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Abstract: Reducing energy consumption of ground vehicles is a paramount pursuit in academia
and industry. Even though the road infrastructural has a significant influence on vehicular fuel
consumption, the majority of the R&D efforts are dedicated to improving vehicles. Little investigation
has been made in the optimal design of the road infrastructure to minimize the total fuel consumption
of all vehicles running on it. This paper focuses on this overlooked design problem and the design
parameters of the optimal road infrastructure is the profile of road grade angle between two fixed
points. We assume that all vehicles on the road follow a given acceleration profile between the
two given points. The mean value of the energy consumptions of all vehicles running on the
road is defined as the objective function. The optimization problem is solved both analytically by
Pontryagin’s minimum principle and numerically by dynamic programming. The two solutions
agree well. A large number of Monte Carlo simulations show that the vehicles driving on the road
with the optimal road grade consume up to 31.7% less energy than on a flat road. Finally, a rough
cost analysis justifies the economic advantage of building the optimal road profile.

Keywords: optimal control; road grade design; analytical solution; Pontryagin’s minimum principle;
dynamic programming

1. Introduction

With the rapid increase of the number of automobiles, worldwide energy consumption and
greenhouse gas emissions have increased greatly. It is a challenge for the automotive industry to reduce
energy consumption and carbon emissions. For this purpose, academia and industry have paid much
attention to the energy consumption minimization of ground vehicles. For example, many solutions
to alternative powertrains have been proposed, including hybrid electric vehicles (powered by an
internal combustion engine and at least one electric motor) [1–5], full electric vehicles [6–8] and fuelcell
vehicles [9,10]. Hybrid powertrains already became an affordable and popular approach to higher
fuel efficiency and there are many successful products from Toyota, Honda, Volvo, BYD and so on.
In addition to improving the energy efficiency of powertrains, the auxiliary systems, such as the
power-assisted steering and brake and thermal management system, are also optimized for better
energy efficiency [11–15].

Another significant way for reducing fuel consumption is the optimal energy management
control strategies [16]. There are plentiful publications on this topic using different optimization
approaches, e.g., dynamic programming [3,17,18], convex optimization [13], Pontryagin’s minimum
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principle [19] and equivalent fuel consumption minimization strategy [20]. These have been applied to
achieve fuel optimal driving in conventional cars and trucks [21], fuelcell cars [8] and electric cars [7].
Model predictive control recently becomes popular for energy management control of ground vehicles
when future road condition is predictable [22,23].

Ecological cruise control, namely eco-driving, is an emerging technique for reducing fuel
consumption through varying vehicle speed according to road grade angle [24]. The road grade
is the angle between the road surface and the horizontal. The road grade profile of a road is the
distance-based continuous function of road grade angle along the road. The technology is applicable
for both conventional vehicles powered completely by the international combustion engine and HEVs
and EVs. For instance, eco-driving is used on a Peugeot EV and test results have shown a reduction of
14% in energy consumption [25]. Thereby it has the potential to reduce the fuel consumption and will
soon become a common feature in new commercial vehicles in the world.

All these methods above concentrate exclusively on the improvement or control of the vehicle,
and consider the road conditions as external influencing factors. Recent studies suggest that
improvements on the transport infrastructure are helpful for increasing traffic efficiency and reducing
overall fuel consumption and unhealthy emissions of the transport system. Such improvements include
intelligent transportation systems (ITS) [26,27] and the electric highway [28]. A simple road condition
that has large impact on fuel consumption is the road grade profile [29,30], which directly determines
the maximal fuel reduction potential of HEVs and Eco-driving. The innovation of this paper is to
consider the road grade profile as the design variable. We develop both analytical and numerical
methods to find the optimal road grade profile between two given points so that the total energy
consumption of all vehicles running on the optimal road is minimal. Compared to the conventional
flat road, the optimal road can save up to 31.7% energy consumption. The benefit on energy saving
of the optimal road is systematically studied through a large number of Monte Carlo simulations in
this paper.

The road grade design method presented in this paper considers only the energy consumption of
all vehicles using the road, but ignores the usual design objectives and constraints for road construction.
The primary reason for the simplification is to derive the analytical solution. More comprehensive
study including these design objectives and constraints can be included into the numerical solution in
future work.

This paper is organized as follows. We formulate the road design problem as an optimization
problem under uncertainty in Section 2. The objective is the mean value of all vehicles’ energy
consumptions. Section 3 presents an analytical solution of the optimization problem by Pontryagin’s
minimum principle (PMP). Section 4 performs the numerical analysis of the optimal road grade design
problem. The benefit of the optimal road is justified through a large number of Monte Carlo simulations
under various traffic conditions. Section 5 roughly estimates the cost of building or rebuilding the
road and shows the economic benefit of rebuilding the road according to the optimal design. Section 6
summarizes the main results and contributions of the paper and outlooks future work.

2. Problem Formulation

The primary objective of this paper is to find the optimal road grade profile between two points
so that the total energy consumption of all vehicles running on the road between the two points is
minimal. One point is the origin and the other the terminal. The length of the straight line between the
two points is s f . If the road is a round trip such that the origin and the terminal are identical, we still
model them as two distinct points and the length between them is the total distance of the round trip.

Suppose that vehicles running on the road between the two points have constant accelerations in
a finite number of segments. Let n ∈ N be the number of segments in the straight line. There are then n
different points si (i = 1, · · · , n) along the straight line with the property 0 < s1, sn = s f , and si < si+1
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for all i ≤ n − 1. The value of si is the direct distance from the origin to the corresponding point.
Define s0 = 0. The distance of the ith segment is

∆si = si − si−1, i = 1, · · · , n

The constant acceleration during the ith segment [si−1, si) is ai ∈ R for i ∈ {1, . . . , n}.
The sequence determines a piece-wise constant function in domain [s0, s f ].

a(s) =

{
0, s = s f

ak, s ∈ [sk−1, sk) for some k ∈ {1, · · · , n}
(1)

Note that the acceleration value at the terminal s f is irrelevant and can hence be arbitrary.
Let the vehicle speed at the origin be v0 ∈ R≥0. Then the vehicle speeds at the n boundary

points are

vi =
√

v2
i−1 + 2ai∆si, i = 1, · · · , n (2)

under the condition that v2
i−1 + 2ai∆si ≥ 0, i = 1, · · · , n.

The given acceleration sequence and initial vehicle speed also fully determine the vehicle speed
at an arbitrary point s ∈ [s0, s f ] in the straight line.

v(s) =

vn, s = s f√
v2

k−1 + 2ak(s− sk−1), s ∈ [sk−1, sk) for some k ∈ {1, · · · , n}
(3)

2.1. State Space Model

Our design objective is to find the optimal continuous road angle profile α(s) for s ∈ [s0, s f ],
which results in a continuous trajectory of road altitude h(s) for s ∈ [s0, s f ]. Suppose that the altitudes
of the origin and the terminal are identical, i.e., h(s0) = h(s f ). Then the straight line between the two
points is horizontal and the altitude function meets the differential equation

d h(s)
d s

= tan α(s) (4)

Owing to the varying road angle, the actual vehicle speed at position s ∈ [s0, s f ] is different from
the value in Equation (3). We derive its differential equation as follows. Let vveh(s) be the vehicle
speed, a(s) the acceleration, and α(s) the road grade angle at position s. Let ∆s be a small distance
along the straight line. Then the actual traveling distance along the slope is ∆s

cos α(s) . Let vveh(s + ∆s) be
the vehicle speed at position s + ∆s. Therefore,

v2
veh(s + ∆s)− v2

veh(s) =2a(s)
∆s

cos α(s)
vveh(s + ∆s)− vveh(s)

∆s
=

2a(s)
(vveh(s + ∆s) + vveh(s)) cos α(s)

When ∆s approaches to zero, the equation yields the differential equation

d vveh(s)
d s

=
a(s)

vveh(s) cos α(s)
(5)

where a(s) is determined by Equation (1).
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Equation (5) has the risk of division by zero when vveh(s) is very small or even zero. To avoid the
problem, we derive the differential equation of v2

veh(s) instead. Let vsq(s) be v2
veh(s).

d vsq(s)
d s

=
2a(s)

cos α(s)
(6)

Let the state vector be x(s) = [h(s), vsq(s)]T ∈ R2 and the control variable be α(s) for s ∈ [s0, s f ].
Equations (4) and (6) determine the following state space equation

d x(s)
d s

= f (x(s), α(s)), s ∈ [s0, s f ] (7)

It is a distance based nonlinear time-variant derivative equation.

2.2. Energy Consumption Model

The energy consumption of a vehicle can be estimated from its longitudinal dynamics, illustrated in
Figure 1. By the Newton’s law, we have the equation

Ftrac = Mveha + Froll + Faero + Fgrade (8)

where Mveh is the vehicle mass, vveh the vehicle speed, Froll the rolling friction, Faero the aerodynamic
drag, Fgrade the force caused by the road slope, and Ftrac the traction force generated by the powertrain.

gM veh
rollF

tracF

aeroF

vehV
dt

dVveh



Figure 1. Longitudinal forces on a running vehicle.

The rolling friction force is calculated as

Froll = croll Mvehg cos α (9)

where g is the gravity acceleration, α the road grade angle in radiant, and croll the rolling friction
coefficient, which is assumed constant in this paper. The aerodynamic drag Faero is directly proportional
to the square of the vehicle’s relative speed with the air, namely

Faero =
1
2

ρair A f cdv2
veh (10)

where ρair is the density of the ambient air, cd the air resistance coefficient, and A f the frontal area of
the vehicle. The force Fgrade induced by the gravity on a slope is the following. The road grade angle α

is positive (negative), when the vehicle goes uphill (downhill).

Fgrade = Mvehg sin α (11)
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Let ξ = [Mveh, croll , A f , cd]
T ∈ R4

>0 be the vector of all relevant vehicle parameters. If ξ is given
and the vehicle has no regenerative brake, the energy consumption of the vehicle finishing the trip
along the varying road angle trajectory is

W(ξ) =
∫ s f

s0

max(Ftrac(s, ξ), 0)
cos α(s)

ds (12)

where Ftrac(s, ξ) is calculated by Equation (8).
The objective is to minimize the total energy consumption of all vehicles traveling on the road

during the life time of the road, which is a stochastic process. We consider ξ as a random vector with
the probability distribution function

pξ : R4
>0 → [0, 1]

Therefore, W(ξ) is also a random variable. The objective function is the mean value of all vehicle
energy consumptions under the probability distribution pξ , namely

E[W(ξ)]

where E represents the expectation of a random variable.
In practice, the 4D probability distribution function pξ is difficult to obtain and the corresponding

expectation complicated to compute. We simplify it to a 1D probability distribution function as follows.
Suppose that all vehicle parameters are bounded within ranges, i.e., Mveh ∈ [Ml , Mu], croll ∈ [cr_l , cr_u],
A f ∈ [A f _l , A f _u], and cd ∈ [cd_l , cd_u]. Assume that all parameters are linearly proportional to vehicle
weight. Since the tire rolling resistance is inversely proportional to the radius of the tire, we assume
that it decreases when weight increases. Define two boundary vectors ξl = [Ml , cr_u, A f _l , cd_l ]

T and
ξu = [Mu, cr_l , A f _u, cd_u]

T. The parameter vector at an arbitrary weight Mveh ∈ [Ml , Mu] is

ξ(Mveh) =
ξl(Mu −Mveh) + ξu(Mveh −Ml)

Mu −Ml
(13)

Consider Mveh as the only random variable with the probability distribution function

pM : [Ml , Mu]→ [0, 1]

Then the mean value of all vehicle energy consumptions on the road is reduced to

E[W(ξ(Mveh))] =
∫ Mu

Ml

pM(
∫ s f

s0

max(Ftrac(s, ξ(m)), 0)
cos α(s)

ds) dm (14)

2.3. The Optimal Control Problem

The optimal trajectory of road grade angles to minimize the total energy consumption of all
vehicles running on it can be solved as an optimal control problem. The control input is the continuous
function of road grade angle α(s), s ∈ [s0, s f ]. The road grade angle is limited in the range [αl , αu],
where αl < 0 and αu > 0. The state space equation is given in Equation (7) and the process is
a second-order nonlinear process. The constraints on the state vector are vsq(s) ≥ 0, s ∈ [s0, s f ],
and h(s0) = h(s f ). The constraint on the final value of h(s) requires identical altitude of the origin
and the terminal. This is necessary for round trips. The constraint is also applicable if the road
is bidirectional.

Formally the optimal control problem is presented in Equation (15).

min
α(s)

∫ Mu

Ml

pM(
∫ s f

s0

max(Ftrac(s, ξ(m)), 0)
cos α(s)

ds) dm (15a)
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s.t. for all s ∈ [s0, s f ],

d
ds

[
h(s)
vsq(s)

]
=

[
tan α(s)

2a(s)
cos α(s)

]
(15b)

vsq(s) ≥ 0 (15c)

α(s) ∈ [αl , αu] (15d)

h(s0) = h(s f ) (15e)

3. Analytical Solution

This section simplifies the optimal control problem in Equation (15) and finds the analytical
solution of the simplified problem by Pontryagin’s minimum principle (PMP) [31]. The analytical
solution provides insight into the problem and verifies the numerical solutions presented in Section 4.
Analytical solution may be found only if the state space model, the objective function, and the velocity
profile are very simple. See [32–34] for examples of finding analytical solutions to minimize vehicular
energy consumption.

We apply the following simplifications to the problem in Equation (15).

• Only one vehicle is considered in Equation (15a). The expectation computation in the equation is
then unnecessary.

• The absolute value of the road grade angle in radiant is very small, i.e., |αl | ≈ 0 and |αu| ≈ 0.
Consequently, |α(s)| ≈ 0 and cos α(s) ≈ 1 for all s ∈ [s0, s f ].

Owing to the second simplification, the differential equation of the vehicle speed in Equation (15b)
is reduced to

d vveh(s)
d s

=
a(s)

vveh(s)

whose solution is function v(s) calculated by Equation (3). The computing method of v(s) ensures
v(s) ≥ 0 for all s ∈ [s0, s f ]. The optimal control problem in Equation (15) is then simplified to

min
α(s)

∫ s f

s0

max(Ftrac(s), 0)
cos α(s)

ds (16a)

s.t. for all s ∈ [s0, s f ],

d h(s)
d s

= tan α(s) (16b)

α(s) ∈ [αl , αu] (16c)

h(s0) = h(s f ) (16d)

This section finds the analytical solution to the simplified control problem by PMP. For convenient
presentation, we rewrite the expression of Ftrac(s) as

Ftrac(s) = f0v2(s) + f1 cos α(s) + f2 sin α(s) + f3 (17a)

where

f0 =
1
2

ρair A f cd (17b)

f1 =croll Mvehg (17c)

f2 =Mvehg (17d)

f3 =Mveha(s) (17e)
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To remove the nonlinear function max in Equation (16a), we introduce the following assumptions on
the sequence of accelerations.

Assumption 1. For all i ∈ {1, · · · , n}, if ai > 0, then it must satisfy the inequality

ai ≥
−1

Mveh
( f0v2

i−1 + f1 cos(max(|αl |, |αu|)) + f2 sin αl)

Assumption 2. For all i ∈ {1, · · · , n}, if ai < 0, then it must satisfy the inequality

ai ≤
−1

Mveh
( f0v2

i−1 + f1 + f2 sin αu)

Let vm = max{vi|i = 0, · · · , n} be the maximal vehicle speed during the road.

Assumption 3. For all i ∈ {1, · · · , n}, if ai = 0, then it must satisfy the inequality

f0v2
m + f1 cos αl + f2 sin αl < 0

These assumptions are easily satisfiable for common driving scenarios. For instance, consider a
small car with the following parameters: croll = 0.01, cd = 0.3, A f = 1.8 m2, g = 9.81 m/s2,
Mveh = 750 kg, ρair = 1.2 kg/m3, αl = −0.05, αu = 0.05 and vi−1 = 80 km/h. Then Assumption 1
implies that if the vehicle is accelerated, the acceleration must be no less than 0.18 m/s2. This is
a very small value for vehicle acceleration. Assumption 2 implies that if the vehicle is braked,
the acceleration must be no more than −0.8 m/s2. The constraint is easily satisfiable by the vehicle’s
brake. In Assumption 3, when the minimal road is αl = −0.05, the traction force is −134.24 N and
obviously less than 0.

Assumption 1 ensures that the traction force is not negative during acceleration, and Assumption 2
ensures that the traction force is not positive during deceleration. Assumption 3 requires that the
absolute value of the angle of the steepest downhill is so large that brake must be applied to keep
constant speed. The statements are formalized as the following propositions.

Proposition 1. For all i ∈ {1, · · · , n}, if ai > 0 and Assumption 1 holds, then it must be true Ftrac(s) ≥ 0
for all s ∈ [si−1, si).

Proof. By the definition of Ftrac(s) in Equation (17), we have

Ftrac(s) = f0v2(s) + f1 cos α(s) + f2 sin α(s) + Mveha(s), s ∈ [si−1, si)

If s ∈ [si−1, si), then a(s) = ai. If ai > 0 and Assumption 1 holds, we apply the inequality of
Assumption 1 to the previous equation.

Ftrac(s) ≥ f0(v2(s)− v2
i−1) + f1[cos α(s)− cos(max(|αl |, |αu|))] + f2(sin α(s)− sin αl)

Because α(s) ≥ αl , we have sin α(s) ≥ sin αl . Because |α(s)| ≤ max(|αl |, |αu|), we have
cos α(s) ≥ cos(max(|αl |, |αu|)). Moreover, because v2(s)− v2

i−1 = 2ai(s− si−1) and ai > 0, we also
have v2(s)− v2

i−1 ≥ 0. Consequently, we obtain the final statement Ftrac ≥ 0, s ∈ [si−1, si).

Proposition 2. For all i ∈ {1, · · · , n}, if ai < 0 and Assumption 2 holds, then it must be true Ftrac(s) ≤ 0
for all s ∈ [si−1, si).
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Proof. The proof is very similar to the proof of Proposition 1. If s ∈ [si−1, si), then a(s) = ai. If ai < 0
and Assumption 2 holds, we have the inequality

Ftrac(s) ≤ f0(v2(s)− v2
i−1) + f1(cos α(s)− 1) + f2(sin α(s)− sin αu)

Since sin α(s) ≤ sin αu, cos α(s) ≤ 1, and v2(s) − v2
i−1 ≤ 0, we obtain the final statement

Ftrac(s) ≤ 0, s ∈ [si−1, si).

Proposition 3. For all i ∈ {1, · · · , n}, if ai = 0 and Assumption 3 holds, there must exist a unique angle
α0 ∈ (αl , 0) such that Ftrac(α0) = 0, Ftrac(α) < 0 for all α ∈ [αl , α0), and Ftrac(α) > 0 for all α ∈ (α0, αu].

Proof. Since ai = 0, v(s) = vi−1 for all s ∈ [si−1, si). Because vi−1 ≤ vm, Assumption 3 yields

Ftrac(αl) < 0

Evidently Ftrac(αu) > 0. The derivative of the traction force to angle is

dFtrac

dα
= f2 cos α− f1 sin α

Because f1 = croll f2, croll � 1 and |α| ≈ 0, we can show

dFtrac

dα
> 0, α ∈ [αl , αu]

Consequently, Ftrac(α) is a monotonically increasing and differentiable function. There must exist
a unique zero point α0 ∈ (αl , αu) such that

Ftrac(α0) = f0v2
i−1 + f1 cos α0 + f2 sin α0 = 0

Since both f0v2
i−1 and f1 cos α0 are positive, it must be true α0 < 0. The value of α0 can be obtained

by solving the nonlinear equation; however, when |α0| ≈ 0, the nonlinear equation is approximated as
a linear equation

f0v2
i−1 + f1 + f2α0 ≈ 0

and its solution is

α0 = −
f0v2

i−1 + f1

f2

Finally, the monotonicity of Ftrac ensures (∀α ∈ [αl , α0))Ftrac(α) < 0 and (∀α ∈ (α0, αu])

Ftrac(α) > 0.

The Hamiltonian of the control problem in Equation (16) is

H(α(s), λh(s)) =
max(Ftrac(s), 0)

cos α(s)
+ λh(s) tan α(s), s ∈ [s0, s f ] (18)

where λh is the costate function. Note that the Hamiltonian is independent of h(s). By PMP, the optimal
costate function λ∗h satisfies the differential equation

dλ∗h(s)
ds

= −
∂H(α∗(s), λ∗h(s))

∂h
= 0 (19)
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Consequently, the optimal costate function is a constant λ∗h over the entire road and its value will
be determined by solving a nonlinear equation at the end of this section. The optimal road grade angle
at any position s ∈ [s0, s f ] is

α∗(s) = arg min
α∈[αl , αu ]

H(α, λ∗h, s) = arg min
α∈[αl , αu ]

max(Ftrac(s), 0)
cos α

+ λ∗h tan α (20)

This minimization problem is solved in three cases depending on the value of acceleration a(s).

3.1. Positive Acceleration

If a(s) > 0, then Assumption 1 and Proposition 1 ensure that Ftrac(s) is non-negative and the
minimization problem in Equation (20) becomes

α∗(s) = arg min
α∈[αl , αu ]

f0v2(s) + f1 cos α + f2 sin α + f3 + λ∗h sin α

cos α

= arg min
α∈[αl , αu ]

f0v2(s) + f3 + ( f2 + λ∗h) sin α

cos α

where f0, f1, f2, and f3 are defined in Equation (17). The term f1 disappears at the second equation,
because it is independent of α. A necessary condition of the minimum point is where the first derivative
of H being zero.

∂H(α, λ∗h, s)
∂α

=
( f2 + λ∗h) + ( f0v2(s) + f3) sin α

cos2 α
= 0 (21)

Since both f0 and f3 are positive in this case, we have f0v2(s) + f3 > 0. Three possible cases arise
depending on the value of f2 + λ∗h.

(1) If f2 + λ∗h > −( f0v2(s) + f3) sin αl , then

∂H(α, λ∗h, s)
∂α

> 0, α ∈ [αl , αu]

Equation (21) has no solution in the range [αl , αu] and the Hamiltonian is monotonically increasing
in the range. The minimum point is hence α∗(s) = αl .

(2) If f2 + λ∗h < −( f0v2(s) + f3) sin αu, then

∂H(α, λ∗h, s)
∂α

< 0, α ∈ [αl , αu]

Equation (21) has no solution in the range [αl , αu] and the Hamiltonian is monotonically
decreasing in the range. The minimum point is hence α∗(s) = αu.

(3) If −( f0v2(s) + f3) sin αl ≥ f2 + λ∗h ≥ −( f0v2(s) + f3) sin αu, then the solution to Equation (21) is

αc = − arcsin
f2 + λ∗h

f0v2(s) + f3
∈ [αl , αu] (22)

Furthermore, the second derivative of H at αc is

∂2H(αc, λ∗h, s)
∂α2 =

f0v2(s) + f3

cos αc
> 0

Consequently, αc must be a local minimum point. We can further prove that at this case αc is the
global minimum point in the range [αl , αu].
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Proposition 4. If a(s) is positive and αc ∈ [αl , αu] exists, then α∗(s) = αc.

Proof. Since f0v2(s) + f3 > 0, for any α ∈ [αl , αc], we have the inequality

∂H(α, λ∗h, s)
∂α

≤
∂H(αc, λ∗h, s)

∂α
= 0

and hence
H(α, λ∗h, s) ≥ H(αc, λ∗h, s)

Similarly, for any α ∈ [αc, αu],

∂H(α, λ∗h, s)
∂α

≥
∂H(αc, λ∗h, s)

∂α
= 0

and hence
H(α, λ∗h, s) ≥ H(αc, λ∗h, s)

The two inequalities imply that αc is the global minimum point of H, i.e., α∗(s) = αc.

Summarizing the three cases, we have the minimum point of α as

α∗(s) =


αl , λ∗h > −( f0v2(s) + f3) sin αl − f2

αu, λ∗h < −( f0v2(s) + f3) sin αu − f2

αc, otherwise

(23)

3.2. Negative Acceleration

If a(s) < 0, then Assumption 2 and Proposition 2 ensure that Ftrac(s) is non-positive and the
minimization problem in Equation (20) becomes

α∗(s) = arg min
α∈[αl , αu ]

H(α, λ∗h, s) = arg min
α∈[αl , αu ]

λ∗h tan α

Its solution depends on the value of λ∗h.

α∗(s) =


αl , λ∗h > 0

αu, λ∗h < 0

∗ ∈ [αl , αu], otherwise

(24)

The symbol ∗ in the last case represents an arbitrary value in [αl , αu].

3.3. Zero Acceleration

If a(s) = 0, Assumption 3 and Proposition 3 ensure that there is a unique angle α0 < 0 such that
Ftrac(α0) = 0 and (∀α ∈ [αl , α0))Ftrac(α) < 0 and (∀α ∈ (α0, αu])Ftrac(α) > 0. The Hamiltonian is then
a continuous function of two cases.

H(α, λ∗h, s) =

H1(α) = λ∗h tan α, α ∈ [αl , α0]

H2(α) =
f0v2(s)+ f1 cos α+ f2 sin α+λ∗h sin α

cos α , α ∈ [α0, αu]

Note that H1(α0) = H2(α0).
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Let α∗1 ∈ [αl , α0] be the minimum point of H1 and α∗2 ∈ [α0, αu] the minimum point of H2.
The global minimum of the Hamiltonian is

min(H1(α
∗
1), H2(α

∗
2))

and the global minimum point is

α∗(s) =

{
α∗1 , H1(α

∗
1) ≤ H2(α

∗
2)

α∗2 , otherwise

The values of α∗1 and α∗2 are dependent on λ∗h. Three cases follow.

(1) If λ∗h > 0, H1(α) is then monotonically increasing in [αl , α0] and α∗1 = αl . The derivative of H2(α)

to α is
dH2(α)

dα
=

( f2 + λ∗h) + f0v2(s) sin α

cos2 α
, α ∈ [α0, αu]

Because f2 � f0v2(s), λ∗h > 0, and |α| ≈ 0, we have

dH2(α)

dα
> 0, α ∈ [α0, αu]

Consequently, α∗2 = α0. Since H is a continuous function,

H1(α
∗
1) < H1(α0) = H2(α0) = H2(α

∗
2)

In this case, we have
α∗(s) = αl

(2) If λ∗h = 0, H1(α) = 0 and H2(α) =
f0v2(s)+ f1 cos α+ f2 sin α

cos α = Ftrac(α)
cos α . By the definition of α0, we have

H2(α) > 0 for all α ∈ (α0, αu]. Consequently,

α∗(s) = ∗ ∈ [αl , α0] (25)

where ∗ represents an arbitrary value.
(3) If λ∗h < 0, H1(α) is then monotonically decreasing in [αl , α0] and α∗1 = α0. The minimum point of

H2(α) in [α0, αu] is identical to Equation (23), except that f3 = 0 and αl is replaced by α0.

α∗2 =


α0, 0 > λ∗h > − f0v2(s) sin α0 − f2

αu, λ∗h < − f0v2(s) sin αu − f2

− arcsin f2+λ∗h
f0v2(s) , otherwise

(26)

At the first case in Equation (26), H2(α
∗
2) = H1(α

∗
1). Then α∗(s) = α0. At the second case in

Equation (26), H2(α
∗
2) < H2(α0) = H1(α

∗
1). Then α∗(s) = αu. At the last case in Equation (26),

H2(α
∗
2) ≤ H2(α0) = H1(α

∗
1). Then α∗(s) = − arcsin f2+λ∗h

f0v2(s) . In summary, the global minimum point at
this case is identical to α∗2 .

α∗(s) = α∗2

3.4. The Value of λ∗h

Sections 3.1–3.3 show that the minimum road angle of the Hamiltonian in Equation (20) is
dependent on the value of λ∗h. The following properties related to the value of λ∗h can be proved.
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Lemma 1. If λ∗h = 0 and there are at least two accelerations ai and aj, i, j ∈ {1, · · · , n}, such that ai < 0 and
aj = 0, then the solution to Equation (20) is not unique.

Proof. Since ai < 0 and λ∗h = 0, Equation (24) states that α∗(s) is arbitrary in [αl , αu] at s ∈ [si−1, si).
Since aj = 0, the vehicle speed at any position s ∈ [sj−1, sj) is a the constant vj−1. Since vj−1 ≤ vm,

Ftrac(αl) = f0v2
j−1 + f1 cos αl + f2 sin αl ≤ f0v2

m + f1 cos αl + f2 sin αl < 0

The zero point α0 must exist and Equation (25) states that α∗(s) is arbitrary in [αl , α0] at
s ∈ [sj−1, sj).

Since the optimal angles at two sections can be arbitrary, the total solution of α∗(s) (s ∈ [s0, s f ]) is
not unique.

Lemma 2. If λ∗h > 0, the solution to Equation (20) has the property α∗(s) < 0 for all s ∈ [s0, s f ].

Proof. We show this lemma in three cases depending on the value of acceleration a(s) at position
s ∈ [s0, s f ].

(1) a(s) > 0: The minimum point to Equation (20) is given by Equation (23). In the first case of
the equation, if −( f0v2(s) + f3) sin αl − f2 ≤ 0, then the value of λ∗h > 0 belongs to this case.
Consequently, α∗(s) must be αl < 0. If −( f0v2(s) + f3) sin αl − f2 > 0, then the value of λ∗h > 0
may belong to the first or the third case. It cannot belong to the second case, because it is always
true −( f0v2(s) + f3) sin αu − f2 < 0. Therefore, α∗(s) = αl < 0 or α∗(s) = αc. By Equation (22),
if λ∗h > 0, then αc < 0.

(2) a(s) < 0: The minimum point to Equation (20) is given by Equation (24). If λ∗h > 0,
then α∗(s) = αl < 0.

(3) a(s) = 0: The minimum point to Equation (20) is found in Section 3.3. If λ∗h > 0, α∗(s) = αl < 0

In summary, the optimum road angle is always negative for the entire road.

Lemma 3. If λ∗h ≤ − f2 and there is at least one accelerations ai, i ∈ {1, · · · , n}, such that ai < 0, then the
solution to Equation (20) has the property α∗(s) ≥ 0 for all s ∈ [s0, s f ] and α∗(s) > 0 for all s ∈ [si − 1, si).

Proof. We show this lemma in three cases depending on the value of acceleration a(s) at position
s ∈ [s0, s f ].

(1) a(s) > 0: The minimum point to Equation (20) is given by Equation (23). If λ∗h ≤ − f2,
then α∗(s) = αu > 0 or α∗(s) = αc. By Equation (22), if λ∗h ≤ − f2, then αc ≥ 0.

(2) a(s) < 0: The minimum point to Equation (20) is given by Equation (24). If λ∗h ≤ − f2,
then α∗(s) = αu > 0.

(3) a(s) = 0: The minimum point to Equation (20) when λ∗h < 0 is given by Equation (26).

Then α∗(s) = αu > 0 or α∗(s) = − arcsin f2+λ∗h
f0v2(s) ≥ 0.

Since the negative acceleration ai exists, we must have α∗(s) > 0 for s ∈ [si − 1, si).
In summary, the optimal road angle is always non-negative during the road and positive during
the deceleration segment.

Theorem 1. If there are at least two accelerations ai and aj, i, j ∈ {1, · · · , n}, such that ai < 0 and aj = 0,
the optimal control problem in Equation (16) with the altitude constraint in Equation (16d) has a unique solution
only if − f2 < λ∗h < 0.
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Proof. If λ∗h = 0, the solution is not unique by Lemma 1. If λ∗h > 0, the optimal road angle function has
the property (∀s ∈ [s0, s f ])α

∗(s) < 0 according to Lemma 2. Applying integration to Equation (16b),
we have the identity

h(s f )− h(s0) =
∫ s f

s0

tan α∗(s)ds

Therefore, h(s f ) < h(s0) and it violates the constraint in Equation (16d).
If λ∗h ≤ − f2, Lemma 3 ensures that (∀s ∈ [s0, s f ])α

∗(s) ≥ 0 and (∀s ∈ [si − 1, si))α
∗(s) > 0.

This yields the inequality h(s f ) > h(s0) and it violates the constraint in Equation (16d).
In summary, the necessary condition for the existence of a unique optimal road angle function to

Equation (16) is − f2 < λ∗h < 0.

With the new knowledge of Theorem 1, we summarize the optimal road angle function in one
equation depending on acceleration a(s). At any s ∈ [s0, s f ],

α∗(s) =


max(− arcsin f2+λ∗h

f0v2(s)+ f3
, αl), a(s) > 0

αu, a(s) < 0

max(− arcsin f2+λ∗h
f0v2(s) ,− f0v2(s)+ f1

f2
), a(s) = 0

(27)

In the equation, if λ∗h is very large, the argument in the arcsin function may be larger than 1.
Then α∗(s) takes the second value in the max function.

Equations (16b) and (16d) yield a nonlinear equation of λ∗h.

∫ s f

s0

tan α∗(s)ds =
n

∑
i=1

∫ si

si−1

tan α∗(s)ds = 0 (28)

The tricky part of establishing this equation is that α∗(s) at the segments where a(s) ≥ 0 are
dependent on λ∗h, which is yet unknown. Conjecture on the value of λ∗h and iterations are necessary
to find λ∗h. We start with conjectures on α∗(s) for the segments [si−1, si) where ai ≥ 0 and construct
the equation as in Equation (28). After solving the equation, we verify if the conjectures are correct.
If so, we have found a candidate of the optimal costate λ∗h. Moreover, since PMP and Theorem 1
provide only necessary conditions on the optimal costate, there may be multiple candidates satisfying
Equation (28) and all relevant constraints derived from Equation (27). In this case, we must compute
the energy consumptions by Equation (16a) for all these candidates and identify the one with the
minimal energy consumption.

There are more complicated cases where the optimal angle value switches from one extreme to the
other. For example, if ai > 0 in the segment [si−1, si), then we know v(s) is monotonically increasing

in the segment s ∈ [si−1, si). If there exists a position sc ∈ (si−1, si) such that − arcsin f2+λ∗h
f0v2(s)+ f3

≤ αl

for s ∈ [si−1, sc] and − arcsin f2+λ∗h
f0v2(s)+ f3

≥ αl for s ∈ [sc, si−1), then a corresponding equation can be
constructed and solved. Among the n acceleration values of the sequence ai, i = 1, · · · , n, if there are
m < n accelerations that are positive, we repeat the equation solving process at least 2m times.

3.5. An Illustrative Example

Figure 2 shows the acceleration sequence {a, 0,−a} corresponding to the position sequence
{0, S, (l + 1)S, (l + 2)S}, where a > 0, S > 0, and l > 0. Evidently, the road is divided into n = 3
segments for this example. Let v0 = 0. The speed sequence by Equation (2) is {0,

√
2aS,
√

2aS, 0}.
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Acceleration(m/s2)

Position(m)

lSS S

Figure 2. The vehicle acceleration trajectory.

Let αl = −αu. By Equation (3), v(s) =
√

2as when s ∈ [0, S]. By Equation (27), the optimal angles
in segment [0, (l + 1)S) are negative and the optimal angle in segment [(l + 1)S, (l + 2)S] is αu > 0.
Therefore the optimal angle during the first segment [0, S) cannot be always αl . We further assume
that the optimal road angle in the first segment is always larger than αl , i.e.,

α∗(s) = − arcsin
f2 + λ∗h

f0v2(s) + f3
≥ αl , s ∈ [0, S)

Since |α∗(s)| ≈ 0, we have the approximation

tan α∗(s) ≈ −
f2 + λ∗h

2a f0s + f3
, s ∈ [0, S)

and ∫ S

0
tan α∗(s)ds ≈ −

f2 + λ∗h
2a f0

ln
2a f0S + f3

f3

The vehicle speed is constant
√

2aS in segment [S, (l + 1)S). The optimal road angle in the
segment cannot be determined yet.

α∗(s) = − arcsin
f2 + λ∗h
2a f0S

or − 2a f0S + f1

f2
, s ∈ [S, (l + 1)S)

Since |α∗(s)| ≈ 0, we have the approximation

tan α∗(s) ≈ −
f2 + λ∗h
2a f0S

or − 2a f0S + f1

f2
, s ∈ [S, (l + 1)S)

and ∫ (l+1)S

S
tan α∗(s)ds ≈ −

f2 + λ∗h
2a f0

l or − 2a f0S + f1

f2
lS

The optimal road angle in the last segment [(l + 1)S, (l + 2)S] is constant αu. The change of the
road altitude during this segment is

∫ (l+2)S

(l+1)S
tan α∗(s)ds = S tan αu

For convenient presentation, define ϕ = 2a f0 and ψ = ln 2a f0S+ f3
f3

. The final equation by
Equation (28) is

−
f2 + λ∗h

ϕ
ψ−

f2 + λ∗h
ϕ

l + S tan αu ≈ 0 (29a)



Energies 2017, 10, 700 15 of 31

or

−
f2 + λ∗h

ϕ
ψ− ϕS + f1

f2
lS + S tan αu ≈ 0 (29b)

The solutions to Equations (29a) and (29b) are

λ∗h1 ≈
ϕS tan αu

ψ + l
− f2 (30a)

and
λ∗h2 ≈

ϕS
ψ

(tan αu −
ϕS + f1

f2
l)− f2 (30b)

respectively. The two solutions must both satisfy the inequalities

− f2 <λ∗hi < 0

f2 + λ∗hi <(ϕs + f3) sin(−αl), s ∈ [0, S)

where i = 1, 2. Since the second inequality must hold for all s ∈ [0, S) and ϕ > 0, it is reduced to

f2 + λ∗hi < f3 sin(−αl), i = 1, 2

The two solutions also individually satisfy the following two inequalities.

f2 + λ∗h1
ϕS

≤ sin
ϕS + f1

f2

f2 + λ∗h2
ϕS

≥ sin
ϕS + f1

f2

To complete the example, we use the vehicle parameters given behind Assumption 3.

Let a = 1 m/s2 and the maximal speed be vm =
√

2aS = 80 km/h = 22.22 m/s. Then S = v2
m

2a m.
Solving the problem with different values of l, we find the following results.

1. When 0 < l < 1.39, λ∗h2 is the only valid costate value and hence the optimal one. The optimal
road angle function is

α∗(s) =


− arcsin f2+λ∗h2

ϕs+ f3
, s ∈ [0, S)

− ϕS+ f1
f2

, s ∈ [S, (l + 1)S)

αu, s ∈ [(l + 1)S, (l + 2)S]

(31a)

2. When l ≥ 1.39, λ∗h1 is the only valid costate value and hence the optimal one. The optimal road
angle function is

α∗(s) =


− arcsin f2+λ∗h1

ϕs+ f3
, s ∈ [0, S)

− arcsin f2+λ∗h1
ϕS , s ∈ [S, (l + 1)S)

αu, s ∈ [(l + 1)S, (l + 2)S]

(31b)

Figures 3 and 4 show the optimal road grade and the optimal road height with different values
of l, respectively. When l = 1, the road angle is about −0.02 rad during the acceleration segment.
During the constant speed segment, the road angle is about −0.03 rad and during the deceleration
segment, the road grade reaches its maximal limit. When l ≥ 2, the road angle is approximately
within the range (−0.025, 0) in the acceleration and constant-speed segments. During the deceleration
segment, the road angle always reaches the its maximal limit. The larger is the value of l, the larger is
the road angle in the acceleration and constant-speed segments. Contrary to intuition, the optimal
road has steeper downhill during the constant speed segment than during the acceleration segment.
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Figure 4 shows that regardless of the length of the road, the lowest road height is identical, because it
is determined by the length of S and the maximal road angle αu.

0 200 400 600 800 1000 1200 1400 1600 1800
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Position (m)

R
oa

d 
A

ng
le

 (
ra

d)
l=1
l=2
l=3
l=5

Figure 3. The optimal road angle profiles.
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Figure 4. The optimal road height profiles.

Recall that the optimization problem in Equation (16) ignores the speed dynamics in
Equation (15b). Figure 5 justifies the validity of the simplification. In the figure, the numbers 1, 2, 3, 5
correspond to different values of l , reference speed means the velocity of the vehicle running on the
flat road and actual speed means the velocity of the vehicle running on the optimal road. For example,
the annotation "Reference speed 1" represents the velocity of the vehicle running on the flat road when
l = 1. Figure 5 shows the relationship between actual speed and reference speed. Evidently, the actual
speed is very close to the reference speed. Table 1 provides RMSE and normalized RMSE between the
reference and actual speeds.

Table 1. RMSE, normalized RMSE and maximal deviation of speed.

Value of l RMSE Normalized RMSE (%) Maximal Deviation (m/s) 1

l = 1 0.0114 0.051 0.07467
l = 2 0.0115 0.052 0.08610
l = 3 0.0104 0.047 0.08647
l = 5 0.0088 0.040 0.08668

1 The column shows the maximal absolute deviation between the reference and the
actual speeds.
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Figure 5. The comparison of velocity.

Finally, we validate the correctness of the optimal road angle function by comparing energy
consumption with two reference road profiles. The first one is the flat road. The second one is the
road that has the minimal/maximal angle during the acceleration/deceleration segments and zero
angle during the constant-speed segment. We call it the symmetric road. Its corresponding road
angle αsym(s) is provided in Equation (32). The results are listed in Table 2. Evidently the road profile
obtained by PMP results in the least energy consumption.

αsym(s) =


αl , a(s) > 0

αu, a(s) < 0

0, a(s) = 0

(32)

Table 2. Comparison of energy consumptions.

Value of l Energy (J) Reduction Percentage (%)
Flat Road Symmetric Road Optimal Road Opt vs. Sym Opt vs. Flat

l = 1 2.7774× 105 1.8822× 105 1.8724× 105 0.52 32.6
l = 2 3.3541× 105 2.4590× 105 2.4460× 105 0.53 27.1
l = 3 3.9309× 105 3.0357× 105 3.0225× 105 0.43 23.1
l = 5 5.0843× 105 4.1891× 105 4.1757× 105 0.32 17.8

4. Numerical Analysis

In the previous section, the analytical solution is obtained for only one vehicle driving at a given
acceleration profile. Recall that our ultimate objective as formulated in Equation (15) is to find the
optimal road angle profile to minimize the total energy consumption of all vehicles running on the
road. This problem is too complex to solve by the same analytical solution. This section solves the road
angle optimization problem with deterministic dynamic programming (DP). The section contains four
parts. Section 4.1 presents the discrete-time model of the optimal road grade design problem suitable
for DP. Section 4.2 solves the illustrative example in Section 3.5 again by DP. The comparison of the
analytical and DP solutions confirms the correctness of the DP solution. Section 4.3 presents a general
problem with a larger number of different vehicles and solves the problem by DP. Section 4.4 applies
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the Monte Carlo method to verify the correctness of the DP result by a large number of simulations.
The simulation results prove that the total energy consumption of all vehicles running on the optimal
road is smaller than energy consumption on the flat road and the reduction is achievable even though
the assumed vehicle speed profile and weight distribution are not satisfied. When we compare
energy consumption of all vehicles driving on the optimal road and those on the symmetric road,
the simulation results show that the optimal road results in less energy consumption in most cases.
Small exceptions may appear if the driving condition is significantly different from the assumption.

4.1. Model for DP

Dynamic programming (DP) is a powerful optimal control method that can handle complex
models and constraints [35]. This section elaborates our approach to solve the optimal control problem
in Equation (15) by DP. We first transform both the continuous-time optimal control problem and the
continuous-time state-space equation into a discrete-time optimal control problem. The time variable is
in fact the distance. The number of discretization steps is calculated by N = (s f − s0)/∆s, where s f − s0

is the traveling distance and ∆s is a small positive distance that can divide s f − s0. The continuous
road angle function is discretized into a sequence of α(k), k ∈ [0, N]. The road grade angle is limited in
the range [αl , αu], where αl < 0 and αu > 0. The continuous state-space equation in Equation (15b) is
discretized into [

h(k + 1)
vsq(k + 1)

]
=

[
h(k) + ∆s tan α(k)
vsq(k) + 2∆sa(k)/ cos α(k)

]
, k = 0, · · · , N − 1

where vsq(k) is the square of the speed at the distance k∆s, vsq(k) ≥ 0, k ∈ [0, N] and h(0) = h(N).
The objective function in Equation (15a) should be converted from the continuous function into

a discrete function. First, the weight distribution function pM in Section 2.2 is discretized by W
points of distinct weights, which satisfy the relation: Ml = M1 < M2 < · · · < MW−1 < MW = Mu.
The probability of Mveh = Mj is pj(> 0) for j ∈ [1, W], and ∑W

j=1 pj = 1.
The continuous traction force Ftrac(s, ξ(m)) is also discretized at position k∆s and weight Mj

and the result is Ftrac(k∆s, ξ(Mj)). Finally, the continuous objective function in Equation (15) is
approximately converted into the following function in Equation (33):

min
α(k)

W

∑
j=1
{

N−1

∑
k=0

max(Ftrac(k∆s, ξ(Mj)), 0)
cos α(k)

∆s}pj (33a)

s.t. for all k ∈ [0, N − 1], [
h(k + 1)
vsq(k + 1)

]
=

[
h(k) + ∆s tan α(k)
vsq(k) + 2∆sa(k)/ cos α(k)

]
(33b)

vsq(k) ≥ 0 (33c)

α(k) ∈ [αl , αu] (33d)

h(0) = h(N) (33e)

4.2. Numerical Solution to the Illustrative Example

We use a generic dynamic programming MATLAB (DPM) function [36] to solve the optimal
control problem in Equation (33) for the illustrative example in Section 3.5. Only one set of
vehicle parameters is used in Equation (33), i.e., the probability of vehicle weight being 750 kg
is 1. Other vehicle parameters are identical to those in Section 3.5. According to the result in Section 3.5,
the height h(k) is within the range [−13, 0] m and divided by 131 points. Each step in height is 0.1 m.
According to Figure 5 and Table 1, the difference between the actual and reference vehicle speeds is very
small. We then set the discretization grid of vsq(k) as a dynamic range [max(v2(k)− δ, 0), v2(k) + δ],
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where v(k) is obtained by Equation (3) for k = 0, 1, . . . , N and δ is a small positive number estimated
from Table 1. The range is discretized by 101 points at one step. The control signal α(k) ∈ [−0.05, 0.05]
is divided by 501 points. Thus, a step of α(k) is 2× 10−4 rad.

The numerical solution for Equation (33) by DP is very close to the analytical solution presented
in Section 3.5 and the comparison is shown in Figure 6. The small difference is due to the numerical
error of DP. When the vehicle has positive acceleration or constant speed, the corresponding road
angle is negative. In the deceleration region, the optimal road grade reaches the highest positive grade.
Table 3 shows the comparison of DP and the analytical solution. Table 4 presents the results of the
traveling time with three distances. The influence of the optimal road angle profile to traveling time is
very small and the longer is the distance, the smaller is the influence on traveling time.
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Figure 6. The comparison of the numerical solution with the analytical solution. (a) l = 1; (b) l = 3;
(c) l = 5.
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Table 3. Comparison of DP and PMP solutions.

Value of l Energy (J)
Relative Deviation (%) 1

DP Solution Analytical Solution

l = 1 1.8810× 105 1.8725× 105 0.45
l = 3 3.0338× 105 3.0225× 105 0.37
l = 5 4.1887× 105 4.1757× 105 0.31

1 The column is calculated by the following equation: ((DP Solution − Analytical
Solution)/Analytical Solution)× 100%.

Table 4. Comparison of traveling time.

Value of l Road Distance (m) Traveling Time (s) Percentage of Increase (%) 1

l = 1

Optimal Road by DP 740.9390 52.7924 2.41
Optimal Road by PMP 740.9486 52.6957 2.22

Symmetric Road 740.1393 52.8091 2.44
Flat Road 740.7407 51.5492 –

l = 3

Optimal Road by DP 1234.7076 74.8885 1.70
Optimal Road by PMP 1234.7017 74.7725 1.55

Symmetric Road 1233.9665 75.0313 1.90
Flat Road 1234.5679 73.6343 –

l = 5

Optimal Road by DP 1728.4989 96.9720 1.31
Optimal Road by PMP 1728.4945 96.8560 1.19

Symmetric Road 1727.7936 97.2535 1.60
Flat Road 1728.3951 95.7193 –

1 The column shows the percentage of increase of the traveling time for different road compared with the
flat road.

4.3. Numerical Solution to the General Problem

Section 4.2 considers only one vehicle. This section uses DP to find the optimal road angle profile
between two points for a larger number of different vehicles. The acceleration profile is identical to
that in Figure 2 and the maximal vehicle speed is 80 km/h. The parameter l is 5, corresponding to
the direct distance of around 1700 m between the origin and the terminal. The distance is common
between two bus stops. Suppose that the vehicle weights are between 750 kg and 40 t. The range is
discretized by 10 distinct points, whose probabilities are listed in Table 5. The corresponding vehicle
parameters are also given in the table. The probability values of the vehicle weights are estimated by
our observation of common urban traffic. The vehicle frontal area and aerodynamics coefficient are
increasing with the vehicle weight, but the tire rolling resistance is decreasing with the vehicle weight.

Table 5. Different parameters.

Weight (kg) Probability A f cd croll

750 0.05 1.8000 0.3000 0.0100
1000 0.2 1.8546 0.3017 0.0100
1500 0.2 1.9636 0.3052 0.0099
2000 0.1 2.0732 0.3086 0.0099
5000 0.1 2.7290 0.3292 0.0096
8000 0.1 3.3848 0.3499 0.0093

10,000 0.1 3.8220 0.3636 0.0091
20,000 0.05 6.0080 0.4324 0.0080
30,000 0.05 8.1940 0.5012 0.0070
40,000 0.05 10.380 0.5700 0.0060
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In this problem, the height h(k) is within the range [−13, 0] m and divided by 131 points.
Each step in height is 0.1 m. We then set the discretization grid of vsq(k) as a dynamic range
[max(v2(k)− 0.7, 0), v2(k) + 0.7]. The range is discretized by 101 points for one step. The control
signal α(k) ∈ [−0.05, 0.05] is divided by 501 points. Thus, a step of α is 2× 10−4 rad. Applying these
values in DPM, we obtain the optimal trajectories of road angle and height plotted in Figure 7 as blue
solid lines. The trajectories of road angle and height of the symmetric road are also plotted in Figure 7
as the red dashed lines. The optimal results agree well with the DP solution in Figure 6 when l = 5 and
the difference is because the result in Figure 7 considers the mean value of various vehicle weights.
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Figure 7. The optimal and the symmetric roads. (a) The comparison of the optimal and the symmetric
road grade profiles; (b) The comparison of the optimal and the symmetric road height profiles.

4.4. Monte Carlo Simulation

We verify the correctness and advantage of the DP solution in Section 4.3 via Monte Carlo
simulations on a large number of vehicles with various weights. The simulations cover three scenarios.
Section 4.4.1 simulates a large number of vehicles with random weights whose probability distribution
function is consistent with Table 5. Section 4.4.2 simulates the scenario where the distribution of vehicle
weights is inconsistent with Table 5. Section 4.4.3 simulates the scenario where all vehicles must make
an extra stop during the travel.

4.4.1. Weight Probability Distribution Similar to the Assumption

In the first scenario, we simulate a large number of vehicles whose weights satisfy a probability
distribution function that is consistent with Table 5. Figure 8 illustrates the occurrence ratio of the
weights of 1000 randomly generated vehicles. To clearly show weights from 750 kg to 40 tonnes, the
weight axis is in logarithmic scale. To demonstrate the advantage of the optimal road angle profile,
we compare the energy consumptions of the same set of randomly generated vehicles on the optimal
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road, the symmetric road, and the flat road, respectively. The numbers of random vehicles range
from 1000 to 1× 105, as listed in Table 6. For each number, e.g., 1000, we generate 10 sets of random
vehicles and each set contains the given number, e.g., 1000, of vehicles. For each set of vehicles, we
calculate the average energy consumptions of all vehicles for three types of roads. The mean values
and standard deviations of the 10 random vehicle sets for the three types of roads are listed in Table 6.
The energy reduction percentages of the optimal road compared with the flat road as well as that
compared with the symmetric road are indicated by the corresponding values in the last column in
Table 6. The value at the row of “Flat Road”/“Symmetric Road” is the reduction percentage of the
optimal road compared to the flat/symmetric road.
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Figure 8. Weight probability distribution is consistent with the assumption.

Table 6. Comparison of simulation results (weight probability distribution is consistent with
the assumption).

Number of Vehicles Road Mean Average Energy (J) Standard Deviation (J) Reduction Percentage (%) 1

1000
Flat Road 3.9327× 106 1.0848× 104 31.68

Symmetric Road 2.8122× 106 7.5317× 103 4.46
Optimal Road 2.6867× 106 7.3187× 103 -

10,000
Flat Road 3.8985× 106 5.4199× 103 31.67

Symmetric Road 2.7882× 106 3.6923× 103 4.46
Optimal Road 2.6639× 106 3.5565× 103 -

100,000
Flat Road 3.8962× 106 653.62 31.66

Symmetric Road 2.768× 106 991.13 4.46
Optimal Road 2.662× 106 681.50 -

1 The reduction percentage is calculated from the mean values.

It is evident from Table 6 that vehicles running on the optimal road can save about 31.7% and
4.5% energy compared with vehicles running on the flat road and the symmetric road, respectively.
Note that the standard deviation in the table decreases when the number of simulated vehicles
increases. This implies that the simulation result with a larger number of vehicles is more accurate.

4.4.2. Weight Probability Distribution Different from the Assumption

In order to verify that the optimal road profile is robust, we simulate a large number of vehicles
whose weights satisfy a probability distribution function that is inconsistent with Table 5 in this section.
We consider four cases: normal distribution, exponential distribution, uniform distribution, and lots of
trucks and less light vehicles.

In the case of normal distribution, the mean and standard deviation are 1500 and 500 kg,
respectively. Figure 9 illustrates the weights of 1000 randomly created vehicles satisfying the normal
distribution. The minimal weight is 750 kg.
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Figure 9. Normal distribution.

In the case of exponential distribution, the probability distribution function is λe−λ(x−750).
The definition ensures that the weight is at least 750 kg. The value of λ is 1.333× 10−3. Therefore the
mean weight of the distribution function is 750 + 1/λ = 1500 kg. Figure 10 illustrates the weights of
1000 randomly created vehicles which satisfy the exponential distribution.
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Figure 10. Exponential distribution.

In the case of uniform distribution, the vehicles are uniformly distributed between 750 kg and
40 tonnes. Figure 11 illustrates the weights of 1000 randomly created vehicles which satisfy the uniform
distribution. Finally, we simulate the scenario that there are much more heavy trucks on the road than
light-weight passenger cars. The weight distribution function of 1000 random vehicles is plotted in
Figure 12.



Energies 2017, 10, 700 24 of 31

700 1000 5000 10000 20000 42000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P
ro

ba
bi

lit
y

Weight(kg)

Figure 11. Uniform distribution.
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Figure 12. Lots of trucks and less of light vehicles.

We repeat the same simulations and calculations described in Section 4.4.1. For each number of
simulated vehicles, 10 Monte Carlo simulations are repeated. For every simulation, we calculate the
average energy consumptions on the three different roads, namely the optimal road, the symmetric
road, and the flat road. From these results, we calculate the reduction percentages of the optimal
road compared to the flat and symmetric roads for each simulation. The 10 reduction percentages are
then used to calculate the mean and standard deviations of the saving percentages, as illustrated in
Figures 13 and 14 and Table 7. The bars and the red line sections in Figures 13 and 14 represent the
means and standard deviations of the saving percentages, respectively.
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Figure 13. The energy reduction of optimal road compared with flat road.
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Figure 14. The energy reduction of optimal road compared with symmetric road.

Table 7. Standard deviation of reduction percentage.

Number of Vehicles Comparison Standard Deviations of Reduction Percentages (%)
Normal Exponential Uniform Lots of Trucks

1000
Opt vs. Flat 0.05 0.122 0.036 0.0071
Opt vs. Sym 0.0084 0.022 0.0076 0.0095

10,000
Opt vs. Flat 0.014 0.037 0.018 0.0018
Opt vs. Sym 0.0024 0.0066 0.0025 0.0095

100,000
Opt vs. Flat 0.0035 0.009 0.0039 0.00053
Opt vs. Sym 0.00054 0.0016 0.00081 0.00081

Table 7 shows the standard deviations of energy reductions in Figures 13 and 14. As shown in
Figure 13, the energy consumption of all vehicles running on the optimal road is compared to the
energy consumption on the flat road. About 24.5% energy is saved in the normal distribution. In the
exponential distribution, about 26.5% energy is saved. In the uniform distribution, about 32.7% energy
is saved. When there are lots of trucks and less light vehicles, about 33.7% energy is saved. The larger
energy reductions for the uniform and lots of trucks cases indicate that the optimal road has larger
benefit for heavy vehicles.

Figure 14 shows the mean value of energy reduction of the optimal road compared to the
symmetric road. About 3.25% energy is saved in the normal distribution. In the exponential
distribution, about 3.6% energy is saved. In the uniform distribution, about 4.8% energy is saved.
When there are lots of trucks and less light vehicles, about 4.72% energy is saved.
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The Monte Carlo simulations clearly reveal the advantage of the optimal designed road compared
to symmetric and flat roads in reducing the total energy consumption of all vehicles running on
the road.

4.4.3. Speed Profile Different from the Assumption

In this part, we simulate the two scenarios where all vehicles must make an extra stop during the
travel. The first is an extra stop at the half distance as illustrated in Figure 15. The second is the vehicle
stops at the uphill as illustrated in Figure 16. The probability distribution of weights is the same as in
Section 4.4.1. We repeat the same Monte Carlo simulations discussed in Section 4.4.1. Tables 8 and 9
list the simulation results of the means and standard deviations of average energy consumptions
on the three types of roads for the two speed profiles, respectively. In Tables 8 and 9, the energy
reduction percentages of the optimal road compared with the flat road as well as that compared with
the symmetric road are indicated by the corresponding values in the last column.
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Figure 15. The vehicles stop at half the distance.
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Figure 16. The vehicles stop at the uphill.
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Table 8. Simulation results (the vehicles stop at half the distance).

Number of Vehicles Road Mean Average Energy (J) Standard Deviation (J) Reduction Percentage (%)

1000
Flat Road 5.7908× 106 2.5972× 104 16.88

Symmetric Road 4.7076× 106 3.1326× 104 −2.2
Optimal Road 4.8131× 106 2.5179× 104 -

10,000
Flat Road 5.8489× 106 5.6143× 103 16.89

Symmetric Road 4.7547× 106 6.8806× 103 −2.2
Optimal Road 4.8609× 106 5.5271× 103 -

100,000
Flat Road 5.8484× 106 990.5073 16.89

Symmetric Road 4.7670× 106 1.1927× 103 −2.2
Optimal Road 4.8637× 106 959.7524 -

Table 9. Simulation results (the vehicles stop at uphill).

Number of Vehicles Road Mean Average Energy (J) Standard Deviation (J) Reduction Percentage (%)

1000
Flat Road 4.3424× 106 1.6166× 104 19.17

Symmetric Road 3.5214× 106 2.0242× 104 0.32
Optimal Road 3.5124× 106 1.6063× 104 -

10,000
Flat Road 4.3756× 106 4.5431× 103 19.18

Symmetric Road 3.5483× 106 5.6521× 103 0.38
Optimal Road 3.5365× 106 4.4861× 103 -

100,000
Flat Road 4.3751× 106 939.5625 19.17

Symmetric Road 3.5479× 106 1.1748× 103 0.33
Optimal Road 3.5362× 106 923.0986 -

Table 8 shows that the optimal road saves about 16.9% energy compared with the flat road
but consumes about 2.2% more energy compared with the symmetric road. The reason is that the
downhill of the symmetric road is steeper than the downhill of the optimal road, as illustrated in
Figure 17. The corresponding average traction forces on the two roads are plotted in Figure 18.
The energy consumption on the optimal road is larger than that on the symmetric road during the first
acceleration. Without the unexpected stop, the energy saving on the optimal road during the constant
speed section outweighs the additional consumption at the acceleration section. The unexpected stop,
however, reduces the energy saving during the constant speed section and hence results in larger
energy consumption on the optimal road than on the symmetric road.
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Figure 17. The comparison of the road grade.
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Figure 18. The comparison of mean traction force for vehicles.

To maintain smaller energy consumption on the optimal road, the distance of the constant speed
section needs to be longer. We study the energy consumption comparison between the optimal
and symmetric roads for different distances. There is always a stop in the middle of the distance.
We simulate 1000 vehicles with the weight distribution as in Section 4.4.1. The results are listed in
Table 10. When the distance is 20 km, the energy consumption of the optimal road is again smaller
than the symmetric road.

Table 10. The comparison of energy consumption for different distances.

Distance (km) Mean Average Energy (J) Standard Deviation (J) Reduction Percentage (%)Opt Sym Opt Sym

1.7 4.8131× 106 4.7071× 106 2.2413× 104 2.1919× 104 −2.2
5 9.0765× 106 9.0371× 106 4.8641× 104 4.8402× 104 −0.4

10 1.4733× 107 1.4722× 105 4.6425× 104 4.6382× 104 −0.075
20 2.6088× 107 2.6091× 105 1.1350× 105 1.1351× 105 0.01

Finally, Table 9 shows that the optimal road saves about 19.2% energy compared with the flat
road and about 0.3% energy compared with the symmetric road when all vehicles make one stop at
the uphill during the traveling.

5. Preliminary Cost Analysis

The analysis suggests large reduction of the total energy consumption of all vehicles running on
the optimally designed road, but a major concern to road optimization is cost. Road construction is
expensive and has many concerns in addition to cost and energy consumption. If we build a new
road, the dominating costs are for evacuating assets along the road, hiring the construction company,
digging earth and rock, transporting waste and construction materials, paving the road, etc. These costs
are independent of the road grade profile and hence our method can be applied with little influence
on the cost of building the road. The benefit of the new road design method is obvious in this case.
In our future work, we shall include more practical constraints, e.g., the maximal/minimal altitude,
the longest distance for downhill/uphill, into the optimization process.

The questionable case is then to rebuild an existing road to obtain the optimal angle profile.
We have no expertise in cost estimation of road construction and can only give a very preliminary
estimate on it. Take the road in Sections 4.3 and 4.4 for an example. Its direct distance is around 1.7 km
and we estimate its cost by the methods presented in [37]. Relevant data for making the gross estimate
are taken from a practical example in China [38]. The example project spends about $10.5 million
to build a 8.5 km-long road. Consequently it takes nearly $1.23 million to build 1 km-long road.
Thus, the budget of building the 1.7 km-long optimal road is approximately $2.1 million, which is
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about the same expenses as that for building a flat road, since the grade of the optimal road is very
small. For estimating the cost of rebuilding road, the relevant data come from another example of
reconstructing a 25.124 km-long road [39]. The additional cost to rebuild the road is very small. In this
reconstruction example, it takes about $5.4 million to rebuild the road and hence the average cost is
approximately $0.215 million per km. Then the budget to rebuild the 1.7 km-long optimal road is
about $0.365 million.

Suppose that averagely 5000 vehicles use the road every day and the road can be in service for
30 years. If the weights of the vehicles satisfy the distribution in Table 5, Table 6 shows about 31.7%
reduction of the total energy consumption over 30 years. Assume that the average fuel consumption is
6.5 L gasoline per 100 km. Thus, one vehicle averagely saves 0.0350 L gasoline per day on the 1.7 km
optimal road. The total saving for 5000 vehicles per day for 30 years is roughly 1.918 million liter
gasoline. The current gasoline price in China is about $0.93 per liter and assume the same price for
the next 30 years. The total saving in money is about $1.8 million for 30 years. Since the fuel price
will certainly increase in the future, more saving can be achieved. The saving outweighs the cost of
rebuilding the road. Moreover, the reduction on energy consumption also reduces harmful vehicle
emissions and contributes to cleaner environment.

6. Conclusions and Future Work

This article presents both analytical and numerical solutions to the optimization problem of
finding the optimal road grade that minimizes the overall energy consumption of all vehicles running
on the road. We assume that all vehicles on the road follow a given acceleration profile between the
two given points. In order to find the analytical solution, the optimal control problem is simplified
and the Pontryagin’s minimum principle is used to derive the optimal road grade trajectories.
Dynamic programming (DP) is utilized to solve the problem numerically. The paper finds that
the numerical solution is almost identical to the analytical solution. Then we use DP to find the optimal
road angle profile between two points for a larger number of different vehicles. After that we verify
the correctness and advantage of the DP solution via Monte Carlo simulations on a large number of
vehicles with various weights. Three cases are considered in the Monte Carlo simulations. First, a large
number of vehicles with random weights whose probability distribution function is consistent with
the assumption. Second, the distribution of vehicle weights is inconsistent with the assumption. Third,
all vehicles must make an extra stop during the travel. The simulations reveal that the optimal road
saves energy for all cases, except one. Explanation of the exception is given in the paper.

Compared to the flat road, the optimal road reduces the energy consumption of all vehicles by
around 31.7%. Thereby the optimal road has advantage in reducing fuel consumption of ground
vehicles and has large application potential.

In the future, we will continue to improve fuel economy by the optimal design of the road
infrastructural. Firstly, more comprehensive design objectives and constraints coming from road
construction techniques will be included in the DP formalism. Secondly, as stated in Section 4.4.3, if the
actual speed profile is inconsistent with the assumed speed profile, the energy consumption on the
optimal road may not be the least if the traveling distance is short. We will thus investigate robust
road optimization method for reducing the total energy consumption of vehicles with more complex
and stochastic velocity trajectories. Thirdly, the optimal road grade profile is dependent on the driving
direction. If we design an optimal road between two destinations for both driving directions, the road
profiles for both ways are distinct. The implication of the asymmetric design will be further analyzed.
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