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Abstract: BIPV (Building Integrated Photovoltaics) integration in urban spaces requires, not
only careful technical, but also aesthetic considerations as its visual impact is seen as a kind of
environmental effect. To manage this effect, different methods were developed to measure it;
however, most existing evaluation methods are either based on subjective speculations and have no
continuous criteria standards, or they do not show much relevance to neuropsychological findings.
This paper presents an alternative and complementary method for evaluating the BIPV visual impact
using the saliency method with an objective, quantitative and neuropsychological-based approach.
The application of the method was tested and is discussed in the context of an example case study in
Switzerland. Several different BIPV designs were developed for the case study, purposely in ways
that made it difficult to rank their visual impacts with one’s subjective instinct. Using the proposed
saliency method; however, the differences in BIPV visual impact across all designs could be identified,
demonstrated and calculated sensitively. Potential applications of this proposed method include
being a helping tool in deciding which BIPV design causes the least or most visual impact among
others. Additionally, when combined with solar cadaster, the method enables a comprehensive
estimation of BIPV potential in urban areas from both technical and societal aspects.
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1. Introduction

1.1. The Rising Popularity of Photovoltaics (PV)

Driven by the improvements in manufacturing, price decrease and the raising awareness for
a sustainable future, photovoltaics (PV) are becoming more popular worldwide, with the International
Energy Agency (IEA) reporting a steady global growth in annual PV installations in the last few
years [1]. The expansion of PV in Switzerland has taken place slowly, but fiercely. In 2009, the Swiss
government decided that the electricity generated from BIPV (Building Integrated Photovoltaics)
installations was to contribute 25% of the overall electricity production by 2030 [2]. Shaken by the
nuclear disaster in Fukushima, Japan in 2011, the Swiss Federal Council, Parliament and Federal Office
of Energy created the Energy Strategy 2050, which were strategies on how Switzerland should slowly
grow independent of nuclear energy. Ambitious goals were set, such as an increase of energy efficiency,
stabilization of electricity consumption, and an expansion of renewable energy [3]. Solar energy has
become, among other renewable energies, the main alternative to nuclear energy and is expected to
be an enormous development. The electricity production potential of PV in Switzerland is expected
to reach up to 11.12 TWh/a by 2050 [4,5]. Analyses have also been made regarding the solar energy
potential on building rooftops throughout Switzerland called the “solar cadaster” and it will be used as

Energies 2017, 10, 668; doi:10.3390/en10050668 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en10050668
http://www.mdpi.com/journal/energies


Energies 2017, 10, 668 2 of 16

a promotion tool for solar energy usage targeted at private customers, and also as essential information
for Swiss authorities when developing future planning strategies [6].

1.2. Restrictions for the Widespread Adoption of BIPV

With the growing number of BIPV being installed, people are realizing that, aside from its energy
aspect, its visual aspect is a crucial element in deciding whether the BIPV can be installed. The main
drive for this comes from heritage authorities, who claim that an abundance of PV will eventually harm
the existing appearance of the city and buildings [7]. Additionally, the Swiss government also hopes
to concentrate PV installation in urban areas, so that urban sprawl and damage to existing natural
landscapes can be prevented. The urban planning law (RPG) Article 18a [8] states that “In building and
landscape zones, solar installations on roofs that are considered as appropriately installed do not need
to file for an installation application.” and that “Solar installations on cultural and natural heritages
of cantonal or national importance always need to file for an installation application. They cannot
affect these heritages obviously.” This ruling mainly encourages careful BIPV integration onto building
envelopes and limits its visual impact.

Efforts to minimize BIPV visual impact can also be found at several other levels. Heritage
protection authorities frequently express that they are open for discussions, urging for integration into
planning teams in the early phase of building retrofit projects [9–12]. Responding to RPG Article 18a,
the Swiss urban planning regulation (RPV) Article 32a [13] claims that if the following criteria are met,
then the look of the BIPV on the roof can be considered as “appropriately installed”: (i) if the height of
the BIPV does not exceed 20 cm above the roof surface; (ii) if the BIPV area does not exceed the roof
plane; (iii) if the BIPV system is as low as possible in its reflectivity; and (iv) if the BIPV system’s area
is compact. On the cantonal level, guidelines were published, explaining in the form of qualitative
and formal design criteria on what the expected “appropriate looking” BIPV installations should be
like [14–18]. For instance, it usually states that it is preferable to have a roof fully, rather than partially
covered by the BIPV; or that it is desired that a BIPV glazing has a color resembling its environment,
etc. The general attitude is that the lower the BIPV visual impact, the higher the fitness of its design.

Since the existing laws, regulations, and guidelines have not recommended specific measures
to evaluate the BIPV visual impact, many academic researchers have developed evaluation methods
to address this issue. The existing evaluation methods can be categorized either as qualitative or
quantitative, depending on the criteria. The qualitative methods focus more on the aesthetic aspects of
the BIPV system, for instance, it is proposed that having the module installed in a good position with
appropriate dimensions, using pleasant surface texture and pattern will contribute positively to the
integration quality of a BIPV design [19,20]. In other methods, a good BIPV integration requires the
modules to be on the same planar surface as the building envelope, to respect the existing lines, or to
form a regular and compact shape if visual attention is not desired, etc. [21,22]. Similar approaches can
be found in References [23,24].

In the quantitative evaluation methods, one usually needs to decide the human field of view
(the visual region that can be seen by the human observer) first. The perceived size of the BIPV
system as a proportion of the field of view’s area is then proportional to the resulting BIPV visual
impact [25,26]. In other similar approaches, the time factor is also considered: the perceived area is
multiplied by the visual exposure time of the given PV for all viewers located in the surrounding.
The visual exposure time of the static observers equals 12 h, which is the mean day-lighting hour per
day throughout the year. For mobile observers (pedestrians and car drivers) moving on a certain road
segment, the visual exposure time equals the time that they need to move from the start to the end of
the road segment [27,28].

Generally, people expect that compliance with the required design criteria automatically leads to
low visual impacts. The qualitative criteria generally originate from the empirical and instinctive design
experiences of architects. In RPV regulations, cantonal guidelines, and qualitative academic evaluation
methods, the resulting visual impact can only be estimated subjectively, so its strength remains
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immeasurable. Furthermore, the criteria standards are also strongly dependent on personal preferences.
Regarding the quantitative evaluation methods, where the visible area is the way to measure the
BIPV visual impact, the calculation process relies on pure geometric logic. Most importantly, most
existing evaluation methods of BIPV visual impact lack a neuropsychological base. The relationship
between the architectural context and the observer’s biological visual perception has not been
considered. Due to these reasons, this paper intends to introduce an alternative and complementary
evaluation method for BIPV visual impact, which is the saliency method, an objective, quantitative
and neuropsychological-based approach.

2. Method

2.1. The Saliency Method

The proposed saliency method is largely based on the concept of the saliency model, a concept
borrowed from the computer vision domain. It calculates the “visual saliency”, which means the
probability of a particular image region attracting human visual attention in comparison to its
surrounding. There are many different approaches to calculating visual saliency (for further detail, see
Section 2.2). Usually, the contrast comparison mechanism of the human visual system is imitated by
a saliency model, and a saliency map that predicts the visual saliency distribution of the corresponding
visual scene is then produced (see Figure 1). On a scale from 0 to 1, a more conspicuous region will
receive higher values in the saliency map, indicating that this region has a higher probability of being
paid attention to by human eyes in this very visual scene.
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Figure 1. An input image (left) and its saliency map generated with the Itti–Koch–Niebur (IKN)
saliency model [29] (right).

Using a 2D rendering containing the BIPV system and the building of interest, the visual attention
information of this visual scene can be analyzed and transformed into visual impact. It offers
a quantified comparison between the visual impacts of different BIPV designs whose strengths are
difficult to weigh qualitatively and instinctively. The principle and effectiveness of the saliency method
have already been established in former works [30–33] and will be explained briefly in the following
section. The workflow of the method is shown in Figure 2.

The methodology comprises 3 stages:

1. Pre-processing: Creating 2D renderings of the existing building with and without BIPV.

A 3D digital model that includes the most essential information of the building, such as its
proportion, facade openings, colors and materials is created. Using this model with material and
sky descriptions, 2D rendering “as is” is performed from the perspective that is most frequently seen
by passing viewers. Next, a 2D “new” rendering is generated from the same viewpoint with the
BIPV applied on the 3D model. Both renderings are produced using RADIANCE, a software that is
capable of following the physical behavior of the light as closely as possible [34]. During this process,
an overcast sky condition (CIE sky definition [35]) is used as it does not result in hard shadows, glaring
sun reflections and exaggerated brightness in rendering images opposite to a clear sky condition.
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2. Processing: Generating saliency maps for the 2D renderings.

The “as is” and “new” renderings are imported into the Matrix Laboratory (MATLAB) software.
Using the given scripts, “as is” and “new” saliency maps are generated accordingly. All values on the
saliency maps are automatically normalized to the range of 0–1. Saliency maps have the same pixel
number as the renderings.

3. Post-processing: Analyzing the differences between saliency maps “as is” and “new.”

Given the identical perspectives, the difference between the saliency maps “as is” and “new”
represents the variation of the visual attention in the renderings with and without the BIPV installation;
and are calculated using the absolute difference between the saliency map “as is” and “new”:

′Delta′ map = |Saliency mapas is − Saliency mapnew| (1)

Inspired by the Area Under Curve metrics [36–38], all pixels are sorted as either among the top
10% salient pixels or among the bottom 90% in the “delta” map. This can also be considered as the
significance level of the distribution being set to 0.1 very roughly, to ensure that one does not miss
detecting any difference that might exist. The strength of the difference between the saliency map “as
is” and “new” is expressed by

S = 100 ∗ STt=10% ∗MaxDeltaMap (2)

The STt=10% is the threshold value between the top 10% of salient pixels and the bottom 90% of
pixels, meaning that 10% of the pixels on the “delta” map have higher values than the STt=10%, and
that 90% of the pixels on the “delta” map have lower values than STt=10%. S is the product between
the STt=10% value and the maximum value on the “delta” map; they are multiplied by 100 for better
expression. On a scale from 0–100, a low S value means either the vast majority of pixels have rather
small values in the “delta” map, or/and that the maximum value in the “delta” map is low, meaning
that the overall variation in visual attention in the visual image before and after the BIPV installation
is small. A larger S value means either that most of the pixels are distributed within a value range
with a larger upper bound, or that a particular region has especially high values in the “delta” map, so
the overall change in visual attention is large. Thus, a smaller S value also means that with a lower
visual impact, the building is more similar to its original state even after the BIPV installation.
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Using the color as a variable, Figure 3 shows an application example of the proposed saliency
method. If a roof-integrated BIPV installation has a similar color as its surroundings, then its S value
will be lower compared to a BIPV installation that has a color that is different from its surrounding.
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Figure 3. An abstract application demonstration of the proposed saliency method. It shows with the
example of a simple house how the different colors of a roof-integrated BIPV installation will affect the
final S value. In the first row, it can be seen that, when there is no change in this visual scene, the “delta”
map is entirely deep blue and the resulting S value is 0, meaning there is no resulting visual impact.
Then, it can be seen that a black patch on the roof (second row) is generating a higher S value than a
blue patch (third row), because the black patch is more “salient” than the blue one. The Graph Based
Visual Saliency (GBVS) model was used to generate the saliency maps “new” and the “delta” maps [39].

However, it needs to be clarified that whether a particular BIPV design has a negative or positive
influence on the existing building cannot be decided by the strength of the S value. The quality
of the influence depends on the exact circumstance, e.g., as per the current accepted design value,
the visual impact of a BIPV installed on downtown buildings should be as small as possible; while on
an industrial building located in a suburban area, a higher BIPV visual impact is desired in order to
draw visual attention. The proposed method merely offers the alternative to objectively quantify the
BIPV visual impact that formerly mainly existed in a qualified form.

2.2. The Saliency Model

The approaches to calculate saliency maps are very different. The Itti–Koch–Niebur (IKN) saliency
model was the very first saliency model to be based on psychological/neuropsychological findings [40].
Experiments have confirmed that human visual attention is guided by color, contrast sensitivity and
orientation in the visual scene [41,42]. The IKN saliency model therefore first extracts information
from the color, intensity, and orientation channels of the input image, then compares the contrasts
within these separate channels using the center-surround operation. This operation roughly imitates
how the human visual cell is capable of identifying the color or light contrast between its center
and surrounding receptive fields [43]. Finally, the comparison results from these separate channels
are normalized and combined into one final saliency map [29]. Similar neuropsychological inspired
models also take the ability to spot the target between the distractors and motion detection ability of
the human eyes into consideration [42,44,45].



Energies 2017, 10, 668 6 of 16

Other saliency models are based on probability calculations, of which the Graph Based Visual
Saliency (GBVS) model is an example. It also starts with extracting color, intensity and orientation
information of the input image (although using other features is also possible) and compares the
differences within these channels [39]. Each pixel is then be treated as a node in a directed graph that
is compared with another node on the input image. The weight between the two nodes is proportional
to their feature value difference and inversely proportional to their spatial distance. Finally, the nodes
that are highly dissimilar to the surrounding nodes will have larger sums of weights and are therefore
assigned higher saliency values. Even though the GBVS model is based on probability calculations,
it is still inspired by human cognitive concepts. First, due to the nature of its algorithm, higher weights
are assigned to the nodes located in the image center. This is desirable in the analysis as human eyes
are more likely to focus on the image center. Second, it is believed that neurons in the human visual
system can be seen as nodes. They connect with each other similarly as the nodes do, but through
synaptic firings (instead of weighted edges in a directed graph) in deciding which area in the visual
environment requires further processing.

Although numerous saliency models with other different approaches exist, it was decided to
integrate the IKN and GBVS saliency models into the method proposed in this paper. The IKN
is the first saliency model and often acts as the basis for the later ones. It has been shown to
correlate with human eye movements in experiments where observers were asked to look freely at test
images [46,47] and still remains an inspiration for many applications to this day [48–50]. The GBVS
saliency model achieved good results in its accuracy according to the MIT saliency benchmark [51] and
is especially suitable for predicting human visual attention when viewing landscape design photos [33].
The application of saliency models has proven to be quite helpful in several design sectors, such as
advertising [52] and graphic design [53,54].

3. The Case Study

3.1. The Building and its BIPV Designs

St. Michael, a church located in Lucerne, Switzerland, was used as the case study. The management
team of the church hoped to integrate BIPV on its building envelope to demonstrate their support
towards a greener future and to enhance the building’s energy efficiency. The most likely location for
such an installation was the sloped roof of the church, as it faced south, had an optimal tilting angle
and was covered in old roof tiles that had to be replaced. Other areas of the building envelope were to
be left as is to preserve the appearance of the existing architecture. Three designs were proposed and
presented to the management team and heritage departments of Lucerne (canton and city), so that they
can choose one that they find most appropriate. The first design had a conceptual and bold approach,
while the other two were more practical and cautious. As the building is in downtown Lucerne city,
the BIPV visual impact was to be kept as low as possible. Figures 4–6 show the church in its current
situation, an aerial view of the church with the indication of the viewpoint for 2D rendering “as is”,
and the rendering itself, respectively.
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Design 1—PVUp

This design intended to apply the arranged BIPV arrays on the upper side of the sloped roof
adjacent of the light tower. Standard BIPV modules, each with a size of 196 cm × 99 cm, were to be
split into two rectangular groups and follow only the edges of the light tower (see the responding
figure in Table 1). Figure 7 shows a partial layout plan of this design. This location is barely visible to
the visitors due to its height, but can still achieve a demonstrative effect. This design also required
less time and effort in installation and less technical equipment, e.g., cable connections. With the huge
advantage in cost, the drawback of this design was that the outlines of the two PV groups did not
exactly follow the profile of the church and was hence not ideal architecturally. In general, this design
is a very simplified solution without much architectural concern.

Design 2—PVBig

In Design 2, large BIPV modules covered the existing sloped roof of the church entirely (see
the responding figure in Table 1). Dummy panels, which are tiles that look like PV modules but
without the function to generate electricity, were used in places where a complete standard PV module
could not fit. The PV modules were 75 cm × 100 cm, each covered by the modules above it by 35 cm
(Figure 8). The visibility of the BIPV modules was high, but the tiled and homogenous pattern was
expected to decrease their visual dominance. This design tried to preserve the original appearance of
the existing church by arranging the BIPV in a similar pattern as before; however, the similarity was
not as ideal as the third design PVSmall due to the use of large PV modules. No new silhouettes were
introduced to the existing ones, so all the existing lines in the architectural context were respected.

Design 3—PVSmall

The third design was an improved variant of the design PVBig (see the responding figure in
Table 1). Instead of standard PV modules, custom-made small modules of size 54 cm × 54 cm were
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used in this version (see Figure 9). This design was architecturally sensitive, as the smaller BIPV
modules more closely resembled the existing roof tiles and their patterns than the large standard
modules. Utmost respect was paid to the architectural appearance of the existing church complex with
no strange lines introduced to disturb the present silhouettes. As with the PVBig design, the BIPV
modules were also very visually accessible for visitors from almost all viewpoints, but still managed to
be subtle by imitating the existing look of the roof tiles. However, the drawbacks to such a cautious
and careful design approach include the fact that it would only be achieved through heavy planning
work, high costs, and complicated technical requirements, e.g., an abundance of electric cables and
extensive care.
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Table 1. General information about the different BIPV designs and how much of the church’s annual
heat demand can be covered by the annual electricity production from the BIPV system. The black
patches in each pictogram indicate the location of the BIPV system in each design.

Design Name PVUp PVBig PVSmall

Location of the PV System
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Total BIPV area 82.5 m2 336.9 m2 414.3 m2

Nominal Power of the BIPV system 13 kWp 58.3 kWp 53.8 kWp

Annual electricity production (under the condition
that specific annual yield is 924 kWh/kWp) 12 MWh 53.9 MWh 49.7 MWh

Annual heat production using a heat pump
(with a coefficient of performance COP = 3) 36 MWh 161.7 MWh 149.1 MWh

Coverage (in %) of the church’s annual heat
demand (=397 MWh) 9.0% 40.7% 37.6%

3.2. Variation of BIPV Samples

The intention was to produce as much electricity as possible, as even with the high efficiency
mono-crystalline BIPV modules, the annual heat demand of the church could only be partially
covered when applying a heat pumper driven by the electricity generated with the BIPV (see Table 1).
The monocrystalline module’s appearance was more homogeneous as the cells have a similar color
to the backsheet. Polycrystalline modules have mostly blue cells, which result in a strong color shift
between the cell and backsheet area. Although black polycrystalline PV cells do exist, they are not easy
to find, and therefore not a very economical solution for the church. Furthermore, the thin film modules
were not ideal for imitating the patterns of the roof tiles, as the combination of the small module area
and low cell efficiency simply did not yield good results. Moreover, due to their production procedure,
anti-glare glazing for thin film PV is not easily achieved, and high reflectivity is not desired for BIPV
integration in urban spaces.

The reflection property of two typical mono-crystalline BIPV modules was measured and
applied to the 3D digital models of the designs to ensure that realistic RADIANCE renderings could
be generated to study how color, homogeneity, and reflectivity affected the BIPV visual impact.
PV Sample 1 (Figure 10) is a custom-made, single mono-crystalline cell module with regular glass used
as front glazing. The backsheet area color is dark grey and slightly lighter than the black wafer area.
PV Sample 2 (Figure 11) is a module with four mono-crystalline cells. The black color of the backsheet
area is quite similar to that of the wafer area. For both PV samples, two typical testing points were
chosen: one in the backsheet and one in the wafer area, as they are the two kinds of areas on the PV
module, resulting in four testing points in total. Figure 12 shows the reflection coefficients measured
with a Goniophotometer. The results show that the reflection coefficient of PV Sample 1 was higher
than that of PV Sample 2.
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4. Results

Figure 13 shows the “new” renderings of the designs using PV Sample 1. Figure 14 summarizes
the BIPV visual impacts of the three different designs and their S values categorized by saliency models.

In both saliency models, the PVBig design had, against earlier subjective speculation, the highest
visual impact (see Figure 14). Despite the homogeneous look of the BIPV panels, the tilting angle
and orientation resulted in a larger color change in the roof area compared to the existing situation.
This situation was not improved even when the more homogenous looking and less reflective PV
Sample 2 was used. The resulting color made the roof resemble the opaque part of the light tower, thus
weakening its saliency values and forced the visual attention that originally belonged to the roof to
shift to the lower front window and the entrance door in the left of the image (see the “delta” maps in
the third and fourth row in Figure 15).

Both saliency models GBVS and IKN showed that the visual impact of PVUp design was higher
than that of the PVSmall (see Figure 14). The low S values of PVUp (compared to that of PVBig designs)
could be traced back to the small visible area of the modules. A corresponding rendering (first row,
Figure 13) showed that when installed very high up on the roof, only a little of the BIPV could be
seen from an observer from the selected viewpoint. As per the GBVS saliency model, PVUp_S1 and
PVUp_S2 had identical S values. Calculations from the IKN(Harel) saliency model showed that in the
PVUp design, switching from PV Sample 1 to the less reflective PV Sample 2 resulted in a decrease of
the S value.

The results produced from both saliency models showed that the PVSmall design had the lowest
S values (see Figure 14). The tilting angle of the BIPV in PVSmall, in addition to the reflectivity,
made the upper module side appear not entirely black, but rather greyish, like the existing roof
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tiles. The pattern formation from small custom-made BIPV panels also made the entire roof appear
more monotonous. In the GBVS analysis, the visual impact of PVSmall_S1 was higher than that of
PVSmall_S2. The IKN(Harel) saliency model, however, predicted that the visual impact of PVSmall_S1
was lower than that of PVSmall_S2. One possible reason is that when using PV Sample 2, the color of the
roof would be darker, which meant that the contrast between the roof and its surrounding would be
larger. It was also noted that there was a change in the dark red areas presented in the right last two
rows of the IKN(Harel) “delta” maps in Figure 15, and it can be deduced that, according to the proposed
saliency method, a higher reflective BIPV glazing would not necessarily result in a higher visual impact.
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5. Discussion

The following reflections were made on the proposed evaluation method to guarantee more
holistic analysis results in the future.

First, the visual analysis in this paper was made using only one single perspective and under
only the overcast sky condition. The use of other perspectives and CIE sky conditions is necessary
for making the analysis comprehensive, because it is highly likely that the S results depend strongly
on the simulation conditions. A preliminary concept looks like this: one first needs to identify
which perspectives are more prominent among an infinite number of others. Such screening tools
have already been developed and widely used in terrain analysis [27,28,55,56]. From each of these
prominent perspectives, an S value is calculated, which also has a weight attached to it that depends
on the prominence of the corresponding perspective. The S value from the same perspective will also
be produced twice, the first time under the CIE overcast sky condition, and then again under the CIE
clear sky with sun condition. The first sky condition causes the least shadow in the “new” rendering,
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resulting in the smallest possible S value (S1); and the second sky condition will cause the largest
possible S value (S2) due to the harsh shadows and potential glare in the “new” rendering. An S value
calculated with any other CIE sky condition will fall between the range of S1 and S2. For each of these
prominent perspective, its combined visual impact S value is then the average value between S1 and
S2. In the final step, the overall S value for the BIPV design will be produced by dividing the sum of
the combined S values by the total number of the prominent perspectives.

Second, the visual impact results were generated using the IKN and GBVS saliency models with
two very different approaches. The differences in S values that are significant to the human eye are
still unknown and needs to be verified. In the future, the reliable statistical evidence could be found
using the following approach: By providing the “as is” rendering and several “new” renderings that
belong to different ranges of S value, human test observers are asked to qualitatively evaluate the
amount of deviance between the “as is” and “new” renderings. This result will be used as qualitative
data. At the same time, the observers will also be wearing eyetrackers to record their eye fixation time
lengths on each location of the renderings. The time length of the eye fixation on the BIPV installation
is very likely to be proportional with the time they need to identify the deviance, and to be inversely
proportional to the amount of deviance. In other words, the smaller the deviance between the “as is”
and “new” renderings, the longer the observer needs to discover it. The time length record will be
used as quantitative data and will complement the qualitative data. Together they will contribute to
a more comprehensive understanding of the significance between the different S values.

6. Conclusions

This paper proposed an alternative and complementary method to evaluate the BIPV visual
impact. To manage the visual impact that comes from the rising number of BIPV installations, first,
one needs to be able to measure it properly. However, the current qualitative evaluation methods have
difficulties in maintaining objectivity and their criteria standards are strongly dependent on personal
preferences; and the existing quantitative evaluation methods do not usually have strong links with
the known neuropsychological findings. Since the application of saliency maps is already found in
various design areas and such maps provide reliable help in visual attention analysis, our proposed
method intends to overcome the observed insufficiencies in the current methods by integrating the
saliency model into its evaluation procedure. The authors hereby suggest an objective, quantified and
neuropsychological-based approach to evaluate BIPV visual impact.

In the case study, the BIPV designs were deliberately developed in a way that made it difficult
to weigh their visual impacts qualitatively using one’s instinct. In these situations, the existing
qualitative evaluation methods are usually not sensitive enough to determine the BIPV visual impact.
The existing quantitative evaluation methods are not suitable either, as the overall design approach of
the BIPV system, and not the visible area, is more decisive to its visual impact. Using the proposed
saliency method, however, the differences of BIPV visual impact across all designs can be identified,
demonstrated, and sensitively calculated.

On a lower level, the proposed saliency method can be used as an alternative or a complementary
tool for the conventional qualitative evaluation methods, by providing a different perspective in this
area. On a higher level, it can be used in the urban planning sector by setting BIPV visual impact
thresholds for different building zones. If combined with the solar cadaster, it would then be possible
to estimate the true and comprehensive capacity of BIPV installations from both hard, technical as
well as soft, societal perspectives. The application of the proposed method is not limited to just BIPV
design, but can be expanded to any architecture design area that involves visual change analysis.
This is especially important in a time where new technologies are constantly emerging and affect our
existing living environment.
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