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Abstract: This paper presents a coordinated control strategy for a hybrid wind farm with
doubly-fed induction generator (DFIG)- and direct-driven permanent-magnet synchronous generator
(PMSG)-based wind turbines under symmetrical grid faults. The proposed low-voltage ride-through
(LVRT) strategy is based on a novel current allocation principle and is implemented for individual
DFIG- or PMSG-based wind turbines. No communication equipment between different wind
power generators is required. By monitoring the local voltages and active power outputs of the
corresponding wind generators, the proposed control strategy can control the hybrid wind farm to
provide the maximum reactive power to support the grid voltage during a symmetrical grid fault.
As a result, the reduction in the active power output from the hybrid wind farm can be decreased,
which also helps avoid generator over-speed issues and supply active power support for the power
grid. In addition, the reactive current upper limits of DFIG- and PMSG-based sub-wind farms are
investigated by considering different active power outputs and different grid voltage dip depths,
and the feasible regions of the two types of sub-wind farms for meeting the LVRT requirements are
further studied. Finally, the effectiveness of the proposed coordinated LVRT control strategy for the
hybrid wind farm is validated by simulation and experimental results.

Keywords: wind power generation; hybrid wind farm; symmetrical grid faults; low voltage ride
through (LVRT); reactive current limit; current allocation principle

1. Introduction

With wind energy penetration levels to the power systems rapidly increasing, the impacts of
large-scale wind power generation systems on power grids have become much more significant than
ever before [1,2]. As a consequence, grid-connected wind farms are required to be more reliable and to
be able to withstand grid voltage disturbances. Nowadays, stringent low-voltage ride-through (LVRT)
codes have been issued in many countries [3–5]. In most of these codes, grid-integrated wind farms
need to remain connected to the power grid for a certain period of time during grid faults. Moreover,
it has become a need that wind power generation systems should also provide reactive power support
to help the grid voltage recovery.

Variable speed-constant frequency (VSCF) wind turbines using doubly fed induction generators
(DFIG) or permanent magnetic synchronous generators (PMSG) have been most widely used in
newly-installed wind farms [6–9]. Hybrid wind farms consisting of traditional fixed speed induction
generators (FSIG)-, DFIG- and/or PMSG-based wind turbines have been the trend for expanding the
existing wind farms and constructing large-scale new wind farms when considering the installed
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capacity of wind farms, construction cost, grid codes, etc. [10–14]. Compared with wind farms
containing only one type wind turbines, operators of grid-connected hybrid wind farms can take
advantage of the operation characteristics of different types of wind turbines and realize a modified
control to further improve the operation performance and stability of the whole farm. Furthermore,
it is obvious that hybrid wind farms with DFIG- and PMSG-based wind power generation systems
may have more flexible controllability than any other types of hybrid wind farms because of the
advantages of the VSCF wind turbines, which can provide a better performance, even under abnormal
power grid conditions. For instance, in Jiangsu Province (China), the Rudong 150 MW hybrid offshore
wind farm built in 2013 consists of both DFIGs and PMSGs.

Studies have been carried out on the operation performance and control methods of hybrid wind
farms with different types of wind turbines. Coordinated control strategies were proposed in [10,11] for
hybrid wind farms with DFIG- and FSIG-based wind power generation systems during symmetrical
grid faults. With those proposed control strategies [10,11], the voltage at the point of common coupling
(PCC) in such a hybrid wind farm can be effectively supported by controlling the DFIG-based wind
turbines to provide reactive power to the power grid, which improves the LVRT capability of the
whole wind farm. In [12], a hybrid wind farm consisting of FSIG- and PMSG-based wind turbines
was studied, and a LVRT control strategy was proposed by controlling the PMSG-based wind turbines
to provide the required reactive current of the FSIG-based sub-wind farm during grid voltage dips.
Nevertheless, extra hardware devices must to be installed for the intercommunication between the two
types of wind power generation systems to implement the proposed control strategy [12]. Aiming at a
hybrid wind farm with DFIG- and PMSG-based wind turbines, small-signal stability characteristics
and low frequency power oscillation control strategy were investigated in [13,14]. It is reported that
well-regulated VAR compensation equipment can effectively improve the stability of integrated wind
energy conversion systems [13,14].

For the LVRT control method of hybrid wind farms, although the proposed control strategies
in [10,11] can effectively improve the operation performance of the hybrid wind farm consisting of
FSIG- with DFIG- or PMSG-based wind turbines under grid faults, there are still some drawbacks in
the strategies. For instance, the reactive power support capability from DFIG or PMSG system was not
fully utilized in those studies. Furthermore, the active power output of DFIG or PMSG system was not
discussed in the proposed control strategy. If the reduction in the active power output from the wind
farm is significant, the active power imbalance and the generator over-speed issues may occur, which
will weaken the stability of the grid-connected wind farm and the connected power grid. In addition,
additional hardware devices will undoubtedly increase the cost of the whole system.

As stated above, the potential of hybrid wind farms consisting of DFIG- and PMSG-based wind
turbines can be better utilized to further improve the LVRT capability without utilizing any additional
hardware devices, however, little research work has been done on this topic in previous studies.

DFIG- and PMSG-based wind turbines have some common advantages, namely maximum
power point tracking (MPPT), VSCF operation, and decoupled control of active and reactive power.
Nevertheless, each of them also has its unique features. Regarding to a DFIG, it can operate under a
wide wind speed range while using converters rated for only 20–35% of the rated power. However,
because the stator of a DFIG is directly connected to the electrical grid, it is extremely sensitive to grid
voltage disturbances [15–17]. Different from DFIG-based wind turbines, utilizing full-rated converters
which are connected between the generators and the power grid, PMSG systems have the advantages
such as high power density, high grid voltage fault controllability, and simple control method, except
high initial installation costs [18–20]. On the other hand, considering the geographical distribution
characteristics of large-scale wind farms and the uncertainty of wind speed, the wind energy captured
by the wind turbines in the same wind farm can be different [21]. It is unlikely that all the wind
turbines in a wind farm are under full-load operation condition at the same time. The partially
loaded wind turbines can be made full use of to provide more flexible reactive power support to the
power grid. Hence, if the operation characteristics of DFIG- and PMSG-based wind turbines and the
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temporal-spatial distribution characteristics of a large-scale hybrid wind farm are comprehensively
taken into account, a modified LVRT control strategy for the hybrid wind farm with DFIG and PMSG
can be developed to improve the transient voltage performance when a severe grid fault occurs.

In this paper, a hybrid wind farm which consists of a DFIG-based sub-wind farm and a
PMSG-based sub-wind farm is considered as the system for investigation. The main objectives
of this paper include: (1) Deduction of the reactive current upper limit expressions for DFIG- and
PMSG-based sub- wind farms; (2) Derivation of the feasible regions of the DFIG- and PMSG-based
sub-wind farms for LVRT control during symmetrical grid faults, which is based on the corresponding
sub-wind farm active power outputs and the terminal voltage dip depths; (3) Development of an
improved current allocation method and a coordinated LVRT control strategy for the hybrid wind farm,
which can control the two sub-wind farms to autonomously provide the corresponding maximum
reactive power supports; and reduce the drop of the corresponding active power outputs without
utilizing any additional communication hardware devices.

The remainder of the paper is organized as follows: the hybrid wind power generation system
under study is introduced in Section 2. Section 3 presents the deduction of the reactive current upper
limit expressions of the two sub-wind farms under different operation conditions. The proposed
coordinated LVRT control strategy is given in Section 4. The proposed control strategy is verified by
the simulation and experimental, which are given in Sections 5 and 6, respectively. The conclusions are
drawn in Section 7.

2. Configuration of the Hybrid Wind Farm

The hybrid wind farm under study consists of a DFIG-based (30 MW from aggregation of 2 MW
units) sub-wind farm and a PMSG-based (30 MW from aggregation of 1.5 MW units) sub-wind farm,
shown in Figure 1 [22,23]. The two sub-wind farms are connected in parallel at the PCC via a 35 kV
short transmission line and the entire hybrid wind farm is connected to the power grid by a long
110 kV transmission line.
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3. Reactive Current Limit Analysis of the Hybrid Wind Farm

3.1. Reactive Current Limit of the DFIG-Based Sub-Wind Farm

During the 2nd period of DFIG’s LVRT, the transient stator flux can be reasonably neglected [24],
and the mechanical power captured by the wind turbine can be regarded as constant because of the
ultra-short control period. As a consequence, the reactive current limit of the DFIG-based sub-wind
farm can be derived by only considering the steady state operation condition during symmetrical grid
faults. In order to avoid generator over-speed issues during a symmetrical grid fault, the DFIG can be
controlled to maintain the torque balance between the wind turbine and the generator. Consequently,
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the active power output of the wind power generation system could still be controlled using the MPPT
method to provide the transient active power support for the power grid during the faults, which
is the same as that under normal operation conditions. Then, the DFIG system output active power
(PDFIG) can be obtained as [25]:{

PDFIG = 1
2 ρπ R3

λ3 CP(λ, β)ω3
w = kwω3

w
ωr = Nωw

(1)

where ρ is the air density, Cp is the power coefficient, λ is the tip speed ratio, β is the pitch angle, R is
the radius of the wind turbine blades, and kW is the constant related with the wind turbine inherent
attributes; ωW and ωr are the rotate speeds of wind turbine and DFIG rotor, respectively; N is the
transmission ratio of the gearbox.

Based on Equation (1), the relationship between the rotor speed ωr and the active power output
PDFIG can be obtained as:

ωr = N
(

PDFIG

kw

) 1
3

(2)

The slip s of DFIG-based wind turbine can be deduced as:

s =
ωs − ωr

ωs
= 1 − N

ωs

(
PDFIG

kw

) 1
3

(3)

where ωs is the synchronous rotating speed.
Neglecting the losses in the windings, cores and converters, the output active power from the

DFIG stator (Ps_D) can be derived as:

Ps_D =
PDFIG

1 − s
=

PDFIG

1 − (1 − N
ωs
( PDFIG

kW
)

1
3 )

=
ωs(kW)

1
3 (PDFIG)

2
3

N
(4)

where subscript “D” denotes the components in the DFIG system.
Based on the stator voltage d-axis orientation scheme, in which the q-axis is 90 degree leading the

d-axis, meanwhile considering the motor convention, the output active/reactive powers from DFIG
stator in the synchronous reference frame can be expressed as: Ps_D = −Ug_Disd_D = Lm

Ls
Ug_Dird_D

Qs_D = Ug_Disq_D = −Ug_D
ωsLs

(Ug_D + ωsLmirq_D)
(5)

where Ug_D is the stator voltage, namely the voltage at the terminal of the DFIG-based sub-wind farm;
Qs_D is the reactive power output from the DFIG stator; Ls is the total inductance of the stator winding;
Lm is the mutual inductance between the stator winding and the rotor winding; isd_D and isq_D are
the stator d- and q-axis currents, respectively; ird_D and irq_D are the rotor d- and q-axis currents,
respectively. Hence, the rotor d- and q-axis currents can be obtained as: ird_D =

LsPs_D
LmUg_D

= Ls
LmUg_D

ωs(kW)
1
3 (PDFIG)

2
3

N = Lsωs(kW)
1
3

Lm N
(PDFIG)

2
3

Ug_D

irq_D = − LsQs_D
Ug_DLm

− Ug_D
ωsLm

= − LsUg_Disq_D
Ug_DLm

− Ug_D
ωsLm

= − Ls
Lm

isq_D − Ug_D
ωs Lm

(6)

Based on Equation (6), define irq_D and isq_D as the reactive currents of DFIG rotor and stator,
respectively; ird_D and isd_D are the active currents of the DFIG rotor and stator, respectively. Based on
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the current capacity of the rotor-side converter (RSC) in the DFIG system, the rotor reactive current
limit and the corresponding stator reactive current limit can be obtained as:

irqmax_D =
√

I2
rmax_D − i2rd_D =

√
I2
rmax_D − ( Lsωs(kW)

1
3

Lm N
(PDFIG)

2
3

Ug_D
)

2

isqmax_D = Lm
Ls

irqmax_D − Ug_D
ωsLs

=

√
( Lm

Ls
Irmax_D)

2 − (ωs(kW)
1
3

N
(PDFIG)

2
3

Ug_D
)

2

− Ug_D
ωsLs

(7)

where Irmax_D is the allowable maximum current amplitude of the RSC in the DFIG system; irqmax_D

and isqmax_D are the reactive current limits of rotor and stator, respectively.
As it can be seen from Equation (7), the rotor and stator reactive current limits in the DFIG system

are influenced by the stator voltage (Ug_D) and the active power output of the DFIG system (PDFIG).
In addition, the allowable maximum current of the RSC (Irmax_D), the total inductance of stator winding
(Ls) and the mutual inductance (Lm) between the stator winding and the rotor winding also have
impacts on the reactive current limits.

To further deduce the reactive current limits of the rotor and the stator in the DFIG system,
the parameters of the DFIG-based sub-wind farm listed in Table A1 in Appendix A are used.
The per-unit allowable maximum current amplitude of the RSC Irmax_D is set 1.1 pu (based on the
stator power rated capacity). According to the aforementioned analysis and the parameters in Table A1,
the reactive current limits of the DFIG-based sub-wind farm versus different stator voltage amplitudes
(Ug_D) and different active power outputs (PDFIG) are shown in Figure 2.
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As shown in Figure 2, if the active power output from the DFIG-based sub-wind farm (PDFIG)
is at a low value region, the reactive current limits of rotor and stator are primarily affected by the
voltage amplitude at the terminal of the sub-wind farm (Ug_D), i.e., the reactive current limits would
decrease when the grid voltage amplitude declines. On the other hand, if the active power output is
at a higher value region, the active currents of both the rotor and the stator are at high value region
correspondingly. Therefore, the reactive current limits are primarily affected by the active power
output of the DFIG system. Also, the reactive current limits would decrease with an increasing active
power output. As a result, the available reactive current region can be determined by comprehensively
considering the limitation of the voltage amplitude at the terminal of the sub-wind farm and the active
power output of the DFIG system.

Compared with the DFIG stator, the capacity of the grid-side converter (GSC) in the DFIG system
is much smaller. Hence, the reactive current can be supplied by the GSC is in general less than the
stator. As a result, during a grid fault, the required reactive current is preferentially supplied by the
DFIG stator. However, once the stator reactive current reaches its limit and the stator is no longer
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able to meet the grid requirements, the GSC in the DFIG system will be controlled to provide reactive
current to the power grid, according to its own reactive current limit. Similar to the analysis above,
the GSC output reactive current limit can be obtained as:

igqmax_D =

√
I2
gmax_D − [

sPDFIG

(1 − s)Ug_D
]
2

(8)

where Igmax_D is the allowable maximum current of the GSC in the DFIG system and igqmax_D is the
reactive current limit of the GSC.

3.2. Reactive Current Limit of the PMSG-Based Sub-Wind Farm

When a PMSG-based wind energy conversion system is controlled in a grid-voltage-oriented
reference frame, as illustrated in [19], the output active and reactive powers (PPMSG and QPMSG) can
be expressed as:

PPMSG = −Ug_Pigd_P; QPMSG = Ug_Pigq_P (9)

where Ug_P is the voltage at the terminal of the PMSG-based sub-wind farm; igd_P and igq_P are the d-
and q-axis currents of the GSC in the PMSG system, respectively, and the subscript “P” denotes the
components in the PMSG system.

Considering the current capacity of the GSC in the PMSG system, the GSC output reactive current
limit can be calculated as:

igqmax_P =
√
(Igmax_P)

2 − (igd_P)
2 =

√
(Igmax_P)

2 − (
PPMSG

Ug_D
)

2
(10)

where Igmax_P is the allowable maximum current of the GSC in the PMSG system and igqmax_P is the
reactive current limit of the GSC.

Some nominal parameters of the PMSG-based sub-wind farm under study are given in Table A2
in Appendix A. Set the per-unit allowable maximum current amplitude of the GSC Igmax_P = 1.1 pu.
The reactive current limit of the GSC in the PMSG system with different terminal voltage amplitudes
(Ug_P) and active power outputs (PPMSG) is shown in Figure 3. As it can be seen from Figure 3, for
the constant active power output, the reactive current limit of the GSC in the PMSG system decreases
when the voltage amplitude drops. In addition, the reactive current limit of the GSC in the PMSG
system also decreases when the output active power increases with a constant voltage at the terminal
of the PMSG-based sub-wind farm.
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3.3. Reactive Current Limit of the PMSG-Based Sub-wind Farm

Based on the discussions given in Sections 3.1 and 3.2, the reactive current limits of the DFIG
stator and the GSC in the PMSG system under different terminal voltages and active power outputs of
the corresponding sub-wind farms are represented in Figure 4.Energies 2017, 10, 669  7 of 20 
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From Figure 4, two key conclusions can be obtained:

1. For the same active power output, the reactive current limit of the GSC in the PMSG system
(igqmax_P) is larger than that of the DFIG stator (isqmax_D), because of a much larger capacity of the
GSC in the PMSG system than that of the RSC in the DFIG system. Especially, if the DFIG-based
sub-wind farm operates under a sub-synchronous condition, the active power output from the
DFIG stator (Ps_D) is more than the total active power output (PDFIG) delivered from the DFIG
system. In this case, igqmax_P is much larger than isqmax_D. As a result, during symmetrical grid
faults, more reactive current can be supplied by the PMSG-based sub-wind farm than by the
DFIG-based sub-wind farm under the same wind speed condition.

2. Under the same terminal voltage, the reactive current limits of both the DFIG stator and the
GSC in the PMSG system increase when the corresponding active power outputs are reduced.
Taking into account of random wind speeds and wide wind turbine geographical distribution,
the wind turbines in the hybrid wind farm may be under different power generation conditions.
Consequently, much more reactive power support can be supplied by controlling the wind
turbines under low power generation conditions. In this way, the operation performance of the
hybrid wind farm and the power system to which the wind farm is connected can be further
improved during symmetrical grid faults.

4. Coordinated LVRT Control Strategy for the Hybrid Wind Farm under Symmetrical Grid Faults

In order to improve the stability and reliability of grid-connected wind farms, strict LVRT
requirements have been implemented worldwide. For instance, the “Technical rule for connecting
wind farm to power system” issued in China (GB/T 19963-2011) [26] requires that appropriate reactive
currents IQ need to be provided by grid-connected wind farms under symmetrical grid faults; and the
per-unit value of IQ must conform to:

IQ ≥ 1.5(0.9 − UT)IN, 0.2 pu ≤ UT ≤ 0.9 pu (11)

where UT and IN are the per-unit values of terminal voltage of a grid-connected wind farm and the
rated current of the wind farm, respectively.
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It is indicated in Equation (11) that the required minimum reactive current injected by a wind
farm under symmetrical grid faults should be 1.5(0.9 − UT)IN, and more reactive current can further
help maintain voltage level during transients. However, as discussed in Section 3, a wind power
generation system may not be able to supply the required minimum reactive current under some
conditions such as the wind farm working under high power generation condition or the terminal
voltage of the wind farm being at a lower value region. It is beneficial to find the operation conditions
in which the wind farm can provide the required reactive current, which can be used to devise control
methods in symmetrical grid fault situations. Those operation conditions are defined as the feasible
region of a wind farm.

According to Equations (7), (10) and (11), to meet the LVRT requirements, the corresponding
reactive current limits of the DFIG stator and the GSC in the PMSG system need to be: isqmax_D =

√
( Lm

Ls
Irmax_D)

2 − (ωs(kW)
1
3

N
(PDFIG)

2
3

Ug_D
)2 − Ug_D

ωsLs
≥ 1.5(0.9 − Ug_D)IN

igqmax_P =
√

I2
gmax_P − ( PPMSG

Ug_P
)2 ≥ 1.5(0.9 − Ug_p)IN

(12)

Based on the parameters in Tables A3 and A4 in Appendix A, the feasible regions of the DFIG-and
the PMSG-based sub-wind farms can be derived as:

PDFIG ≤ (−3.021Ug_D
4 + 6.101Ug_D

3 − 1.711Ug_D
2)

3
4 (13)

PPMSG ≤ (−2.25Ug_P
4 + 4.05Ug_P

3 − 0.613Ug_P
2)

1
2 (14)

Figure 5 presents the feasible regions of the DFIG- and PMSG-based sub-wind farms under
symmetrical grid faults. When the DFIG- or PMSG-based sub-wind farm operates within its feasible
region as the shaded area in Figure 5, the active power output is less than the corresponding critical
active power with the certain terminal voltage. This indicates that the reactive current limit of the
sub-wind farm is larger than the required minimum value of the LVRT requirement. In other words,
under this scenario, the sub-wind farm is capable of providing the required reactive current, while the
active power output of the sub-wind farm can still be the same as that under normal condition. On the
contrary, when the active power output of the DFIG- or the PMSG-based sub-wind farm is more than
its corresponding critical active power during a symmetrical grid fault, the wind turbines will stray
from their feasible regions. In this case, the reactive current capacity of the wind system does not meet
the LVRT requirement. To deal with this problem, the sub-wind farm has to be controlled to reduce the
active power output and to supply the required minimum reactive current to support the grid voltage.
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Based on the analysis above, a coordinated LVRT control strategy for the hybrid wind farm
with DFIG- and PMSG-based wind turbines is proposed in this paper. Without any additional
communication hardware devices, the DFIG- and PMSG-based wind turbines are individually
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controlled to deliver the respective maximum reactive currents to the power grid. Meanwhile,
the variation of the corresponding active power outputs of the two sub-wind farms can be reduced
during the symmetrical faults. The current allocation principles of the RSC in the DFIG system and the
GSC in the PMSG system are shown in Figure 6.

In the first period after a grid fault occurs, due to the significant voltage sag, the transient
component will be appeared in the stator flux, which can cause the over voltage and over current of
the rotor circuit. When the amplitude of the over current exceeds the protecting threshold, the active
crowbar is triggered to short the rotor circuit of the DFIG, which can accelerate the decay of transient
stator flux to avoid over current of the RSC. When the DFIG stator transient flux is almost eliminated,
the machine enters the stable short circuit stage and the crowbar is tripped off. The RSC in the DFIG
then recovers back to the normal control to provide the transient support to the power grid.
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Figure 6. Current allocating principles of the RSC in the DFIG-based sub-wind farm and the GSC in
the PMSG-based sub-wind farm.

During the low voltage-sustaining period, the voltages at both terminals of DFIG-and PMSG-based
sub-wind farms (Ug_D and Ug_P) and the active power outputs (PDFIG and PPMSG) are measured in
real time at the corresponding local sites. Then, the measured values of Ug_D, Ug_P, PDFIG, and PPMSG

are utilized to judge whether the DFIG- or PMSG-based sub-wind farm is under the corresponding
feasible region, as described in Equation (12) and Figure 5. According to the actual situation, one of
the following two strategies is applied to control the hybrid wind farm:

1. The DFIG- or the PMSG-based sub-wind farm is under its corresponding feasible region. In this
case, the reference value of the active current need to be set as that under normal condition, for
ensuring the constant active power output before and after the grid faults. In the meantime, the
reference value of the reactive current is set as the limit value as given in Equations (7) or (10) to
supply the maximum reactive power to the power grid.

2. The DFIG- or PMSG-based sub-wind farm is out of its corresponding feasible region. Under
this scenario, the reference value of the reactive current is firstly set as the required minimum
reactive current of LVRT requirements to meet the grid-connected wind farm code. Considering
the allowable maximum current of the DFIG stator or the GSC in the PMSG system, more room
can be given to the active current to decrease the curtailment of the active power output of the
whole wind farm before and after grid faults.
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It is worth stating that the PMSG-based sub-wind farm can immediately employ the low
voltage-sustaining strategy when the grid fault occurs, without the operation (crowbar kicked in
and tripped off) during the initial period of grid fault like DFIG-based sub-wind farm, owing to the
full-scale back-to-back converter configuration.

Figure 7 shows the schematic diagram of the proposed coordinated control scheme for the hybrid
wind farms under symmetrical fault. The control targets of the GSC in the DFIG and MSC in the PMSG
system are still to remain DC-link voltage stable. Moreover, the control targets of the RSC in the DFIG
and the GSC in the PMSG system are to achieve the decoupling control of active power and reactive
power. By adopting the proposed current allocating principle, the active and reactive current reference
values in the DFIG- and the PMSG-based sub-wind farms can be set independently. According to the
current reference values, the converters in the wind farm are regulated via appropriate controllers such
as PI controllers, and then the operation performance of the hybrid wind farm can be significantly
improved during grid faults. On one hand, the maximum reactive current can be supplied by the
wind farm, which helps the recovery of the grid voltage. On the other hand, the curtailment of the
active power output of the hybrid wind farm can be reduced, which improves the stability of the
grid-connected wind farm and provides the transient active power support to the power grid.
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5. Simulation Studies 

In order to verify the effectiveness of the proposed LVRT control scheme under symmetrical 
grid faults, simulations on a hybrid wind farm, as shown in Figure 1, have been conducted by using 
MATLAB/Simulink. The simulation models of the DFIG and PMSG are based on the motor 
convention. Details of the studied system are given in Appendix A. 

During the simulation, the voltage at point A drops to 50% of the rated voltage (0.5 pu). For 
comparison, the simulation on a 60 MW DFIG-based wind farm is also conducted, which just 
provides the required minimum reactive current as Equation (11) for the power grid under 
symmetrical grid faults. 

Figure 8a presents the LVRT performance of the 60 MW DFIG-based wind farm, in which half 
of the DFIGs output 0.2 pu active power (in the low wind speed region), and the others supply 0.8 pu 
active power (in the high wind speed region) before the symmetrical grid fault occurs. During the 
first period of the grid fault (2~2.1 s), the active crowbars in DFIG systems are triggered, and the extra 
reactive current is absorbed from the power grid for excitation of DFIG, which leads to the voltage at 
PCC (Ug) further dropping to 0.48 from 0.5 pu. At the same time, there is an elevation in DC link 
voltages (Udc_D1 and Udc_D2) and the rotor rotational speed (ω_D1 and ω_D2) begins to increase. During 
the second period of the symmetrical grid fault (2.1~2.625 s), with the stable DC link voltage, both of 
the two DFIG-based sub-wind farms inject 0.421 pu reactive current (isq_D1 and isq_D2) and 0.263 pu 
reactive power (QDFIG1 and QDFIG2) to the power grid. Correspondingly the voltage at PCC is elevated 
to 0.625 from 0.48 pu. However, the stator current of the DFIG system with low wind speed (isd_D1) is 
much less than the allowable maximum current value, which indicates that more reactive current 
could be output for further supporting the grid voltage. In addition, the rotor rotational speed (ω_D1 
and ω_D2) gradually return to the stable operation state value when the symmetrical fault is cleared. 
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5. Simulation Studies

In order to verify the effectiveness of the proposed LVRT control scheme under symmetrical
grid faults, simulations on a hybrid wind farm, as shown in Figure 1, have been conducted by using
MATLAB/Simulink. The simulation models of the DFIG and PMSG are based on the motor convention.
Details of the studied system are given in Appendix A.

During the simulation, the voltage at point A drops to 50% of the rated voltage (0.5 pu).
For comparison, the simulation on a 60 MW DFIG-based wind farm is also conducted, which just
provides the required minimum reactive current as Equation (11) for the power grid under symmetrical
grid faults.
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Figure 8a presents the LVRT performance of the 60 MW DFIG-based wind farm, in which half of
the DFIGs output 0.2 pu active power (in the low wind speed region), and the others supply 0.8 pu
active power (in the high wind speed region) before the symmetrical grid fault occurs. During the
first period of the grid fault (2~2.1 s), the active crowbars in DFIG systems are triggered, and the extra
reactive current is absorbed from the power grid for excitation of DFIG, which leads to the voltage
at PCC (Ug) further dropping to 0.48 from 0.5 pu. At the same time, there is an elevation in DC link
voltages (Udc_D1 and Udc_D2) and the rotor rotational speed (ω_D1 and ω_D2) begins to increase. During
the second period of the symmetrical grid fault (2.1~2.625 s), with the stable DC link voltage, both of
the two DFIG-based sub-wind farms inject 0.421 pu reactive current (isq_D1 and isq_D2) and 0.263 pu
reactive power (QDFIG1 and QDFIG2) to the power grid. Correspondingly the voltage at PCC is elevated
to 0.625 from 0.48 pu. However, the stator current of the DFIG system with low wind speed (isd_D1)
is much less than the allowable maximum current value, which indicates that more reactive current
could be output for further supporting the grid voltage. In addition, the rotor rotational speed (ω_D1

and ω_D2) gradually return to the stable operation state value when the symmetrical fault is cleared.
With the proposed LVRT control strategy, the simulation results of the hybrid wind farm consisting

of 30 MW DFIG-based sub-wind farm and 30 MW PMSG-based sub-wind farm under 0.5 pu grid
voltage dip depth are presented in Figure 8b–d.
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Figure 8. LVRT simulation results under 50% grid voltage dip depth with different wind farm operation
conditions. (a) 0.2 pu active power output from one of the DFIG-based sub-wind farms and 0.8 pu
active power output from the another DFIG-based sub-wind farm; (b) 0.2 pu active power output from
the DFIG-based sub-wind farm and 0.8 pu active power output from the PMSG-based sub-wind farm;
(c) 0.8 pu active power output from the DFIG-based sub-wind farm and 0.2 pu active power output
from the PMSG-based sub-wind farm; (d) 0.2 pu active power output from both of the DFIG-and
PMSG-based sub-wind farms.
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Before the symmetrical grid fault occurs, 0.2 pu active power and 0.8 pu active power are output
by the DFIG- and PMSG-based sub-wind farms, respectively, and the corresponding simulation results
are shown in Figure 8b. Under this scenario, the DFIG-based sub-farm is within its feasible region.
Consequently, the output reactive current of the DFIG system (isq_D) increases to 0.652 pu according to
the corresponding reactive current limit, meanwhile, the output reactive power (QDFIG) increases to
0.422 pu and the active power (PDFIG) is maintained at 0.2 pu. On the contrary, according to Figure 5b,
the PMSG-based sub-wind farm is out of its feasible region because of the active current at large value
region. As a result, the PMSG system only supplies 0.374 pu reactive current (igq_P) and 0.244 pu
reactive power (QPMSG) to preliminarily meet the requirements in the grid code, while the output active
power (PPMSG) decreases to 0.461 pu. Under such condition, the voltage at PCC is elevated to 0.648
from 0.5 pu, and the total reactive current of the hybrid wind farm increases to 1.026 from 0.842 pu,
which is 19.12% larger than that of the 60 MW DFIG-based wind farm in scenario (a). Similarly, the total
output reactive power increases to 0.661 from 0.526 pu, which is 26.72% more than that of the 60 MW
DFIG-based wind farm. Meanwhile, the total output active power also increases to 0.89 from 0.731 pu,
which is 21.92% larger than that of the 60 MW DFIG-based wind farm in scenario (a). The analysis
indicates that the hybrid wind farm with DFIG and PMSG achieves a superior operation performance
over the wind farm only containing DFIG.

Figure 8c presents the simulation results of the hybrid wind farm, in which the DFIG-based
sub- wind farm outputs 0.8 pu active power and the PMSG-based sub-wind farm outputs 0.2 pu
active power before the symmetrical grid fault occurs. Compared to the DFIG system with the same
active power output, the PMSG system has a larger reactive current limit, as shown in Figure 4.
Therefore, under this condition, the total reactive current of the hybrid wind farm increases to 1.411
from 0.842 pu, which is 67.58% more than that of the 60 MW DFIG-based wind farm in scenario (a).
Similarly, the output reactive power increases to 0.983 pu, and it is 86.88% more than that of the 60 MW
DFIG-based wind farm in scenario (a). As a result, the voltage at PCC is elevated to 0.693 from 0. 5 pu.

When both of the DFIG- and PMSG-based sub-wind farms output 0.2 pu active power, the two
sub-wind farms are both within their corresponding feasible regions. As a consequence, the whole
system can provide more reactive to support the power grid, and avoid the generator over-speed
issues. The corresponding simulation results are shown in Figure 8d. As can be seen from Figure 8d,
the total output reactive current and reactive power increase to 1.743 from 0.842 pu and 1.227 from
0.526 pu, respectively. As a result, the voltage at PCC is significantly elevated to 0.702 from 0.5 pu,
which indicates that the transient grid voltage level and the LVRT capability of the hybrid wind farm
are both significantly improved.

When the voltage at point A severely dips to 0.2 pu, the LVRT performance of the hybrid wind
farm with the proposed control strategy is given in Figure 9.

Figure 9a shows the simulation results, in which the DFIG- and PMSG-based sub-wind farms
output 0.2 pu active power and 0.8 pu active power respectively, before the symmetrical grid fault
occurs. Under this condition, both of the two sub-wind farms are out of their corresponding feasible
region. As a consequence, they are controlled to reduce the output active power and preferentially
supply the required minimum reactive current to meet the grid code, which elevates the voltage at
PCC to 0.382 from 0.2 pu.

Before the severe symmetrical grid fault occurs, the DFIG- and PMSG-based sub-wind farm are
controlled to output 0.8 pu active power and 0.2 pu active power, respectively. Figure 9b shows the
simulation results of the hybrid wind farm. Compared with Figure 9a, because the PMSG system can
supply more reactive current, the total reactive current and reactive power output by the hybrid wind
farm are much more under this operation condition. Consequently, the voltage at PCC is obviously
elevated to 0.408 from 0.2 pu.

With different grid voltage dip depths, the values of the voltage at the PCC under different
operation conditions are listed in Table 1. It can be seen that, compared with the 60 MW DFIG-based
wind farm with traditional control strategy, the LVRT performance of the hybrid wind farm with the
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proposed control strategy can be further improved. On the one hand, the transient grid voltage level
can be effectively enhanced, because of more reactive current and reactive power provided by the
hybrid wind farm. On the other hand, the proposed LVRT control strategy can help the hybrid wind
farm to output the active power as much as possible under symmetrical grid faults, which helps avoid
generator over-speed issues and provides transient active power support to the power grid.
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Figure 9. LVRT simulation results under 20% grid voltage dip depth with different wind farm operation
conditions. (a) 0.2 pu active power output from the DFIG-based sub-wind farm and 0.8 pu active power
output from the PMSG-based sub-wind farm; (b) 0.8 pu active power output from the DFIG-based
sub-wind farm and 0.2 pu active power output from the PMSG-based sub-wind farm.

Table 1. Values of the voltage at PCC under different grid voltage dip depths and operation conditions.

Voltage at Point A

Ug (pu)
DFIG-Based Wind

Farm with
Traditional

Control Strategy

Hybrid Wind Farm with the Proposed Control Strategy

DFIGs and
PMSGs Both

with High
Wind Speed

DFIGs with Low
Wind Speed and

PMSGs with High
Wind Speed

DFIGs with High
Wind Speed and
PMSGs with Low

Wind Speed

DFIGs and
PMSGs Both

with Low
Wind Speed

0.8 pu 0.859 0.902 0.963 1 1
0.7 pu 0.779 0.817 0.859 0.868 0.889
0.6 pu 0.698 0.704 0.731 0.773 0.787
0.5 pu 0.625 0.631 0.648 0.693 0.705
0.4 pu 0.553 0.557 0.559 0.602 0.606
0.3 pu 0.458 0.462 0.463 0.495 0.497
0.2 pu 0.382 0.383 0.382 0.408 0.409

6. Experimental Results

The experimental hybrid generators-based wind energy conversion system consisting of a DFIG
and a PMSG, which are both based on the motor convention, has been built in the lab for verifying the
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effectiveness of the proposed coordinated LVRT control scheme. The schematic diagram and the setup
of the experimental system are shown in Figures 10 and 11, respectively, and the detailed parameters
of the test system are given in Appendix B.

As shown in Figures 10 and 11, the DFIG and the PMSG are driven respectively by a DC motor
and an induction motor, which are both operated by using the constant speed control. Therefore,
the rotor speed of the DFIG and PMSG basically will not change during the faults. Furthermore, the
grid voltage sag is generated using three air core reactors (L2A/L2B/L2C) and three-phase short-circuit
switches, as shown in Figure 12. Initially, the three-phase vacuum short-circuit switches (SA/SB/SC)
are disconnected, and the experimental hybrid wind power generation test bench is directly connected
to the power grid through the series inductor. At the 2.0 s, the three-phase vacuum short-circuit
switches are closed and the simulated symmetrical fault occurs, the grid voltage at PCC dips to 0.45 pu.
At the 3.1 s, the vacuum short-circuit switches are disconnected and the symmetrical fault is cleared,
the grid voltage recovers back to 1.0 pu. For the DFIG system, the crowbar is triggered at 2 s and
disabled at 2.2 s when the LVRT control strategy is applied. At 3.1 s, the crowbar is triggered again
and stays operating until 3.3 s. Different from the DFIG system, the LVRT control strategy is employed
at 2 s and disabled at 3.1 s in the PMSG system.Energies 2017, 10, 669  14 of 20 
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In order to highlight the advantages of the proposed coordinated LVRT control strategy,
the experiment for the hybrid wind power system with the traditional LVRT control strategy which
just provides the required minimum reactive current is also conducted for comparison. Before the
symmetrical grid fault occurs, the active power outputs of the PMSG and the DFIG are both set at
0.2 pu for simulating the low wind speed operation condition. The experimental results are shown in
Figure 13.Energies 2017, 10, 669  15 of 20 
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Figure 13. Experimental results with the traditional LVRT control strategy for the hybrid wind power
system with 0.2 pu active outputs from both the DFIG and the PMSG systems. (a) Voltage at PCC;
(b) Current of the GSC in the PMSG system; (c) Active and reactive currents of PMSG system; (d) Voltage
at PCC; (e) DFIG stator current; (f) Active and reactive currents of DFIG system; (g) Active and reactive
power outputs from PMSG system; (h) Active and reactive powers output from DFIG system; (i) Rotor
rotational speed of the DFIG and PMSG system.
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As seen from Figure 13c,f–h, with the conventional LVRT control strategy, the reactive currents
provided by the PMSG and the DFIG (igq_P and isq_D) are both 0.675 pu, which is equal to the required
minimum value as Equation (11). Meanwhile, the reactive power outputs from the DFIG and the
PMSG (QDFIG and QPMSG) are both 0.34 pu. In addition, because both the DFIG and the PMSG operate
within the corresponding feasible regions under such condition, the active currents of the two systems
(igd_P and isd_D) are at low value regions, even during the grid fault. Hence, the active power outputs
(PDFIG and PPMSG) can still be 0.2 pu. The voltage at PCC (Ug) is elevated from 0.45 to 0.5 pu as shown
in Figure 13a. However, the currents of both the GSC in the PMSG and the DFIG stator are much less
than the respective allowable maximum values, as shown in Figure 13b,e. This indicates that more
reactive current can be supplied to the power grid for further elevating the voltage at PCC in such
symmetrical grid fault situation.

Figure 14 shows the experimental results with the proposed coordinated LVRT control strategy
when 0.2 pu active power is being delivered from both the DFIG and the PMSG systems. Under this
condition, the DFIG and the PMSG are both within their corresponding feasible regions. Hence, the
currents of the GSC in the PMSG system and the DFIG stator (igabc_P and isabc_D) can be made full use
of to improve the operation performance of the hybrid generation system during grid faults, as shown
in Figure 14b,e. As shown in Figure 14c,f–h, 1.07 and 0.97 pu reactive currents (igq_P and isq_D) which
are equal to the corresponding upper limit values can be injected by the PMSG and the DFIG systems,
respectively. As a result, the maximum reactive power (QPMSG and QDFIG) can be generated from the
hybrid generation system. Meanwhile, the active power outputs of the two systems (PPMSG and PDFIG)
are still 0.2 pu without changing before and after grid faults. Compared with Figure 13a, the voltage
at PCC (Ug) can be significantly elevated from 0.45 to 0.544 pu with the proposed control strategy,
as seen from Figure 14a.Energies 2017, 10, 669  16 of 20 
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Figure 14. Experimental results with the proposed coordinated LVRT control strategy under 0.2 pu
active outputs from both the DFIG and the PMSG systems. (a) Voltage at PCC; (b) Current of the GSC
in the PMSG system; (c) Active and reactive currents of PMSG system; (d) Voltage at PCC; (e) DFIG
stator current; (f) Active and reactive currents of the DFIG system; (g) Active and reactive power
outputs from the PMSG system; (h) Active and reactive powers output from the DFIG system; (i) Rotor
rotational speed of the DFIG and PMSG systems.
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To further verify the effectiveness of the proposed coordinated LVRT control strategy,
the experiment is conducted with 0.2 pu active power output from the DFIG and 0.8 pu active
power output from the PMSG, which simulates the high wind speed operation condition, as shown
in Figure 15. During the grid fault, the DFIG system is within its feasible region. Consequently,
0.95 pu reactive current (isq_D) and 0.49 pu reactive power (QDFIG) can be provided by the DFIG system
according to the reactive current limit. Meanwhile, the active power output from the DFIG system
(PDFIG) can be controlled constant, as shown in Figure 15e,f,h. On the contrary, the PMSG system is
out of its feasible region, thus, the injected reactive current (igq_P) is still 0.675 pu, and the reactive
power output (QPMSG) is only 0.35 pu. As the active current of the PMSG system is limited according
to the allowable maximum current of the GSC, the active power output from the PMSG (PPMSG) is less
than that under normal operation condition, as shown in Figure 15b,c,g. Compared with Figure 14a,
the voltage at PCC (Ug) is increased from 0.45 to 0.512 pu, owing to the less reactive current delivered
from the PMSG system, as seen from Figure 15a.

Similarly, Figure 16 shows the experimental results with 0.2 pu active power output from the
PMSG and 0.8 pu active power output from the DFIG. In this situation, the DFIG is out of its feasible
region while the PMSG is in. Thus, as seen from Figure 16c,f–h, the active power output from the
PMSG (PPMSG) is still 0.2 pu, but the value (PDFIG) is less than 0.8 pu for DFIG system during grid fault.
In addition, 1.05 pu reactive current (igq_P) and 0.55 pu reactive power (QPMSG) can be generated by
the PMSG system. However, only 0.675 pu reactive current (isq_D) and 0.36 pu reactive power (QDFIG)
are injected to the grid by the DFIG system. Compared with Figure 15a, the voltage at PCC (Ug) is
increased from 0.45 to 0.525 pu, owing to the reactive current capability of the PMSG system when it
operates at a low active power value region, as shown in Figure 16a.Energies 2017, 10, 669  17 of 20 
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Figure 15. Experimental results with the proposed LVRT control strategy under 0.8 pu active output
from the PMSG system and 0.2 pu active output from the DFIG system. (a) Voltage at PCC; (b) Current
of the GSC in the PMSG system; (c) Active and reactive currents of PMSG system; (d) Voltage at PCC;
(e) DFIG stator current; (f) Active and reactive currents of the DFIG system; (g) Active and reactive
power outputs from the PMSG system; (h) Active and reactive powers output from the DFIG system;
(i) Rotor rotational speed of the DFIG and PMSG systems.
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Figure 16. Experimental results with the proposed LVRT control strategy under 0.2 pu active output
from the PMSG system and 0.8 pu active output from the DFIG system. (a) Voltage at PCC; (b) Current
of the GSC in the PMSG system; (c) Active and reactive currents of the PMSG system; (d) Voltage
at PCC; (e) DFIG stator current; (f) Active and reactive currents of the DFIG system; (g) Active and
reactive power outputs from the PMSG system; (h) Active and reactive powers output from the DFIG
system; (i) Rotor rotational speed of the DFIG and PMSG systems.

7. Conclusions

This paper focuses on a coordinated LVRT control scheme for a hybrid wind farm with a
DFIG-based sub-wind farm and a PMSG-based sub-wind farm under symmetrical grid faults.
The reactive current upper limits of the DFIG stator and the GSC in the PMSG system have been
derived under symmetrical fault conditions, respectively, which are both determined by the terminal
voltage dip depths and the active power output levels of the corresponding sub-wind farms. On this
basis, according to the grid code, the feasible regions of the DFIG- and the PMSG-based sub-wind
farms have been established. Furthermore, an improved reactive current allocation method and a
coordinated LVRT control strategy for the hybrid wind farm have been proposed to enhance the
operation performance of the wind power generation system and the power grid voltage during the
symmetrical fault. The theoretical analysis and the proposed coordinated LVRT control strategies
have been validated by the simulation studies and the laboratory-scale experimental tests. Both the
simulation and actual experimental results show that the control strategies proposed in this paper can
significantly improve the transient performance of the hybrid wind farm during symmetrical fault.
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Appendix A

Simulation System Parameters

Table A1. Parameters of the DFIG-based sub-wind farm.

Parameters Values Parameters Values

Ratings 30 MW Pole pairs 2
Rated generator voltage 690 V Frequency 50 Hz
Stator resistance 0.00488 pu Stator leakage inductance 0.1386 pu
Rotor resistance 0.00549 pu Rotor leakage inductance 0.1493 pu
Magnetizing inductance 3.9527 pu Ns/Nr (kt) 0.45

Table A2. Parameters of the PMSG-based sub-wind farm.

Parameters Values Parameters Values

Ratings 30 MW Pole pairs 28
Rated generator voltage 690 V Frequency 50 Hz
Stator resistance 0.0126 pu D- & Q-axis inductance 1.321 pu
Reactor resistance 0.0126 pu Reactor inductance 0.396 pu

Table A3. Parameters of the transmission network.

Parameters Values Parameters Values

Ratings of T1 & T2 35 MVA Frequency 50 Hz
Short circuit impedance of T1 & T2 0.0098 + j0.09241 pu Ratings of T3 150 MVA
Line Z3 + Z4 100 km, 0.105 + j0.383 Ω/km Line Z1 & Z2 5 km, 0.17 + j0.38 Ω/km

Appendix B

Experimental System Parameters

Table A4. Parameters of the DFIG system.

Parameters Values Parameters Values

Ratings 3 kW Pole pairs 2
Rated generator voltage 380 V Frequency 50 Hz
Stator resistance 0.0081 pu Stator leakage inductance 0.1358 pu
Rotor resistance 0.1304 pu Rotor leakage inductance 0.3466 pu
Magnetizing inductance 6.1744 pu Ns/Nr (kt) 0.517
Winding connection Y/Y Common dc-link capacitor 2200 µF
Reactor resistance 0.1 Ω Reactor inductance 5 mH

Table A5. Parameters of the PMSG system.

Parameters Values Parameters Values

Ratings 3 kW Pole pairs 2
Rated generator voltage 380 V Frequency 50 Hz
Stator resistance 0.09 pu Common dc-link capacitor 2200 µF
D-axis inductance 0.78 pu Q-axis inductance 1.07 pu
Reactor resistance 0.1 Ω Reactor inductance 5 mH
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