Supplementary Information

Surfactant-Assisted Perovskite Nanofillers Incorporated in Quaternized Poly(vinyl Alcohol) Composite Membrane as an Effective Hydroxide-Conducting Electrolyte

Selvaraj Rajesh Kumar¹, Wei-Ting Ma¹, Hsin-Chun Lu¹, Li-Wei Teng¹, Hung-Chun Hsu¹, Chao-Ming Shih¹, Chun-Chen Yang², Shingjiang Jessie Lue^{1,3,4,*}

¹Department of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Guishan District, Tao-yuan 333, Taiwan; rajeshkumarnst@gmail.com (S.-R.K.); carherine81@gmail.com (W.-T.M.); hsinchun@mail.cgu.edu.tw (H.-C.L); xz80919@hotmail.com.tw (L.-W.T); b9923026@ems.niu.edu.tw (H.-C.H); nanochitosan@gmail.com (C.-M.S); jessie@mail.cgu.edu.tw (S.J.L)

²Department of Chemical Engineering and Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan; ccyang@mail.mcut.edu.tw (C.-C.Y)

³Department of Radiation Oncology, Chang Gung Memorial Hospital, Kwei-shan, Tao-yuan 333, Taiwan; ⁴Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;

* Correspondence: e-mail: jessie@mail.cgu.edu.tw; Tel.; +886-3-2118800 (ext. 5489); Fax: +886-3-2118700.

	QPV.	A membr	ane	QPVA/CTAB-coated			QPVA/annealed			
Temperatur					LaFeO ₃			LaFeO ₃		
e	Methanol molar concentrations in 6 M KOH									
	1 M	2 M	4 M	1 M	2 M	4 M	1 M	2 M	4 M	
30°C	0.61	0.63	0.51	0.62	0.65	0.65	0.61	0.62	0.64	
	±0.01	±0.005	±0.004	±0.004	±0.014	±0.014	±0.021	±0.013	±0.008	
60°C	0.55	0.73	0.72	0.67	0.81	0.80	0.67	0.73	0.80	
	±0.002	±0.028	±0.004	±0.016	±0.013	±0.002	±0.016	±0.024	±0.003	
70°C	0.51	0.73	0.73	0.67	0.79	0.80	0.67	0.72	0.75	
	±0.009	±0.014	±0.002	±0.007	±0.007	±0.026	±0.025	±0.004	±0.043	

Table S1. Typical open-circuit voltage and experimental error values^a of direct alkaline methanol fuel cell^b using pristine QPVA, QPVA/CTAB-coated LaFeO₃, and QPVA/annealed LaFeO₃ nanocomposite membrane.

 $^{\rm a}$ Mean \pm standard deviation in open-circuit voltage (V), N=3.

^b Operating conditions: catalysts of 2 mg cm⁻² PtRu/C for anode and 1 mg cm⁻² Pt/C for cathode on MPLfree carbon cloth. Anode fuel: 1, 2, and 4 M methanol in 6 M KOH with a flow rate of 5 mL min⁻¹. Cathode: Humidified oxygen with a flow rate of 100 mL min⁻¹.

Temperature	QPVA membrane			QPVA/CTAB-coated			QPVA/annealed		
				LaFeO ₃			LaFeO3		
	Methanol molar concentration in 6 M KOH								
	1 M	2 M	4 M	1 M	2 M	4 M	1 M	2 M	4 M
30°C	30	54.6	75	30	75.7	108.3	27.5	55	95.6
	±7.0	±8.7	±3.6	±7.2	±8.0	±5.0	±6.3	±8.1	±5.1
60°C	90	169.5	154.5	183	256	269.6	179.5	193	249.3
	±4.5	±2.0	±0.7	±5.6	±5.8	±2.0	±4.9	±1.2	±5.0
70°C	71.5	139	169.5	184	247.5	238.6	166	157.5	184.5
	±4.9	±2.1	±1.6	±5.5	±0.7	±2.7	±0.1	±6.3	±7.6

Table S2. Typical maximum power densities and experimental error values^a of direct alkaline methanol fuel cell^b using pristine QPVA, QPVA/CTAB-coated LaFeO₃ and QPVA/annealed LaFeO₃ nanocomposite membranes.

^a Mean ± standard deviation in power densities (mW cm⁻²), N=3.

^b Operating conditions: catalysts of 2 mg cm⁻² PtRu/C for anode and 1 mg cm⁻² Pt/C for cathode on MPLfree carbon cloth. Anode fuel: 1, 2, and 4 M methanol in 6 M KOH with a flow rate of 5 mL min⁻¹. Cathode: Humidified oxygen with a flow rate of 100 mL min⁻¹.

Table S3. Ionic conductivity values (in mS cm⁻¹) of different composite membranes at 30-60°C.

Membrane	30°C	40°C	50°C	60°C
Pristine PVA	1.80	1.83	1.86	1.89
PVA/0.05% CTAB	2.99 (66%) ^a	3.62 (98%)	3.75 (100%)	3.77 (100%)
PVA/0.05% LaFeO3	3.95 (120%)	4.06 (120%)	4.33 (130%)	4.71 (150%)
PVA/0.1% pristine LaFeO₃ with CTAB	8.65 (380%)	10.50 (470%)	11.50 (520%)	11.6 (510%)
PVA/0.1% pristine LaFeO ₃ without CTAB	4.18 (130%)	6.01 (230%)	7.02 (280%)	7.29 (290%)
PVA/0.1% annealed LaFeO ₃	7.20 (300%)	7.25 (300%)	7.36 (300%)	7.56 (300%)

^a Values in parentheses are the increases percentage compared to pristine PVA conductivity at corresponding temperature.

Figure S1. TEM microscopic images of (a) 200°C, (b) 400°C, and (c) 600°C annealed LaFeO₃ nanoparticles.

Figure S2. EDX spectrum of (a) CTAB-coated LaFeO3 and (b) 800°C annealed LaFeO3 nanoparticles.

Figure S3. EDX graphs and EDX mapping of (a) QPVA/CTAB-coated LaFeO₃ and (b) QPVA/annealed LaFeO₃ nanocomposite membranes.

Figure S4. Dissolution of KOH-doped QPVA, QPVA/CTAB-coated LaFeO₃, and QPVA/annealed LaFeO₃ nanocomposite membranes in 25°C water for 72 h.

Figure S5. Replicate DAMFC runs using QPVA/CTAB-coated LaFeO₃ and QPVA/annealed LaFeO₃ nanocomposite membrane: (a,b) cell potential *vs.* current density and (c,d) power density *vs.* current density curves (N = 3, temperature = 30°C).

Figure S6. Direct alkaline methanol fuel cell voltage (left axis) and power density (right axis) as a function of current density at 30°C using a QPVA electrolyte.

Figure S7. Direct alkaline methanol fuel cell voltage (left axis) and power density (right axis) as a function of current density at different temperatures using QPVA/CTAB-coated LaFeO₃ electrolyte.