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Abstract: In a competitive electricity market with substantial involvement of renewable electricity,
maximizing profits by optimizing bidding strategies is crucial to different power producers including
conventional power plants and renewable ones. This paper proposes a game-theoretic bidding
optimization method based on bi-level programming, where power producers are at the upper level
and utility companies are at the lower level. The competition among the multiple power producers is
formulated as a non-cooperative game in which bidding curves are their strategies, while uniform
clearing pricing is considered for utility companies represented by an independent system operator.
Consequently, based on the formulated game model, the bidding strategies for power producers
are optimized for the day-ahead market and the intraday market with considering the properties
of renewable energy; and the clearing pricing for the utility companies, with respect to the power
quantity from different power producers, is optimized simultaneously. Furthermore, a distributed
algorithm is provided to search the solution of the generalized Nash equilibrium. Finally, simulation
results were performed and discussed to verify the feasibility and effectiveness of the proposed
non-cooperative game-based bi-level optimization approach.
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1. Introduction

Following the attempts in the USA, Britain, Australia and Russia, many countries have embarked
on a massive reform of the electricity power market in recent decades [1]. As the document “The notice
about the reform pilot of transmission and distribution price carried out in Shenzhen” was issued
two years ago, electric power industry in China has undergone significant changes from the regulated
monopoly to a deregulated electricity market. Several new kinds of market participants have emerged
in this new market structure, for example utility companies that invested and established by social
capitals, power exchange (PX) and independent system operator (ISO) [2].

Deregulated electricity markets are established for the purposes of improving system efficiency
and optimizing resource allocation [3]. Meanwhile, it is important to strengthen the sustainability
of the electric power industry. Renewable energy resources especially wind are being substantially
developed and utilized to take the place of fossil fuels to tackle the severe impacts of global warming in
many electric systems worldwide. Various countries have different policies for wind power generation;
some of them take full acquisition, and some allow wind farms to take bids in the market. Due to the
gradually mature wind power technology, government subsidies are less and less relatively, and wind
power producers prefer to participate in electricity markets to maximize their profits [4]. However,
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the uncertainty of wind power generation is a major obstacle for wind power producers to take part
in the electricity market. Accurate prediction of generation is hard to obtain even though forecasting
techniques have considerably improved over the last few decades.

In a competitive electricity market, all power producers desire to make a healthy profit by
adjust bidding strategies, and much research has been undertaken. For conventional or fossil fuel
power producers, game theory and the bi-level optimization method [5,6] were used to simulate
and optimize the bidding strategies of power producers. Zhang et al. [6] established a general
multi-leader-one-follower nonlinear bi-level (MLNB) model to optimize strategic bidding, for which
the upper level optimization problem is a noncooperative game problem. Moreover, related definitions
of the MLNB based on the generalized Nash equilibrium were also provided. The noncooperative
multi-leader-follower game is computationally intractable due to the nonconvexity in each player’s
problem [7]. A class of remedial models was proposed to formulate the multi-leader-follower
game as generalized Nash games with convex strategy sets in [7]. For renewable power producers,
various methods have used stochastic models to generate optimal bidding strategies for wind power
producers participating in liberalized electricity market with considering the uncertain output [3,8,9].
Pinson et al. [10] formulated a general methodology for deriving optimal bidding strategies based on
probabilistic forecasts of wind production. For solving the randomness of renewable energy output,
energy storage technologies [11,12], such as pumped-hydro storage and compressed air, are studied
by several researchers. However, the availability of utility-scale storage is still limited. Imbalance
cost is utilized to tackle the effect of uncertainty and intermittent output in [13,14]. Dai et al. [14]
proposed a bilateral reserve market to cover the uncertainty and intermittency of wind power, where
the bilateral reserve is provided by conventional power producers and consumed by wind power
producers. However, they did not consider the impact of power producers’ bidding on real-time price
and day-ahead price, which are obtained through forecasting and scenario generation in [14].

In view of large-scale new energy power penetration in the electricity market, several
researches [15–19] consider new energy power producers as strategic players, which can optimize
profit by participating in competitive bidding. Zugno et al. [15] and Baringo et al. [16] only consider
wind power producers as strategic players either in the day-ahead market or in the real-time market.
Dai et al. [17] proposed a bi-level stochastic optimization approach to maximize the profit of wind
power producers, which submit a bidding strategy as strategic players in both the day-ahead market
and real-time market. In [17], bidding strategies of other strategic conventional power producers have
no effect on wind power producers. Actually, bidding strategies of conventional power producers and
wind power producers will influence each other, and all of them can influence the market clearing price.
In [18,19], conventional power producers and wind power producers as the same strategic players bid
in the market, and the equilibrium problem with equilibrium constraints is formulated to maximize
the total expected profit of all power producers. However, cooperation among power producers is
difficult to achieve in practice, due to the selfish and profit-driven nature of power producers.

Different from the existing literature, this paper employs a non-cooperative game based
on the bi-level optimization approach for multiple power producers to maximize profits by
optimizing bidding strategies in a competitive electricity market considering the uncertainty and
intermittency of renewable energy power. The main contributions of this paper include the following:
(1) a non-cooperative game approach-based bi-level optimization is proposed to deal with a scenario
in a competitive electricity market having multiple power producers, multiple utility companies, a
PX and an ISO, where the payoff of the non-cooperative game is the profit of each power producer;
(2) a distributed algorithm is presented to realize the optimization in terms of maximizing the profit of
all power producers; (3) simulation results are discussed to verify the feasibility and efficiency of the
proposed optimization method.

The rest of the paper is organized as follows. Section 2 presents the market framework that this
paper studied; the cost model and the bid model for different types of power plants are presented.
In Section 3, the profit model is described considering the premium mechanism. The novel proposed
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method of this paper for optimizing the bidding strategy based on the game-theoretic method is
presented in Section 4. Simulation results are presented and discussed in Section 5. Finally, conclusions
are provided in Section 6.

2. Problem Formulation

2.1. Market Framework

An electricity market is mainly formed by the medium and long-term trade market and spot
market. In order to promote the development of renewable energy sources, only the spot market is
studied in this paper considering the variability of renewable energy sources. The electricity market
in various countries or regions has different characteristics, which can be suitable for the practical
application scenarios. For example, the Pennsylvania-New Jersey-Maryland (PJM) electricity market in
the United States includes the spot market, the capacity market, the ancillary services market and the
financial transmission right market, where the spot market consists of day-ahead market and real-time
market. Nord Pool operates a day-ahead market, an intraday market and a real-time market, which
was established in 1993 and consisted of Norway, Sweden, Finland and Denmark [20,21].

Assume that there is one PX operating in the day-ahead market, the intraday market and the
real-time balancing market, and one ISO checks the system safety to guarantee that electricity markets
are operated under conditions of absolute security and stabilization. As shown in Figure 1, a pool-based
electricity market is considered in which M utility companies submit load curves into the day-ahead
market for trading time slot h ∈ H = {1, · · · , H} in the next operating day. One can choose each
trading time slot as 15 min, and then, H = 96. LetM = {1, · · · , M} and N = {1, · · · , N}, where
M and N denote the set of the utility company and the power producer, respectively. ISO provides
superposition of M utility companies’ load curves to power producers. Then, N power producers,
including conventional thermal power producers, wind power producers and solar power producers,
can submit energy offer curves into day-ahead and intraday markets. In the day-ahead market, power
producers need to propose bidding curves, including the maximum generating volume in the next
operating day, before gate closure, which generally occurs at 12 a.m. in the current operating day [9].
In order to sell as much generating volume as possible, the predicted generating volume in the next
operating day is taken as the maximum generating volume in bidding curves. Later, according to the
rules of the PX, the ISO announces the market clearing price and cleared generating volume of each
power producer, which is determined by using a single market clearing process. Due to the uncertainty
and intermittency of wind and solar power, prediction error exists on the day-ahead market, which
forecasts too far in advance. Power producers are allowed to resubmit bidding strategies on the
intraday market, for which gate closure generally occurs between 30 min and 2 h before the time of
actual power delivery. The intraday market deals with the deviation between the practical generating
volume and that scheduled on the day-ahead market. Then, clearing results for power producers
in the intraday market are determined by the ISO. The prediction errors on the intraday market are
undertaken by the ISO, which ensures the real-time balance between offers and demands by buying or
selling electricity in a real-time balancing market [21].

For the following modeling and analyzing, several assumptions are made as follows [10,14]:
(1) predicted power generation on the intraday market can be considered to be practical generating
volume; (2) power outputs of the thermal power producers can be precisely controlled, and
errors of the thermal power producers are not considered; (3) the load prediction error is not
considered; (4) all power producers have no market power in both day-ahead and intraday markets,
namely bidding strategies of any power producers cannot have a significant impact on the market
clearing price.
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Figure 1. Generation side bidding transaction model.

2.2. Cost Model

The generation cost of thermal power plants has been studied by many scholars, and it is widely
accepted that generation cost is the quadratic function of generating volume [6]:

Cth0 (qth) = athq2
th + bthqth + cth (1)

where Cth0 and qth denote generation cost and generating volume of thermal power plants and ath, bth,
cth are fixed positive parameters of thermal power plants. Thermal power plants generate electricity by
consuming fossil fuels, which produce a great deal of CO2 and other atmospheric pollutants. For the
purpose of environment protection and realization of sustainable development of the electric power
industry, carbon emission factors can be included in the total generation cost under the deregulated
environment of electricity market. Then,

Cth (qth) = athq2
th + bthqth + cth + pctµqth − pcrµ (1− σ) qth (2)

where Cth is the total generation cost of thermal power plants, pct and pcr are the carbon emission price
at the transmitting end and receiving end, µ is unit electric energy carbon emission conversion factor
of thermal power plants and σ is the line loss rate.

The generation cost of wind farms mainly includes capital cost, maintenance and operation cost.
Wind power is a renewable green energy, which requires no fuel cost, and it is the reason that wind
power has been developed vigorously in the last few years. For wind farms, the capital cost is high
while the operation cost is very low compared to thermal power plants. Generation cost can be divided
into two parts: the fixed cost and the variable cost, which includes capital cost, maintenance and
operation cost, respectively. Compared with the zero variable cost of the wind power plant in [19], this
paper assumes that the variable cost has a linear relationship with generating volume [22]; thus,

Cw0 (qw) = bwqw + cw (3)

where Cw0 and qw are the generation cost and generating volume of wind farms and bw, cw are
fixed positive parameters of wind farms. Total generation cost of wind farms considering the carbon
emission factors Cw can be calculated as:

Cw (qw) = bwqw + cw − pcrµ (1− σ) qw (4)
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Solar power also is a clean renewable energy, and solar power plants do not need the fuel cost
to produce electricity. Similarly, compared to conventional thermal power plants, the capital cost of
solar power plants is high, and the operation cost is very low. Therefore, the total generation cost of
solar power plants considering the carbon emission factors Cs can be expressed in the same way as
wind farms:

Cs (qs) = bsqs + cs − pcrµ (1− σ) qs (5)

where bs, cs are fixed positive parameters of solar power plants and qs is the generating volume of
solar power plants.

2.3. Bidding Model

The marginal cost of thermal power plant Cthm is calculated by:

Cthm (qth) = 2athqth + bth + pctµ− pcrµ (1− σ) (6)

which is a linear function of its generating volume qth. Generally, power producers bid based on
marginal cost to maximize their profit in a competitive electricity market. The bidding curve of thermal
power plants can be described as a linear function, namely,

pthb = athbqth + bthb (7)

where pthb is the bid price of thermal power plants and athb > 0, bthb are bidding parameters of thermal
power plants.

When generating volume is increased, the variable cost of wind farms increases slightly due to the
low operation cost. Fixed cost is always considered a constant, and the value is large [22], for which
allocation to per unit generating volume will obviously decrease when generating volume is increased.
Therefore, average generation cost will reduce when wind farms produce more generating volume.
This means that wind power producers are willing to bid a lower price if they can obtain more power
generation. Assume that the bidding curve of wind farms is a monotonically decreasing and linear
function and can be described as [23–25]:

pwb = awbqw + bwb (8)

where pwb denotes the bid price of wind farms and awb < 0, bwb are bidding parameters of wind farms.
Owing to the same characteristic as wind farms whose variable cost is low and fixed cost is

comparatively high, solar power producers prefer to submit the bidding curve similar to wind power
producers. Consequently, the bid price of solar power plants psb is given by,

psb = asbqs + bsb (9)

where asb < 0, bsb are the bidding parameters of solar power plants.

3. Profit Model

3.1. Day-Ahead Market

In the day-ahead market, the profit of each power producer can be determined when the clearing
price and cleared generating volume are announced by the ISO. For thermal power plants, the profit in
the day-ahead market πthD can be calculated as:

πthD = pthDqthD − Cth (qthD) (10)
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where pthD and qthD denote clearing price and the cleared generating volume of thermal power plants
in the day-ahead market and Cth (qthD) denotes generation cost corresponding to qthD generating
volume of thermal power plants. Clearing prices of all power producers are the same under the
uniform pricing method, which is adopted in this paper.

In order to encourage green electricity, the green certificate scheme, feed-in tariffs and premium
mechanism are implemented in several countries [26]. Under the premium mechanism, the price
of renewable energy is equal to the floating market price plus fixed government subsidies, which is
adopted in this paper. Not only profits of power producers are guaranteed to a certain degree,
but also the enthusiasm of market participants is mobilized. Wind farms and solar power plants
can receive government subsidies for generation while conventional thermal power plants generate
electricity without any government subsidies. Let Sth denote the government subsidies for thermal
power plants. Thus,

Sth = 0 (11)

For wind farms and solar power plants, we have,

Sw (qw) = pwsqw (12)

Ss (qs) = pssqs (13)

where Sw, pws and Ss, pss denote the subsidy and fixed price of government subsidies for wind farms
and solar power plants, respectively. Then, the gains of wind farms in the day-ahead market πwD can
be expressed by,

πwD = pwDqwD + Sw (qwD)− Cw (qwD) (14)

where pwD is the price of wind farms in the day-ahead market and Sw (qwD) and Cw (qwD) denote the
subsidy and generation cost for wind farms’ qwD generating volume.

Consequently, the profits of solar power plants in the day-ahead market πsD are,

πsD = psDqsD + Ss (qsD)− Cs (qsD) (15)

where psD is the price of solar power plants in the day-ahead market and Ss (qsD) and Cs (qsD) are the
subsidy and generation cost for solar power plants’ qsD generating volume.

3.2. Intraday Market

In view of the fact that the properties of wind energy and solar energy are similar, wind farms are
regarded as an example to analyze the effect caused by prediction errors. To promote the development
of renewable energy, certain extent errors of forecast are allowed. Wind power producers need to
pay fines only if the practical generating volume is less than the cleared generating volume on the
day-ahead market and the difference is in excess of 8% [27,28]. We define the difference of the practical
generating volume qwp and the cleared generating volume on the day-ahead market ∆qw as:

∆qw = qwp − qwD (16)

Consequently,

Fw=


0 ∆qw > 0
0 ∆qw < 0, |∆qw| ≤ 8%qCQw
k f pI∆qw ∆qw < 0, |∆qw| > 8%qCQw

(17)

where Fw is the fine of wind power producers, k f is the penalty coefficient, pI is the price in the intraday
market and qCQw is the installed capacity of wind farms. Furthermore, when practical generating
volume is less than the cleared power generation on the day-ahead market and the difference does not
exceed the 8% limit, the profit of wind power producers in the intraday market still is negative. In this
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case, wind power producers need not pay a fine for the error. Let πwr denote the reduced profit for
wind power producers,

πwr = Cw (|∆qw|)− pwD |∆qw| − Sw (|∆qw|) (18)

where Cw (|∆qw|) and Sw (|∆qw|) denote generation cost and subsidy corresponding to |∆qw|
generating volume of wind farms.

In fact, wind power producers can obtain gains by participating in the intraday market when
qwp is more than qwD and one or more power plants cannot generate enough generating volume in
accordance with the cleared generating volume on the day-ahead market. The bidding process on the
intraday market is similar to the process on the day-ahead market. Then, the profit of wind power
producers on the intraday market πwI can be written as:

πwI = pwIqwI + Sw (qwI)− Cw (qwI) (19)

where pwI and qwI denote the price and cleared generating volume of wind farms in the intraday
market and Sw (qwI) and Cw (qwI) denote the subsidy and generation cost for wind farms’ qwI
generating volume.

In a word, the profit of wind power producers in the intraday market can be calculated as:

πwI=


pwIqwI + Sw (qwI)− Cw (qwI) ∆qw > 0
Cw (|∆qw|)− pwD |∆qw| − Sw (|∆qw|) ∆qw < 0, |∆qw| ≤ 8%qCQw
k f pI∆qw ∆qw < 0, |∆qw| > 8%qCQw

(20)

The profit of solar power producers in the intraday market is similar to wind power producers.
Let ∆qs denote the difference of practical generating volume qsp and qsD,

∆qs = qsp − qsD (21)

Therefore,

πsI=


psIqsI + Ss (qsI)− Cs (qsI) ∆qs > 0
Cs (|∆qs|)− psD |∆qs| − Ss (|∆qs|) ∆qs < 0, |∆qs| ≤ 8%qCQs
k f pI∆qs ∆qs < 0, |∆qs| > 8%qCQs

(22)

where πsI , psI and qsI denote profit, price and cleared generating volume of solar power plants in the
intraday market, respectively, and Ss (qsI), Cs (qsI), Ss (|∆qs|) and Cs (|∆qs|) denote the subsidy and
generation cost corresponding to qwI and |∆qs| generating volume of solar power plants, respectively.

Because the errors of the thermal power plants are not considered, the profit in the intraday
market πthI can be described as in the day-ahead market:

πthI=pthIqthI − Cth (qthI) (23)

where pthI and qthI are the price and cleared generating volume of thermal power plants in the
intraday market and Cth (qthI) is the generation cost corresponding to qthI generating volume of
thermal power plants.

Consequently, the total profit of power producers can be calculated as:

πth=πthD + πthI (24)

πw=πwD + πwI (25)

πs=πsD + πsI (26)
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where πth, πw and πs denote the total profit of thermal power producers, wind power producers and
solar power producers, respectively.

4. Methodology Based on the Non-Cooperative Game

4.1. Bilevel Optimization

The problem of searching the best bidding strategies for power producers is formulated as
a bi-level program in this paper. The lower partner (the ISO or utility companies) is the follower,
while the upper partner (power producers) is the leader. In addition, it needs to be explained that the
power plant for which the practical generating volume is less than the cleared generating volume on
the day-ahead market can not bid on the intraday market. Meanwhile, other power plants who can
offer extra generating volume bid on the intraday market. The bidding procedures for the day-ahead
market and the intraday market are similar and can be expressed as follows.

4.1.1. Utility Company Side

Let qh
sm denote the energy consumption of utility company m ∈ M at time slot h ∈ H in the next

operating day, and then, the energy consumption of utility company m ∈ M in a whole day can be
defined as:

qsm =
[
q1

sm, · · · , qh
sm, · · · , qH

sm

]
(27)

We define qh
s ∈ qs =

[
q1

s , · · · , qh
s , · · · , qH

s

]
as the total energy consumption of all utility companies

at time slot h ∈ H in the next operating day.

qh
s =

M

∑
m=1

qh
sm (28)

Power producers submit bidding curves according to the energy consumption schedule.
The bidding function for power producer n ∈ N is:

ph
nb=ah

nbqh
nb + bh

nb (29)

where ph
nb and qh

nb are the price and trading generating volume of power producer n ∈ N at time slot
h ∈ H, respectively, and ah

nb and bh
nb are the bidding parameters of power producer n at time slot h.

In practical applications, one can assume that ah
nb is a fixed parameter [29]. In other words,

power producers can adjust bidding strategies by changing the value of bh
nb. Besides, competition

among utility companies is not considered in this paper, so that utility companies do not bid in the
market. Utility companies only determine cleared generating volume buy from each power producer
and assuming the ISO substitutes for utility companies to make the decision of clearing results.

The bidding strategy for each power producer n ∈ N in a whole day can be defined as
bnb =

[
b1

nb, · · · , bh
nb, · · · , bH

nb

]
, and power producers submit the bidding strategies on the PX in the

day-ahead market and the intraday market. After receiving all bidding strategies of all power
producers, the ISO determines the generating volume of each power producer at time slot h ∈ H with
the goal of minimizing the total cost for utility companies purchasing electricity. The lower level of the
bi-level optimization can be expressed as the following optimization problem:

minimize
qh

nb

U = U
(

bh
1b, · · · , bh

Nb, qh
1b, · · · , qh

Nb

)
=

H

∑
h=1

N

∑
n=1

(
ah

nbqh
nb + bh

nb

)
qh

nb

(30)
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where U denotes the total cost for utility companies purchasing electricity and qh
nb denotes the

generating volume of power producer n ∈ N at time slot h ∈ H, which is the decision variable
of the follower’s problem. Supply and demand have to be balanced in real time; hence, the following
constraints have to be satisfied,

N

∑
n=1

qh
nb = qh

s (31)

0 ≤ qh
nb ≤ qh

nb max (32)

where qh
nb max denotes the maximum generating volume of power producer n ∈ N at time slot h ∈ H.

When the problem (30) is solved, optimum values of the follower’s variables qh
nb are determined

for given values of the leader’s variables bh
nb, which are treated as a fixed parameter at the moment.

Accordingly, the price of power producer n ∈ N at time slot h ∈ H is determined and denoted by ph
nb.

The follower’s optimum solution has to update while the leader’s variables are changed [30].

4.1.2. Power Producer Side
Once the market is cleared, the market clearing price can be determined, which can be

calculated as:
ph

c

(
bh

1b, · · · , bh
Nb, qh

1b, · · · , qh
Nb

)
= max

(
ph

nb, n ∈ N
)

(33)

where ph
c is the market clearing price at each time slot.

Power producer n can optimize the profit on the upper level of the bi-level optimization by
varying the bidding variable bh

nb. The strategic bidding model for power producers can be expressed as,

maximize
bh

nb

πn =
H

∑
h=1

πh
n

(
bh

1b, · · · , bh
Nb, qh

1b, · · · , qh
Nb

)
(34)

where πn is the profit for power producer n in a whole day, and πh
n is the profit for power producer n

at time slot h, the value of which for different types of power plant in the day-ahead market and the
intraday market can be calculated as Equations (10), (14), (15), (20), (22) and (23). Additionally, the
trading price for each power plant is equal to the clearing price.

By combining the aforementioned analysis, the optimization model of bidding strategies for
power producers in the competitive electricity market is established as follows:

maximize
bh

nb

πn =
H

∑
h=1

πh
n

(
bh

1b, · · · , bh
Nb, qh

1b, · · · , qh
Nb

)
bh

nb min ≤ bh
nb ≤ bh

nb max

minimize
qh

nb

U = U
(

bh
1b, · · · , bh

Nb, qh
1b, · · · , qh

Nb

)
=

H

∑
h=1

N

∑
n=1

(
ah

nbqh
nb + bh

nb

)
qh

nb

N
∑

n=1
qh

nb=qh
s

0 ≤ qh
nb ≤ qh

nb max

(35)

4.2. Non-Cooperative Game Theoretic Optimization Approach and Algorithm

In the upper level of the bi-level optimization, each power producer will try to maximize
its own profit by strategic bidding. Hence, competition among power producers at upper level
optimization can be modeled as a non-cooperative game, which is used to analyze problems
with conflict objectives among interacting decision makers. Assume that the game among power
producers is a complete information game, for which each player’s payoff and bidding strategy
is commonly known to all players. The strategy each power producer will optimize is the vector
bnb =

[
b1

nb, · · · , bH
nb
]
. The strategy set of admissible bidding variables for power producer n is given by
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the set Bn =
{

bnb

∣∣∣bh
nb min ≤ bh

nb ≤ bh
nb max, ∀h ∈ H

}
, where bnb max and bnb min represent the maximum

and minimum value of bidding variable, and B = B1 × · · · × BN is the set of admissible joint bidding
variables. We represent joint bidding variables by the vector b = [b1b, · · · , bNb] and b ∈ B.

No player will increase payoff by unilaterally changing its bidding strategy when the game
obtains a Nash equilibrium [31,32]. Although the game only exists among the upper partners, the
decision of every power producer will be influenced by other power producers, as well as by the
power generation dispatch policy from the lower partner of the bi-level optimization. Therefore, a
new Nash equilibrium, the generalized Nash equilibrium, is needed as the optimization solution.
The game among power producers can be formulated as a generalized Nash equilibrium problem
with equilibrium constraints. In the generalized Nash equilibrium, the strategy set of each player,
as well as his/her payoff function depend on the rival players’ strategies. One can define that a
vector

(
bh∗

1b , · · · , bh∗
Nb, qh∗

1b , · · · , qh∗
Nb

)
is said to be a generalized Nash equilibrium [6] when the following

inequality is satisfied:

πh
n

(
bh∗

1b , · · · , bh∗
(n−1)b, bh∗

nb , bh∗
(n+1)b, · · · , bh∗

Nb, qh∗
1b , · · · , qh∗

Nb

)
≤ πh

n

(
bh∗

1b , · · · , bh∗
(n−1)b, bh

nb, bh∗
(n+1)b, · · · , bh∗

Nb, qh∗
1b , · · · , qh∗

Nb

) (36)

Generalized Nash equilibrium is calculated by considering both the upper and lower level
optimization as an integrated problem. In fact, Problem (35) is an equilibrium problem with equilibrium
constraints (MPEC). The mathematical program each power producer needs to solve is generally
nonconvex [7]. Due to the nonconvexity in each power producer’s problem, the Nash equilibrium
may not exists, and the nonconvex Nash game is computationally intractable. Even if the Nash
equilibrium does exist, it cannot be guaranteed that the equilibrium is unique. When multiple Nash
equilibria exist, the global optimal solution may be found if a good initial bidding strategy is given [33].
The existence and uniqueness of the equilibrium solution for equilibrium problem with equilibrium
constraints (EPEC) has not been proven yet [34,35]. Nevertheless, the equilibrium solution can be
successfully found in most cases according to [34]. Nash equilibrium is supposed to be obtained when
we reach a point where the choices from all power producers are close enough to their corresponding
rational reactions [6]. The procedure employed in this paper to find a generalized Nash equilibrium is
as follows. The Algorithm 1 basically allows each power producer to play his/her rational strategy
and repeat until the equilibrium solution is reached.

Algorithm 1: Executed by each power producer n ∈ N at each time slot h ∈ H.

Initializing bidding strategy bh∗
nb and profit πh∗

n of power producer n, and choose ε ∈ (0, 1]
repeat

Solve the optimization problem (30) according to bidding strategies of all power produces,

and get the power generation dispatch policy
(

qh
1b, · · · , qh

Nb

)
Calculate profit πh

n according to power generation dispatch policy
Solve the optimization problem (34), and obtain profit πh

n and bidding strategy bh
nb

if πh∗
n < πh

n then

πh∗
n = πh

n
bh∗

nb = bh
nb

end if
until

∣∣∣πh∗
n − πh

n

∣∣∣ < ε is satisfied.
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5. Numerical Results

5.1. Simulations

In this section, several simulations will be presented to illustrate the feasibility of the presented
method for bi-level optimization based on the non-cooperative game in a competitive electricity market.
Assume that N = 3 in Figure 1, and the three power plants are a wind farm, a solar power plant and
a thermal power plant, respectively. Tables 1–3 and Figures 2 and 3 all are input parameters for the
simulations. Several parameters for three power plants are presented in Tables 1 and 2, and some
of them have been adopted from [25] with some modifications. In Table 1, an, bn, cn denote fixed
parameters of the total generation cost of power plants, and n = 1, 2, 3 denote the wind farm, solar
power plant and thermal power plant, respectively. Additionally, the quadratic coefficient of total
generation cost is zero for the wind farm and solar power plant, because their generation cost is linear.
A regional grid is considered in this paper, and system parameters are shown in Table 3. Figure 2 is the
daily load demand curve of all utility companies, and the predictive generating volume of the wind
farm and solar power plant are shown in Figure 3.

Table 1. Generation parameters of power plants.

Power Plants Installed Capacity
(MW)

an
(Yuan/MWh2)

bn
(Yuan/MWh)

cn
(Yuan)

Minimum Output
(MW)

Wind farm 49.5 0 0.018 2490 0
Solar power plant 20 0 0.023 1187 0
Thermal power plant 100 0.063 125.3 0 20

Table 2. Price parameters of power plants.

Power Plant bnb min (Yuan) bnb max (Yuan) pns (Yuan/MWh) anb (Yuan/MWh)

Wind farm 130 460 215 −1.6945
Solar power plant 130 510 420 −1.35468
Thermal power plant 130 390 0 0.126

Table 3. System parameters.

pcr (Yuan/MWh) pct (Yuan/MWh) σ µ (t/MWh) k f
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Figure 2. Daily load demand of all utility companies.
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Figure 3. Predictive generating volume: (a) wind farm; (b) solar power plant.

Simulation results on the day-ahead market are shown in Figures 4 and 5 and Table 4. Figure 4
shows the bidding price of the wind power producer, solar power producer and thermal power
producer at 96 time slots. Profit and cleared generating volume of the wind power producer, solar
power producer and thermal power producer at each time slot on the day-ahead market are shown in
Figure 5. According to Figure 5a, note that the cleared generating volume of the wind power producer
and solar power producer at some time slots is zero. High capital cost puts them at a disadvantage
in the power generation competition. From Figure 5b, one can see that the profit of the wind power
producer and solar power producer has a negative value at some time slots, while the profit of the
thermal power producer is positive all of the time. Because the cleared generating volume of the wind
farm and solar power plant is zero sometimes, it means that the wind power producer and solar power
producer cannot capture profit by generating electricity, while the fixed generation cost still exists.
Profit on the day-ahead market for three power producers in a whole day are listed in Table 4. One can
see that not only the thermal power producer, but the wind power producer and solar power producer
can obtain substantial gains, because the carbon emission and subsidy for new energy power plant
factors are considered.
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Figure 4. Bidding price on the day-ahead market: (a) wind farm; (b) solar power plant; (c) thermal
power plant.
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Figure 5. Power producers on the day-ahead market: (a) cleared generating volume; (b) profit.

Table 4. Profit of power producers in the day-ahead market.

Power Plant Profit (104 Yuan)
Trading Generating
Volume (MWh)

Maximum Generating
Volume (MWh)

Wind farm 37.91 563.73 773.37
Solar power plant 5.35 88.83 136.1
Thermal power plant 42.09 1956.93 2400

In the intraday market, the difference between the generating volume produced during the
real-time operation and scheduled in the day-ahead market is shown in Figure 6a, which are the input
parameters. Figure 6b shows the simulation results on the profit of the wind power producer and
solar power producer on the intraday market. The profits of the wind power producer and solar
power producer are negative, due to the fines, when qwp is less than qwD or qsp is less than qsD and
the difference is in excess of 8%. One has to notice that the wind power producer and solar power
producer still can make profits on the intraday market. Total profits both in the intraday market and
day-ahead market are shown in Table 5. Renewable energy power producers still can make a good
profit even though fines need to be paid for the uncertainty of power generation.

 

Figure 6. Simulation parameters and results in the intraday market: (a) difference between generating
volume produced during the real-time operation and that scheduled in the day-ahead market; (b) profit
of power producers in the intraday market.
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Table 5. Profit of the power producers in the intraday market.

Power Plant Profit (104 Yuan) Total Profit (104 Yuan)

Wind farm −2.65 35.26
Solar power plant −0.61 4.74
Thermal power plant 0.14 42.23

5.2. Discussions

If the wind power producer and solar power producer are not participating in the intraday market,
they need to buy electricity in the reserve market or real-time market when the practical generating
volume is less than the cleared generating volume on the day-ahead market and the difference is in
excess of eight percent. Additionally, the thermal power producer cannot obtain extra profit in the
reserve market, which is selected in this case. System parameters are the same as the previous case on
the intraday market in Section 5.1, and the reserve price is 224.8 $/MWh [14]. Total profits for three
power producers during a whole day with participation in the reserve market are shown in Table 6.
∆Pn denotes the difference of the cost between scheduling with the intraday market and the reserve
market. One can see that the profits of all power producers with participation in the intraday market
are higher than the cost without participating in the intraday market.

Table 6. Profit of power producers in the reserve market.

Power Plant Profit in Reserve Market (104 Yuan) ∆Pn (104 Yuan)

Wind farm −5.03 2.38
Solar power plant −1.53 0.92
Thermal power plant 0 0.14

The interior point method utilized by power plants to maximize profit is simulated in this part.
System parameters in this case are the same as Section 5.1 in the day-ahead market. For the above three
power producers, simulation results on the day-ahead market, which use the interior point method
without game, are shown in Table 7. From Table 7, one can see that the profits of all power plants
are reduced compared to using game theory, where ∆Pgn denotes the difference of profit between
scheduling with and without the game in the day-ahead market. Besides, when the wind farm,
solar power plant and thermal power plant do not apply the non-cooperative game, their profits are
decreased by 1.66%, 13.3% and 1.67%, respectively. Consequently, the total profit of three power plants
using the interior point method is smaller than of the ones participating in the game.

Table 7. Daily profit of power producers using different methods in the day-ahead market (104 yuan).

Power Plant No Game With Game ∆Pgn

Wind farm 37.29 37.91 0.62
Solar power plant 5.28 5.35 0.07
Thermal power plant 42.02 42.09 0.07
All power plants 84.59 85.35 0.76

6. Conclusions

This paper presents a scenario in a competitive electricity market having multiple power
producers, multiple utility companies, a PX and an ISO. A non-cooperative game approach-based
bi-level optimization is proposed, where power producers are at the upper level and utility companies
are at the lower level. In addition, strategies of the non-cooperative game are the bidding strategies
of power producers. A distributed algorithm is presented to realize the optimization in terms of
maximizing the profit of all power producers. Numerical simulations were carried out to show the
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effectiveness and feasibility of the proposed scheme and algorithm. Simulation results show that all
power producers can benefit from the game: (1) not only the thermal power producer, but also the
wind power producer and solar power producer can benefit by participating in the non-cooperative
game-based bi-level optimization; (2) the wind farm and solar power plant are able to transmit
substantial generating volume, which is helpful for renewable energy accommodation.

The optimization model in this paper can be enhanced further in mainly two respects: the
existence and uniqueness of the equilibrium solution for the proposed non-cooperative game-based
bi-level optimization approach still is an open problem, and competition among utility companies is
ignored, which can be carried out in future work.
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