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Abstract: Electric load forecasting plays an important role in electricity markets and power systems.
Because electric load time series are complicated and nonlinear, it is very difficult to achieve a
satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning
Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor
(KNN) and Extreme Learning Machine (ELM) based on a wavelet denoising technique is proposed
for short-term load forecasting. The proposed hybrid model decomposes the time series into a low
frequency-associated main signal and some detailed signals associated with high frequencies at first,
then uses KNN to determine the independent and dependent variables from the low-frequency
signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the
final prediction result for the electric load. Compared with three other models, Extreme Learning
Machine optimized by k-Nearest Neighbor Regression (EKM), Wavelet Denoising-Extreme Learning
Machine (WKM) and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest
Neighbor Regression (WNNM), the model proposed in this paper can improve the accuracy efficiently.
New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict
electric demand for that region. The accurate prediction has a significant meaning.

Keywords: electric load; predict; ELM; KNN regression; wavelet denoising

Highlights:

• A novel hybrid model named ELM-WA-KNN is proposed for electric load forecasting in
New South Wales, Australia.

• The wavelet analysis (WA) is introduced to eliminate the noise of the electric load time series.
• k-Nearest Neighbor regression (KNN) is used to get the input-output relationship in the

hybrid model.
• The kernel function of KNN is established by extreme learning machine (ELM).
• The proposed ELM-WA-KNN model has the best performance among all the considered models.

1. Introduction

Electric load prediction is one of the major tasks in power management departments which carry
out electric power dispatching, usage and planning. Improving the accuracy of load forecasting is
helpful for planning power management and is advantageous to the arrangement of power grid
operations. Meanwhile, it is also advantageous for the reduction of power generation costs and is
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beneficial to establish the power for construction plans. Therefore, electric load forecasting has become
an important part of power system management modernization.

In recent years, a large number of techniques for time series forecasting have been used in electric
load forecasting. In traditional predictive methods, the linear regression model and grey model have
been widely used. Goia et al. proposed a linear regression model using heating demand data to forecast
the short-term peak load in a district-heating system [1]. Zhou et al. presented a trigonometric grey
prediction approach by combing the traditional GM (1, 1) with the trigonometric residual modification
technique for forecasting electricity demand [2]. Akay et al. proposed GPRM to predict Turkey’s
total and industrial electricity consumption [3]. Meanwhile, artificial neural networks and support
vector machines have a variety of applications in electric load forecasting. Chang et al. proposed the
so-called EEuNN framework by adopting a weighted factor to calculate the importance of each factor
among the different rules to predict monthly electricity demand in Taiwan [4]. Kavaklioglu used SVR
to model and predict Turkey’s electricity consumption [5]. Wang et al. presented a combined ε-SVR
model considering seasonal proportions based on development trends from history data to forecast
the short-term electricity demand [6]. Other predictive techniques have also been proposed to deal
with the electric load forecasting problem. Kucukali et al. attempted to forecast Turkey’s short-term
gross annual electric demand by applying fuzzy logic methodology based on the economical, political
and electricity market conditions of the country [7]. Dash et al. presented the development of a hybrid
neural network to model a fuzzy expert system for time series forecasting of electric loads [8]. Taylor
showed that for predictions up to a day-ahead the triple seasonal methods outperform the double
seasonal methods in predicting electricity demand [9].

However, no matter which techniques are utilized to predict electric load, with only a single
model it is difficult to achieve high precision because of the various shortcomings in the models [10].
Therefore, hybrid models are built with different combinations of data mining technology to
improve the prediction accuracy in load forecasting research. Wu et al. proposed a Particle Swarm
Optimization-Supporter Vector Machine (PSO-SVM) model based on cluster analysis techniques and
data accumulation pretreatment in short-term electric load forecasting [11]. Chen et al. proposed a new
electric load forecasting model by hybridizing FTS and GHSA with LSSVM [12]. Huang presented
a SVR-based load forecasting model which hybridized the chaotic mapping function and QPSO
with SVM [13]. Zhang et al. successfully established a novel model for electric load forecasting
by combination of SSA, SVM and CS [14]. Hence, it is apparent that lots of novel hybrid models
combined with different data mining techniques could improve the prediction precision in the research
of load forecasting.

In this paper we also propose an outstanding hybrid model to predict electric loads.
In non-parametric model research, KNN regression has been widely used in time series prediction. The
KNN regression is one of the historical approximation methods in machine learning. The main idea of
the algorithm is that we get the output by calculating the degree of similarity between the independent
variables [15]. Poloczek proposed the KNN regression as a geo-imputation preprocessing step for
pattern-label-based short-term wind prediction of spatio-temporal wind data sets [16]. Ban proposed
a new multivariate regression approach for financial time series based on knowledge shared from
referential nearest neighbors [17]. Hu proposed a conjunction model named EMD-KNN which was
based on an EMD and KNN regressive model for forecasting annual average rainfall [18]. Li established
a novel hybrid BAMO with KNN to predict apoptosis protein sequences using statistical factors
and dipeptide composition [19]. Wang selected k-nearest neighbors to correct the commonly used
precipitation data on the Qinghai-Tibetan plateau by establishing the relationship between daily
precipitation and environmental as well as other meteorological factors [20]. Meanwhile in the
neural network research field, Huang established an innovative algorithm called extreme learning
machine (ELM) which was based on a traditional single-hidden-layer feed-forward neural network [21].
Generally speaking, ELM not only reduces the training time of neural networks but also has a great
predictive performance. Meanwhile the speed of ELM is faster than traditional machine learning
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algorithms. Ma built an adaptive prediction model based on ELM to predict traffic flows [22].
Masri targeted predicting the functional properties of soil samples by establishing a hybrid model
based on a Savitzky-Golay filter for preprocessing and ELM for obtaining non-linear relationship [23].
Liao used ELM and economic theory to study stock price forecasting and the results showed that
ELM had the highest prediction accuracy [24]. Zhang researched the short-term prediction of wind
by a proposed model based on wavelet decomposition and ELM [25]. Shamshirband predicted the
horizontal global solar radiation by using and extreme learning machine method and the comparative
results clearly specified that ELM can provide reliable predictions with better precision compared to
the traditional techniques [26]. In the field of signal processing, compared to traditional methods such
as EMD and EEMD, the wavelet transform (WT) has a great ability to obtain the characteristics of
data from the time and frequency domains [27]. Hence we can eliminate the noise in signals and grab
the main information using WT. Wang targeted forecasting future stock prices by utilizing wavelet
analysis to denoise the time series applying a neural network to obtain the nonlinear relationships [28].
Wang proposed a novel approach for short-term load forecasting by applying wavelet denoising in a
combined model that is a hybrid of SARIMA and a neural network [29]. Qin predicted chaotic time
series based on wavelet denoising, phase space reconstruction and LSSVM, and the proposed model
had better performance than the traditional models [30]. Abbaszadeh proposed a new hybrid model
based on a wavelet denoising technique to denoise hydrological time series and applied ANN to
acquire the best prediction of hydrological data [31].

In this paper, because the Australian region of New South Wales (abbreviated as NSW) is an active
economic region in the Asia-Pacific region and it has a large population, its economic development and
peoples’ lives have become inextricably tied to electricity, so the electricity department is concerned
with ensuring sufficient power production. Accurate electric load forecasting could be particularly
important for this, as surplus electricity production will lead to environmental pollution and resource
wastage. Thus, effective electric load forecasting could be a useful indicator for decision-makers, and
effective early warning of an increase in electricity demand is important to ensure supply-demand
balance. Based on these facts, we propose a new hybrid model based on the wavelet denoising
technique, k-nearest neighbor regression and extreme learning machine to forecast the short-term
electricity load in New South Wales.

This paper mainly consists of three parts: (1) the first part introduces the wavelet denoising
technique, the k-nearest neighbor regression (KNN), extreme learning machine (ELM) and the
establishment of the proposed hybrid model; (2) the second part presents the data set of the experiment,
the evaluation criteria of models, the predictive values of the electric load and the analysis of
comparative models; (3) the third part is a summary of the proposed model to illustrate the great
predictive performance we could achieve for electric loads through the proposed ELM-WA-KNN
hybrid model (EWKM).

2. Materials and Methods

The proposed hybrid model presented in this paper for short-term electric load forecasting mainly
consists of three basic data mining technologies: wavelet denoising technique, k-nearest neighbor
regression (KNN) and extreme learning machine (ELM). Detailed descriptions are given below.

2.1. Wavelet Denoising Technique

The wavelet transform proposed by Mallat has become one of the strongest mathematical tools for
providing a time-frequency representation of an analyzed signal in the time series domain. Detailed
coefficients are produced by high-pass filters and approximation series are produced by low-pass
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filters [32]. With the development of the wavelet analysis theory, the dyadic wavelet transform (DWT)
for discrete time series yt is as shown in Equation (1):

Wm,n = 2−
m
2 ·

N−1

∑
t=0

ψ(
t− 2m · n

2m ) · yt (1)

where s = 2m and τ = 2m · n are the scale and location of the discrete wavelet, respectively. N stands
for the integer power of 2, and ψ(·) for the wavelet function. By the transform method, DWT could
eliminate the white nose of the time series and acquire the useful information of the time series on a
different scale.

2.2. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) is a type of the single-hidden-layer feed-forward neural network
(SLFN) which cannot adjust the parameters of the neural network, but ELM has the threshold of the
hidden layer and the weights between each layers. The model of the ELM is as shown in Figure 1.
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Given a data set ν = {(xi, yi)|i = 1, 2, . . . , N; xi ∈ Rn; yi ∈ Rm}, the output of the ELM is:

f (xi) =
L

∑
j=1

β j · g(αj · xi + bj) (2)

where i = 1, 2, . . . , N; bj stands for the learning parameters of the hidden layers and
αj = [α1j, α2j, . . . , αrj]

T represents the weights between the input layer and hidden layer. Meanwhile
the β j = [β j1, β j2, . . . , β jm]

T (j = 1, 2, . . . , L) is the weights between the hidden layer and output layer
and g(x) is the activation function of the hidden layer. Specifically, the radial basis function is selected
as the active function in the hidden node in the experiment. So we could obtained the formula of the
ELM as follows:

H · β = Y H =

 g(α1 · x1 + b1) . . . g(αL · x1 + bL)
... . . .

...
g(α1 · xN + b1) . . . g(αL · xN + bL)


N×L

(3)

where the weight matrix between the hidden layer and output layer is β = [β1, β2, .., βL]
T and

Y = [y1, y2, .., yN ]
T stands for the ELM output. It is apparent that H represents the result of the

hidden layer. Here, two important ELM theorems by Liang must to be mentioned [33]:
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Theorem 1. If SLFN with L additive nodes and with activation function g(x) which is differentiable in any
interval of R is given, then the output matrix of hidden layer H is invertible and ‖Hβ− T‖ = 0.

Theorem 2. If small positive value ε > 0 and activation function g(x): R→ R which is differentiable in any
interval is given, then there exists L ≤ N such that N arbitrary distinct input vectors randomly produced based
upon any continuous probability distribution with probability one.

Based on Theorems 1 and 2, we could solve the equation by the least squares method and the
result is:

β = H−1 ·Y (4)

where H−1 is the Moore-Penrose pseudo inverse of the hidden layer.

2.3. k-Nearest Neighbor Regression (KNN)

KNN is a non-parametric technology which derives from pattern recognition studies [34]. With the
development of the study of nonlinear dynamics, many researchers have utilized KNN to frequently
predict time series because the algorithm has a great ability to get the nonlinear properties of a time
series. The main idea of KNN is that the similarity (neighborhood) between the independent variable
of the predictors is used and the independent variable in the historical observations is calculated to
acquire the best estimators for the predictor [15].

KNN applies a metric on the predictors to seek the set of k past nearest neighbors in the historical
data set for the current condition. To deal with the regressive problem, Lall and Sharma proposed the
kernel function and we could get the result of the KNN regression as follows [35]:

Yi = f (Yi(1), Yi(2), . . . , Yi(k)) (5)

where Yi represents the value of the prediction; Yi(j) stands for the magnitude of nearest neighbor
j in the above formula. It must be noticed that j is the order of the nearest neighbors based on the
distance from the current condition i (j = 1 to k ). The similarity between predictor and historical label
is depended on the distance as following formula:

rij =

√√√√ q

∑
t=1

(djt − dit)
2 (6)

where djt is the tth independent variable of Yj; dit stands for the tth independent variable of Yi and q
represents the number of independent variables in the formula.

Establishing the kernel function of KNN is therefore the main concern to predict the time series.
Many researchers have tried different methods to build fitter kernel functions in dealing with the
regression. However almost all the kernel functions are established based on the linear relationship
and these methods have failed to get the nonlinear property, so in this paper the kernel function is
obtained by ELM, which is a popular data mining technique, to search for the nonlinear properties.

2.4. The Proposed Hybrid Model

In this section, the hybrid model of ELM-WA-KNN is proposed as follows:
Suppose the historical data set is OH = {oh1, oh2, . . . , ohp}, the training data set is

OTR = {ox1, ox2, . . . , oxp} and the testing data set is OTE = {oxn+1, oxn+2, . . . , oxn+m}.
Firstly, the electric load time series including the historical data set, the training data set and the

testing data set is decomposed by DWT. The one low-frequency signal and one high-frequency signal
are regarded as the available time series and white noise, respectively. It could be expressed as follows:

OH = {oh1, oh2, . . . , ohp}
WA→ H = {h1, h2, . . . , hp}
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OTR = {ox1, ox2, . . . , oxp}
WA→ TR = {x1, x2, . . . , xp}

OTE = {oxn+1, oxn+2, . . . , oxn+m}
WA→ TE = {xn+1, xn+2, . . . , xn+m}

Secondly, we select the last six electric load data as the input variable and the following one as the
output variable of the hybrid model. The formula of the system is as follows:

historical data


h1 h2 h3 h4 h5 h6 → h7

h2 h3 h4 h5 h6 h7 → h8
...

...
...

...
...

...
...

...
hp−6 hp−5 hp−4 hp−3 hp−2 hp−1 → hp

train data


x1 x2 x3 x4 x5 x6 → x7

x2 x3 x4 x5 x6 x7 → x8
...

...
...

...
...

...
...

...
xn−6 xn−5 xn−4 xn−3 xn−2 xn−1 → xn

test data


xn−5 xn−4 xn−3 xn−2 xn−1 xn → xn+1

xn−4 xn−3 xn−2 xn−1 xn xn+1 → xn+2
...

...
...

...
...

...
...

...
xn+m−6 xn+m−5 xn+m−4 xn+m−3 xn+m−2 xn+m−1 → xn+m

(7)

Thirdly, the distances between the training (or testing) target and one of historical targets is
represented by the following formula:

Suppose xi stands for any one of the training (or testing) targets and
{xi−6, xi−5, xi−4, xi−3, xi−2xi−1} are the corresponding characteristic indicators of the training
(or testing) data. In addition, hj is the historical data target and {hi−6, hi−5, hi−4, hi−3, hi−2, hi−1}
are the corresponding characteristic indicators of the historical data. In this paper, the distance is
calculated by Euclidean distance:

di,j =
√
(xi−6 − hj−6)

2 + (xi−5 − hj−5)
2 + . . . + (xi−1 − hj−1)

2 (8)

Furthermore, the historical target of xi and the distance corresponding to the historical target can
be expressed as follows:

{(di,7, h7), (di,8, h8), (di,9, h9), . . . , (di,p, hp)} (9)

Next, the distances can be listed in ascending order and the first k historical targets can be obtained
as hi(1), hi(2), . . . , hi(k).

Then, the kernel function can be obtained by ELM:

xi = f (hi(1), hi(2), hi(3), . . . , hi(k)) (10)

where the kernel function f (·) can be trained by ELM. It cannot be ignored that a simple linear
relationship is employed as the traditional method to build the kernel function, but the method cannot
deal with the nonlinear relationship. Hence, ELM is selected to establish the kernel function because of
its great accuracy and high speed. Finally, the prediction value of the innovative EWKM hybrid model
can be obtained, and the basic structure of the proposed model is shown in Figure 2.
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3. Empirical Study

3.1. Study Area Description

New South Wales is a state on the east coast of Australia (Figure 3). The estimated population of
NSW at the end of March 2016 was 7.7 million, making it Australia’s most populous state. NSW is
Australia’s economic powerhouse, and also one of the most active economic regions in the Asian-Pacific
region. Among its industrial sectors, the most outstanding are the iron and steel industries. According
to the data of the Australian immigration information network, the state’s GDP accounted for one
third of Australia’s gross domestic product and more than 35% of the country’s products and services
are manufactured in NSW. Its steel production accounted for about 85% of Australia’s total output,
centering on the port of Newcastle and Ken Blah. Coal and related products are the state’s biggest
exports. With an A$5 billion value, they account for about 19% of all exports. Electricity is inseparable
from both industry and people’s life, and the electricity department must therefore ensure adequate
power production.
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3.2. Data Description

To verify the effectiveness of the proposed model, the data sets of electric load (Mw) from NSW
(Australia) are used as the experimental data. They were obtained from the Australian Energy Market
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Operator (http://www.aemo.com.au/) [36]. Since the proposed hybrid model EWKM contains KNN
and ELM, the sample data are divided into three groups: the first group is the historic subset of KNN,
which contains 17,568 data points (from 1 January 2016 00:30 to 1 January 2017 00:00); the second is the
training subset of ELM, which contains 2832 data points (from 1 January 2017 00:30 to 1 March 2017
00:00); the remaining 2158 data points (from 1 March 2017 00:30 to 14 April 2017 23:30) as the testing
subset of ELM can be seen in Table 1 and Figure 4.

Table 1. Statistical parameters in each data set.

Data Set N Min Max Mean Std
S K

Statistics Std Statistics Std

Historical data set 17,568 17,568 5350 13,459 7978 1257 0.473 0.018 0.185
Train data of ELM 2832 2832 5704 13,986 8612 1748 0.785 0.046 0.234
Test data of ELM 2158 2158 5489 11,000 7768 1044 0.000 0.053 −0.557

Min is the minimum; Max is the maximum; Std is the standard deviation; S is the skewness; K is the kurtosis.

3.3. ELM-KNN as a Simulation Tool

The purpose of this section is to examine the fitting capacity of the combination of ELM and KNN
for solving complex simulation problems. One thing that must be mentioned is that complex linear
systems always appear in the application of projects, which can make it difficult to establish a suitable
model, so there is a need for more research on how to find the reasonable and efficient methods to
establish the nonlinear relationship between the input and the output. This section proposes a hybrid
method that combines ELM and KNN. Three functions with different characteristics are employed as
the benchmarks to prove its high fitting capacity. The structure of the three benchmarks considered in
the experiment are as follows:

F1: Sphere function (d = 2):
y = x2

1 + x2
2 (11)

F2: Rosenbrock function (d = 2):

y = 20 + x2
1 − 10 cos(2πx1) + x2

2 − 10 cos(2πx2) (12)

F3: Ackley function (d = 2):

y = −20e−0.2
√

1
30 (x2

1+x2
2) − e−

1
30 [cos(2πx1)+cos(2πx1)] (13)

The range of variables x1 and x2 are all from −2 to 2, with the step size of 0.04. That means the
variables x1 and x2 have 101 possible values, respectively, and the algorithm can produce 10,201 groups
of experimental data. After random ordering of these experimental data, all data are divided into three
groups: the first group is the historical subset of KNN, which contains 8201 data points (from No. 1
to No. 8201); the second group is the training subset of ELM, which contains 1500 data points (from
No. 8202 to No. 9701); the remaining 500 data points (from No. 9702 to No. 10,201) as the testing subset
of ELM.

http://www.aemo.com.au/
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In order to prove the high fitting capacity of the proposed method ELM-KNN, three other
method: KNN, BPNN-KNN and SVM-KNN are employed for comparison. After implementing these
algorithms using Matlab 2014(b), we have carried out extensive simulations and each algorithm has
been run 100 times so as to perform an average statistical analysis. Table 2 shows the results with the
average value of sum error and time are taken as the criteria.

Table 2. The Fitting performance of the four methods.

Function Criteria KNN ELM-KNN BPNN-KNN SVM-KNN

F1
sum_error 26.646 17.941 18.329 17.806

time 1.1875 4.7837 8.0738 6.8382

F2
sum_error 429.717 378.105 380.040 378.502

time 1.2615 4.6738 8.1256 6.9026

F3
sum_error 19.511 4.685 4.936 4.824

time 1.1701 4.8150 8.1373 6.8376

Multiple studies show that ELM-KNN can outperform KNN and other hybrid algorithm for
solving non-linear simulation problems. The traditional KNN algorithm is suitable for solving linear
problems, so although the run time is short, the sum error of this single algorithm is large. Therefore,
this section take other algorithms which are suitable for non-linear fitting to combine with KNN. These
hybrid algorithms are ELM-KNN, BPNN-KNN and SVM-KNN. It can be observed from Table 2 that
while the accuracy of these hybrid algorithm is similar, the accuracy of ELM-KNN is slightly better
than that of BPNN-KNN and SVM-KNN. More importantly, a marked improvement can be seen in
the run speed with ELM-KNN. Each function evaluation is virtually instantaneous on a modern PC.
For example, the computation time with ELM-KNN on a 2.13 GHz desktop is between 4 and 5 s,
which was much superior to BPNN-KNN and SVM-KNN. These results show the high accuracy and
efficiency of ELM-KNN that make it a very powerful tool for fitting.
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3.4. Evaluation Criteria

The mean absolute error (MAE), the mean relative error (MRE) and the correlation coefficient
(R) are used to evaluate the reliability of EWKM model. MAE and MRE measure residual errors,
which give a global idea of the difference between the observed and forecasted values. MAE is used to
evaluate the absolute error range of the predicted value, while MRE is used to reflect the specification
of the predicted value on average. The lower the values of MAE and RMSE, the better the model is.
The proportion of the total variance in the observed data can be described by the correlation coefficient
(R). R is better when it is close to one.

MAE, MRE and R are calculated as follows:

MAE =
n

∑
i=1
|yi − ŷi|/n (14)

MRE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (15)

R =

n
∑

i=1
(yi − y)(ŷi − ŷ)√

n
∑

i=1
(yi − y)

n
∑

i=1
(ŷi − ŷ)

(16)

where yi is the observed value, ŷi is the predictive value to yi, y is the average of the observed value
and n is the number of the observations of the validation set.

3.5. The Process of the Proposed Hybrid Model

3.5.1. Wavelet De-noising

The electrical demand is affected by a variety of factors, so electric load time series are usually
accompanied by high noise. The direct forecasting of electric load with noisy data usually results in
large errors. In this section, the DWT is executed for efficiently removing the noise from the observed
data. In general, a normative procedure to select the decomposition level does not exist, so the
selection is based on multiple experiments. In this study, the Daubechies wavelet of order 3 (db3) has
a better performance, so the db3 is adopted in the wavelet denoising process [29,37]. Considering
the characteristics of the experimental data, after testing the effect of different levels with db3, level
1 works best. The decomposition figure includes the approximation coefficients at level 1 (a1) and
the detail coefficients at level 1 (d1). The decomposition process of the experimental data is shown in
Figure 5. The a1 is a smoothed version of the original series and it represents the low frequency signal.
Thus, a1 is selected to build forecasting model.

3.5.2. The Process of ELM-KNN

In Section 2.4, the EWKM hybrid model is established. The parameters of the hybrid model k = 12
are selected by lots of experiment tests. According to the choice of the electric load time series, there
are 2832 training data from 1 January 2017 00:30 to 1 March 2017 00:00 (n = 2832) and 2158 testing data
from 1 March 2017 00:30 to 14 April 2017 23:30 (m = 2158). Meanwhile, the half-hour electric load of
the year 2016 (p = 17568) is selected as the historical data set in the experiment. Finally, the prediction
of electric load could be calculated
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3.6. Results and Analysis

3.6.1. Results of the Proposed Model

The results obtained from the modified hybrid model EWKM agree well with the original values.
As is shown in Figure 6, the forecasting curve of EWKM closely approaches the original one. This
figure confirms that the EWKM model has great performance in predicting the electric load series.
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As Table 3 shows the MRE, R and MAE of the proposed model EWKM are 0.0262, 0.9660 and
196.7408, respectively.

Table 3. Indicators of the EWKM.

Model MRE R MAE

EWKM 0.0262 0.9660 196.7408
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The numerical value of the mean relative error (MRE) is close to zero and the correlation coefficient
(R) is close to one. It clearly confirms that the EWKM model can capture the non-stationary and
highly noisy features of the electric load series, and the new model can effectively improve the
forecasting accuracy.

3.6.2. Model Comparisons

This section provides a comparison between the proposed EWKM model and three other
benchmark models: EKM, WKM, and WNNM. Note that random selection of the parameters
(ELM and BPNN) may cause different results. To prevent this uncertain phenomenon, fifty runs
for each method are applied and the results of every run are recorded in Table 4.

Table 4. The performance of the EWKM model compared to EKM and WNNM.

Run
No.

EWKM EKM WNNM

MRE MAE R MRE MAE R MRE MAE R

1 0.0272 203.9354 0.9643 0.0310 234.7119 0.9559 0.0340 258.2224 0.9484
2 0.0254 191.5216 0.9677 0.0330 247.7988 0.9513 0.0361 271.3461 0.9431
3 0.0262 197.2202 0.9658 0.0306 232.1543 0.9561 0.0336 255.2362 0.9487
4 0.0256 193.3032 0.9668 0.0331 248.1338 0.9495 0.0361 271.0228 0.9412
5 0.0269 200.0946 0.9652 0.0298 226.2427 0.9578 0.0328 249.4973 0.9509
6 0.0255 190.6721 0.9670 0.0324 244.7448 0.9519 0.0354 268.0375 0.9439
7 0.0267 199.5574 0.9654 0.0308 234.3278 0.9568 0.0342 260.6011 0.9491
8 0.0278 209.6388 0.9622 0.0306 232.2462 0.9575 0.0337 255.6075 0.9505
9 0.0256 191.8692 0.9669 0.0305 231.0665 0.9563 0.0336 254.9035 0.9487

10 0.0258 193.7943 0.9662 0.0312 237.2551 0.9540 0.0344 261.8085 0.9459
11 0.0264 198.3134 0.9645 0.0328 245.2984 0.9522 0.0355 266.4726 0.9442
12 0.0265 197.8550 0.9654 0.0308 233.8156 0.9557 0.0338 256.7917 0.9483
13 0.0261 195.9784 0.9663 0.0311 236.2416 0.9545 0.0344 261.1275 0.9463
14 0.0265 198.5158 0.9656 0.0302 229.5213 0.9575 0.0334 253.4824 0.9501
15 0.0253 190.1162 0.9676 0.0336 255.4914 0.9500 0.0362 275.4577 0.9433
16 0.0254 190.7357 0.9674 0.0323 243.8135 0.9523 0.0349 263.8025 0.9451
17 0.0274 205.2306 0.9633 0.0309 232.5388 0.9557 0.0342 257.9839 0.9472
18 0.0271 200.2789 0.9657 0.0315 237.7104 0.9543 0.0346 261.7518 0.9460
19 0.0250 187.6062 0.9684 0.0330 246.9160 0.9512 0.0356 267.7434 0.9431
20 0.0257 192.4959 0.9671 0.0310 234.3247 0.9556 0.0342 258.7666 0.9475
21 0.0261 196.6063 0.9666 0.0334 251.6897 0.9493 0.0365 275.8747 0.9407
22 0.0256 193.2492 0.9668 0.0337 251.4458 0.9491 0.0367 274.8453 0.9409
23 0.0267 200.5948 0.9646 0.0315 237.0884 0.9553 0.0345 260.6253 0.9478
24 0.0258 195.8141 0.9664 0.0298 226.9438 0.9581 0.0329 250.6053 0.9508
25 0.0266 199.7260 0.9654 0.0302 230.2009 0.9572 0.0334 254.9789 0.9497
26 0.0253 191.2983 0.9676 0.0304 230.2200 0.9570 0.0336 255.1938 0.9493
27 0.0271 204.0736 0.9641 0.0306 232.7197 0.9564 0.0336 256.5639 0.9490
28 0.0265 199.2113 0.9654 0.0336 253.1185 0.9494 0.0365 276.1422 0.9412
29 0.0278 207.2988 0.9639 0.0308 232.1803 0.9559 0.0337 254.5038 0.9483
30 0.0265 196.9944 0.9666 0.0312 236.7581 0.9545 0.0344 261.5399 0.9468
31 0.0250 186.9544 0.9681 0.0319 241.2899 0.9524 0.0351 266.2253 0.9437
32 0.0280 208.4472 0.9630 0.0311 234.4506 0.9548 0.0343 258.7330 0.9469
33 0.0254 191.0999 0.9674 0.0330 249.9862 0.9509 0.0361 273.8056 0.9431
34 0.0255 191.7066 0.9670 0.0303 229.5405 0.9570 0.0334 252.9284 0.9495
35 0.0259 194.0202 0.9665 0.0305 231.5181 0.9565 0.0332 252.7351 0.9498
36 0.0262 196.7985 0.9661 0.0341 256.5269 0.9490 0.0370 279.2929 0.9411
37 0.0258 193.2783 0.9663 0.0317 241.1737 0.9530 0.0348 265.5501 0.9448
38 0.0265 199.2508 0.9646 0.0324 244.2265 0.9515 0.0352 266.1942 0.9442
39 0.0270 201.3869 0.9651 0.0306 232.2034 0.9563 0.0336 255.2785 0.9493
40 0.0265 200.2736 0.9652 0.0321 243.9047 0.9526 0.0352 267.3854 0.9448
41 0.0278 207.9120 0.9631 0.0321 241.4578 0.9526 0.0350 264.2843 0.9442
42 0.0251 188.3151 0.9683 0.0321 242.7873 0.9536 0.0349 264.5100 0.9462
43 0.0260 194.4705 0.9662 0.0313 238.4554 0.9546 0.0345 263.1648 0.9468



Energies 2017, 10, 694 13 of 16

Table 4. Cont.

Run
No.

EWKM EKM WNNM

MRE MAE R MRE MAE R MRE MAE R

44 0.0257 192.4090 0.9678 0.0304 231.6317 0.9575 0.0336 256.3101 0.9503
45 0.0249 187.3678 0.9686 0.0312 237.9146 0.9538 0.0345 262.7347 0.9457
46 0.0273 205.1311 0.9638 0.0320 243.1807 0.9530 0.0352 267.2574 0.9451
47 0.0250 187.8190 0.9682 0.0306 231.5329 0.9568 0.0338 256.1022 0.9485
48 0.0290 214.2247 0.9622 0.0328 247.6485 0.9496 0.0359 272.0024 0.9411
49 0.0252 189.6822 0.9674 0.0315 238.6218 0.9527 0.0345 261.9417 0.9450
50 0.0256 192.8932 0.9666 0.0313 237.3966 0.9547 0.0347 264.2695 0.9465

The estimation performance of EWKM, EKM and WNNM are assessed by statistical indicators of
MRE, MAE and R. The values are presented in Table 5. What needs special explanation is the fact that
WKM is a non-parameter method and the result of this model is a fixed value, so it makes no sense
to do lots of experiments with WKM. The mark “/” in Table 5 stands for the non-existent statistical
values. To verify the EWKM model, this experiment compares it with EKM, WKM and WNNM, using
the same electric load data. It must be noticed this analysis is done according to the mean value of
three indicators. As listed in Table 5, EWKM has the lowest MRE, MAE and the highest R among
the four models. Comparing EKM with EWKM, after introducing wavelet denoising into the model,
the MRE and MAE have obviously decreased. Unlike the EKM model which is directly constructed
from the original data, we decompose the original data into a low frequency and high frequencies
parts, and the results indicate that the EWKM can capture the highly noisy and non-stationary features
of electric load data after the wavelet denoising, so it can be concluded that the denoising process is
crucial to predict electric loads. Then, comparing WKM with EWKM, the three average indicators
MRE, R, MAE of the WKM are 0.0290, 0.9607 and 219.6566, respectively, which are all inferior to those
of EWKM. This indicates that optimizing the kernel function by using the ELM has a wonderful effect,
so the ELM is necessary to predict the electric load series. As for the WNNM, the BPNN is an artificial
neural network which is widely used to predict time series. When using the BPNN to forecast electric
loads, the two statistical errors MAE and MRE are clearly larger than the errors of the EWKM model.
The comparison of the results between the four models shows that the proposed model EWKM can
effectively improve forecasting accuracy. Therefore, the conclusion can be drawn that every part of
the proposed model is suitable and reasonable. The proposed model EWKM that includes denoising
processing, KNN and ELM constitutes a significant improvement in electric load forecasting.

Table 5. Comparing the three criteria of four models.

Indicators Models Mean Minimum Maximum Standard Deviation Median Upper Quantile Lower Quantile

MRE

EWKM 0.0262 0.0249 0.0290 0.0009 0.0261 0.0255 0.0267
EKM 0.0316 0.0298 0.0341 0.0011 0.0313 0.0306 0.0324

WNNM 0.0346 0.0328 0.0370 0.0011 0.0345 0.0337 0.0352
WKM 0.0290 / / / / / /

MAE

EWKM 196.7408 186.9544 214.2247 6.4440 196.2924 191.7473 200.2289
EKM 238.8433 226.2427 256.5269 7.7976 237.3259 232.2141 244.1461

WNNM 262.4248 249.4973 279.2929 7.4146 261.7802 256.1542 267.0612
WKM 219.6566 / / / / / /

R

EWKM 0.9660 0.9622 0.9686 0.0016 0.9663 0.9651 0.9671
EKM 0.9540 0.9490 0.9581 0.0027 0.9545 0.9522 0.9563

WNNM 0.9463 0.9407 0.9509 0.0030 0.9464 0.9442 0.9487
WKM 0.9607 / / / / / /

4. Conclusions and Future Work

In electricity demand forecasting, noise signals, caused by various unstable factors, often corrupt
electric load series. The contribution of this paper is a method that uses a hybrid model based on
wavelet denoising processing. In previous studies, models had been usually established with the
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original data, however, this paper takes the low-frequency signal to modeling, so that it can reduce
errors caused by noise signals. Moreover, in the construction of the kernel function, the traditional
way is to construct a linear relationship, but this paper introduces the ELM into the establishment of
the kernel function, so that it can optimize the KNN algorithm. Through the analysis of experimental
results, a conclusion can be drawn that the every part included in the new hybrid model is necessary
to predict future electric loads.

However, this paper only takes electric load data as the research subject, without taking other
related variables into consideration. To resolve such limitations, future research should aim to include
other factors which may influence the electric demand, such as the population and GDP, and there’s a
lot of room for improvement.
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Abbreviations

ANN artificial neural network
BAMO binary animal migration optimization
BPNN back propagation neural network
CS cuckoo search algorithms
DWT discrete wavelet transform
EEMD ensemble empirical mode decomposition
EEuNN framework evolving fuzzy neural network framework
ELM extreme learning machine
EMD empirical mode decomposition
FTS fuzzy time series
GHSA global harmony search algorithm
GM grey model
GPRM grey prediction with rolling mechanism
KNN regression k-nearest neighbor regression
LSSVM least squares support vector machines
MAE mean absolute error
MRE mean relative error
PSO particle swarm optimization
QPSO quantum particle swarm optimization algorithm
R correlation coefficient
SARIMA seasonal auto-regressive integrated moving average
SLFN single hidden-layer feed-forward network
SSA singular spectrum analysis
SVM supporter vector machine
SVR support vector regression
WT wavelet transform
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