and the relative increase rate of the dissolved gas in oil are important criteria for fault
diagnosis. The threshold values of different kinds of gas are listed in Table 7 according to [17].

Table 7. The threshold values of the dissolved gas in oil.

Fault Severity The Fault Criterion

Slight fault The content of total hydrocarbon or H2 is greater than 150 µL/L.

Serious fault
The content of C2H2 is greater than 5 µL/L;

The relative increase rate of total hydrocarbon is greater than 10% per month;
The increase rate of total hydrocarbon is greater than 10 mL per day.

The monitoring data of Case 1, shown in Figure 8, is applied to the fault diagnosis model based
on RF, SVM, and the threshold value. The results indicate the equipment is in a normal state without
any fault, which is consistent with the actual situation. Similarly, the fault diagnosis result of Case 2 is
also obtained and listed in Table 8. It indicates that the failure mode of the T2 is the high-temperature
overheating fault (G2), and it becomes serious after the 96th day.

Table 8. The fault diagnosis results of three models.

Day RF SVM Guide

1st Normal Normal Normal
31st Normal Normal Normal

96th~196st G2 G2 Serious

According to the results, three traditional fault diagnosis methods have high accuracy in
determining whether the equipment fails. However, the model of the threshold value fails to identify
the failure modes for the equipment while the method based on the classifier is unable to determine the
severity of the fault. Furthermore, any traditional methods can not quantify the failure probability of
an equipment failure and reflect the changing trend of the failure probability. Taking T2 as an example,
the fault cannot be found before the 96th day by traditional methods, so that maintenance strategy for
T2 is not be made or arranged in time. The equipment failure may cause serious power interruption,
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and significant losses of equipment and to the power system. These shortcomings of the traditional
models make it impossible to meet the effectiveness requirements for the power system.

7. Conclusions

In this paper, a failure probability calculation method for power equipment based on
multi-characteristic parameters is proposed. The historical data of different fault characteristic
parameters are collected to obtain the cumulative distribution function and the differential warning
value of each parameter. Then the association relations between different failure modes and the
characteristic parameter and the important weight of each parameter are obtained. Finally, the
weighted calculation and the series model are applied to calculating the failure probability of all of the
failure modes and the equipment.

The failure probability calculation method realizes the comprehensive utilization of
multi-characteristic parameters. To avoid the influence of subjective factors on the calculation results,
the process of the fault probability function calculation is driven by data, but not judgment from
experts, so that the results are ensured.

An application example for two 220 kV transformers is presented, and the procedure of the
method is described in detail. The results indicate that this novel method has obvious advantages in
accurately quantifying the failure probability, reflecting the failure changing trend of the equipment
and helping to create a timely maintenance strategy so that the remaining useful life and the reliability
of the power equipment can be markedly increased.

Acknowledgments: The work is supported by the National High-tech R and D Program of China (863 Program,
2015AA050204) and the China State Grid Corporation of Science and Technology Project (520626150032).

Author Contributions: The research presented in this paper was a collaborative effort among all authors.
Hang Liu, Youyuan Wang, and Liwei Zhou proposed the methodology of the model and contributed to the
manuscript at all stages. Ruijin Liao discussed the results and revised the manuscript critically. Yi Yang and
Yujie Geng prepared the data for the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chinese Society for Electrical Engineering Information Committee. Chinese Electric Power Big Data
Development White Paper; China Electric Power Press: Beijing, China, 2013; pp. 1–13.

2. Yang, Y.D.; Bi, Z.Q. Advances and future challenges in electric power big data. In Proceedings of the 2014
Second International Conference on Advanced Cloud and Big Data, Wuhan, China, 20–22 November 2014.

3. Zhang, P.; Yang, H.F.; Xu, Y.B. Power big data and its application scenarios in power grid. Proc. CSEE 2014,
34, 85–92. [CrossRef]

4. Lai, Z.T. Electric Power Big Data: Energy Internet Age Transformation and Value Creation; Machinery Industry
Press: Beijing, China, 2015; pp. 123–131. ISBN: 978-7-111-51693-4.

5. Otman, B.; Yuan, X.H. Engine fault diagnosis based on multi-sensor information fusion using
Dempster–Shafer evidence theory. Inf. Fusion 2007, 8, 379–386. [CrossRef]

6. Lu, F.; Jiang, C.Y.; Huang, J.Q. A novel data hierarchical fusion method for gas turbine engine performance
fault diagnosis. Energies 2016, 9, 828. [CrossRef]

7. Li, J.; Zhang, Q.; Wang, K. Optimal dissolved gas ratios selected by genetic algorithm for power transformer
fault diagnosis based on support vector machine. IEEE Trans. Dielectri. Electri. Insul. 2016, 23, 1198–1206.
[CrossRef]

8. Lu, J.J.; Huang, J.Q.; Lu, F. Sensor fault diagnosis for aero engine based on online sequential extreme learning
machine with memory principle. Energies 2017, 10, 39. [CrossRef]

9. Hazlee, A.I.; Xin, R.C.; Ab, H.A.B. Hybrid modified evolutionary particle swarm optimisation-time varying
acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement 2016,
90, 94–102. [CrossRef]

10. Chen, W.G.; Pan, C.; Yun, Y.X.; Liu, Y.L. Wavelet networks in power transformers diagnosis using dissolved
gas analysis. IEEE Trans. Power Deliv. 2009, 24, 187–194. [CrossRef]

http://dx.doi.org/10.13334/j.0258-8013.pcsee.2014.S.012
http://dx.doi.org/10.1016/j.inffus.2005.07.003
http://dx.doi.org/10.3390/en9100828
http://dx.doi.org/10.1109/TDEI.2015.005277
http://dx.doi.org/10.3390/en10010039
http://dx.doi.org/10.1016/j.measurement.2016.04.052
http://dx.doi.org/10.1109/TPWRD.2008.2002974


Energies 2017, 10, 704 15 of 15

11. The “four Vs” of Big Data. Available online: http://www.ibmbigdatahub.com/sites/default/files/
infographic_file/4-Vs-of-big-data (accessed on 12 October 2012).

12. Peng, X.S.; Deng, D.Y.; Cheng, S.J.; Wen, J.Y.; Li, C.H.; Niu, L. Key technologies of electric power big data
and its application prospects in smart grid. Proc. CSEE 2015, 35, 503–511. [CrossRef]

13. Song, Y.Q.; Zhou, G.L.; Zhu, Y.L. Present status and challenges of big data processing in smart grid.
Power Syst. Technol. 2013, 37, 928–935. [CrossRef]

14. Li, W.Y. A.3.4 Weibull Distribution. In Risk Assessment of Power Systems: Models, Methods, and Applications;
John Wiley & Sons Press: New York, NY, USA, 2005; ISBN: 1118843355.

15. Zhong, B.; Liu, Q.S.; Liu, C.L. Mathematical Statistics; Higher Education Press: Beijing, China, 2015;
pp. 103–115.

16. Zheng, Y.B. Research on Ensemble Learning of Fault Diagnosis and Prediction and Maintenance
Decision-Making Models for Transformers. Ph.D. Thesis, Chongqing University, Chongqing, China,
October 2011.

17. The State Grid Corporation. Guide for Evaluation of Oil-immersed Power Transformers (Reactors); The State Grid
Corporation: Beijing, China, 2008.

18. Qi, B.; Zhang, P. Calculation Method on differentiated warning value of power transformer based on
distribution model. High Volt. Eng. 2017, 42, 2290–2298. [CrossRef]

19. Sheng, G.H.; Hou, H.J.; Jiang, X.C. A novel association rule mining method of big data for power transformers
state parameters based on probabilistic graph model. IEEE Trans. Smart Grid 2016, 1, 1–9. [CrossRef]

20. Suresh, J.; Rushyanth, P.; Trinath, C. Generating associations rule mining using Apriori and FPGrowth
Algorithms. Int. J. Comput. Trends Technol. 2013, 4, 887–892.

21. Xu, Z.H.; Wei, C.P. A consistency improving method in analytic hierarchy process. Eur. J. Oper. Res. 1999,
116, 443–449. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ibmbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data
http://www.ibmbigdatahub.com/sites/default/files/infographic_file/4-Vs-of-big-data
http://dx.doi.org/10.13334/j.0258-8013.pcsee.2015.03.001
http://dx.doi.org/10.13335/j.1000-3673.pst.2013.04.004
http://dx.doi.org/10.13336/j.1003-6520.hve.20160713033
http://dx.doi.org/10.1109/TSG.2016.2562123
http://dx.doi.org/10.1016/S0377-2217(98)00109-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Discrete Intervals and the Differential Warning Values Calculation 
	The Weibull Model 
	The Discrete Intervals Calculation 
	The Differential Warning Values Calculation 

	Membership Function of the Fault Characteristic Parameter 
	The Association Rules Mining for Failure Modes and the Fault Characteristic Parameters 
	Membership Function Calculation Method 

	The Failure Probability of Failure Modes and the Equipment 
	The Failure Probability of the Failure Mode 
	The Calculation for Important Weight 
	The Failure Probability of the Equipment 

	The Procedure of the Method 
	Application Example 
	Basic Information 
	The Failure Probability and Important Weight 
	Case Study 1 
	Case Study 2 
	Comparative Analysis 
	The Fault Diagnosis Method Based on a Classifier 
	The Fault Diagnosis Method Based on the Threshold Value 


	Conclusions 

