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Abstract: The potential of utilizing doubly-fed induction generator (DFIG)-based wind farms to
improve power system damping performance and to enhance small signal stability has been proposed
by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation
damper (POD) with other damping controllers is rarely involved. A simultaneous robust coordinated
multiple damping controller design strategy for a power system incorporating power system stabilizer
(PSS), static var compensator (SVC) POD and DFIG POD is presented in this paper. This coordinated
damping control design strategy is addressed as an eigenvalue-based optimization problem to
increase the damping ratios of oscillation modes. Both local and inter-area electromechanical
oscillation modes are intended in the optimization design process. Wide-area phasor measurement
unit (PMU) signals, selected by the joint modal controllability/ observability index, are utilized as SVC
and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness
of the proposed coordinated design strategy is achieved by simultaneously considering multiple
power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO)
algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers.
The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated
through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two
modified benchmark test systems. Moreover, the dynamic response simulation results also validate
the robustness of the recommended coordinated multiple damping controllers under various system
operating conditions.

Keywords: coordinated damping control; doubly-fed induction generator (DFIG); static var
compensator (SVC); Grey Wolf optimizer (GWO); power oscillation damper (POD)

1. Introduction

Sustained power system oscillation has become a serious problem for power system operation
and control nowadays. Oscillations cause safety problems in electric power equipment and limit the
transmission capacity of long distance power transmission. Even, in the most severe cases, growing
power oscillations may lead to the collapse and blackout of the whole interconnected system if no
appropriate measures are taken in time [1].

Power system stabilizers (PSSs), as one kind of the most economical and practical devices, have
been widely equipped on synchronous generators to provide damping torque and stabilize power
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system oscillations [2], but the damping performance of the conventional PSS in suppressing power
system oscillations is limited, especially the inter-area oscillation modes, since the local measurement
feedback signals of PSSs are of low inter-area mode observability [3]. To damp out inter-area low
frequency oscillation modes more efficiently, new damping measures need to be developed.

Flexible AC transmission system (FACTS) devices, commonly located in power systems, are
primarily used for scheduling power flow and/or providing voltage support [4]. Besides that, with
the advance of fast acting FACTS controllers, it is possible to improve system dynamic stability and
dampen system low frequency oscillations [5]. The concept of power oscillation damper (POD) is
widely accepted by the engineers to restrain inter-area oscillations in power grids [6]. Considerable
research focus has been given on designing various FACTS PODs and their coordination with PSSs to
significantly improve the small signal stability of power systems [7].

On the other hand, due to the energy crisis and environmental pollution problems, generating
electricity from clean and renewable energy, especially wind power, has become very popular all
around the world [8,9]. High proportional integration of wind power generators has an important
influence on the dynamic stability of power system [10], while, at the same time, they play a certain role
in improving power system stability [11–13]. Recently, several researches have proposed the possibility
of using doubly-fed induction generator (DFIG)-based wind farms to improve damping performance
and enhance the dynamic stability of wind power integrated power systems [14–21]. Many novel
control schemes have been proposed for DFIGs to enable them to provide an auxiliary power system
stabilization function or contribute to system voltage support during network faults [20–25]. What
is more, wind farm POD design derived from the classical phase compensation principle of PSS has
become a research hotspot [23–26]. Many accomplished PSS design methods can be easily applied to
design of DFIG POD.

In summary, designing a single type damping controller is already a widely accepted engineering
practice. Coordinated control of multiple damping controllers, such as PSSs and PODs, can not only
enhance system dynamic stability but also increase system operating flexibility. However, when PSS,
FACTS and DFIG exist in a system, how to realize coordinated tuning of multiple damping controllers
is a challenging problem. This paper is dedicated to develop an alternative coordinated scheme
for multiple damping controllers and discuss the theoretical feasibility. To obtain the most effective
signal (with global observability) to achieve a more efficient inter-area damping control, remote
signal measured by phasor measurement unit (PMU) and transmitted by wide-area measurement
system (WAMS) network should be input to POD. The potential of coordinated control of local
conventional PSSs and PMU-based novel wide-area controller, for instance, SVC POD or DFIG-based
wind farm POD, is able to simultaneously suppress both local and inter-area low frequency oscillations.
The literature survey [27] summarizes that there are considerable researches on damping control by
a single type damping controller in power system integrated with wind power generation, whereas
less attention has been paid for coordinated tuning of multiple damping controllers, especially in
a wide-area measurement scenario. Reference [28] presents a new two-level hierarchical wide-area
control strategy, which contains a variable speed permanent magnet synchronous motor (PMSG)-based
wind farm and a static synchronous compensator (STATCOM), to provide frequency support and
inter-area oscillation damping capability. An optimization-based sequential design strategy is
proposed in [29] to coordinate multiple local PSSs and one wide-area high voltage direct current
(HVDC) stabilizer, and the overall system stability is greatly enhanced. Reference [30] presents a
genetic algorithm-based damping control parameters turning methods of DFIG type wind generators,
the system damping is improved under various wind speed conditions. The coordinated control of
DFIG POD and local PSSs to damp power system oscillations is investigated in [31], and the parameter
optimization problem of the damping controllers considering system uncertainties is solved by an
improved firefly algorithm.

A simultaneous robust coordinated multiple damping controllers design strategy is presented
in this paper to suppress local and inter-area low frequency oscillation modes and enhance power
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system dynamic stability through simultaneously optimizing multiple local PSSs and wide-area signal
based SVC device and wind farm additional PODs. A classical lead-lag type POD is adopted in this
coordinated design strategy. The joint modal controllability/observability index is employed to choose
the most appropriate wide-area feedback signals for PODs [32]. The coordinated design strategy
is addressed as an eigenvalue-based optimization problem [33]. The recently proposed Grey Wolf
optimizer (GWO) algorithm is used to optimize the optimum parameter values of damping controllers.

This paper is organized as follows: the mathematical models for the studied power system
integrated with SVC, wind farm and its controllers, including PSS and POD, are introduced first.
Then, the selection method of the best wide-area feedback signals for each POD, the eigenvalue-based
optimization problem, the GWO algorithm, and the parameter optimization design procedure for
the coordinated multiple damping controllers are depicted. Moreover, the linear modal analysis and
nonlinear time-domain dynamic simulation of two modified benchmark test systems with and without
the optimized coordinated damping controllers under a variety of scenarios are demonstrated later.
Finally, the conclusions are given.

2. Mathematical Modeling

The modelling of power system dynamic devices with their controllers, including exciter, SVC
and wind turbine used in this study, for the coordinated optimization of the proposed control strategy,
is given as below.

2.1. AVR with PSS Model

Figure 1 depicts a simple automatic voltage regulator (AVR) with PSS, the dynamic behavior of
AVR is described as follow:

E f d =
KA(Vre f − v + uPSS)

(1 + sTA)
(1)

where Efd and Vref are the output voltage and reference voltage of AVR, v is the principal input signal
of excitation system; uPSS is the output stabilizing signal of PSS, KA and TA are the exciter gain and
time constant.
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Figure 1. A simple automatic voltage regulator (AVR) with fixed-structure lead-lag type power 
system stabilizer (PSS). 
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Figure 1. A simple automatic voltage regulator (AVR) with fixed-structure lead-lag type power system
stabilizer (PSS).

As shown in Figure 1, a common lead-lag type PSS is used in this study [34]. The main purpose
of PSS is to increase damping torque and suppress oscillations between synchronous machines
through modulating the input voltage of the excitation system [2]. The dynamic model of a PSS
is mathematically described by:

uPSS = KPSS
sTω

1 + sTω
(

1 + sT1PSS
1 + sT2PSS

)(
1 + sT3PSS
1 + sT4PSS

) · ∆ω (2)

where the PSS gain KPSS and corresponding lead-lag time constants T1PSS, T2PSS, T3PSS, T4PSS can be
tuned by various methods. Tω is the washout time constant, usually selected to be 5 s or 10 s.
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2.2. SVC with POD Model

In a power system, various types of FACTS devices are installed dispersedly. The main purpose
of FACTS is to control system power flow, improve voltage level, compensate reactive power and
enhance stability. The most commonly used parallel type FACTS, named SVC, is adopted in this work
to provide voltage support for weak bus in the test system [4]. An SVC is composed of a controllable
reactance and fixed capacitors. The dynamic regulator model of SVC, as depicted in Figure 2, can be
described as follows [35]:

.
bSVC =

Kr(v
re f
0 + vPOD

s − v)− bSVC

Tr
(3)

where bSVC is the reactance of SVC, Kr and Tr are the gain and time constant of SVC regulator, v, vre f
0

and vPOD
s are system bus voltage, initial reference voltage and additional POD output modulating

signal of SVC, respectively. At the SVC bus, the injection of reactive power is:

QSVC = bSVC · v2 (4)
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In addition to the voltage regulation role, a supplementary wide-area POD output modulating
signal is input to the voltage control loop of SVC device to provide additional damping torque effect
for electromechanical oscillations. As shown in Figure 3, the structure of SVC POD is almost the same
as PSS. The POD is usually composed of a stabilizer gain KStab, a washout stage Tω , and a 2nd lead-lag
stage with time constants T1POD, T2POD, T3POD, and T4POD. The input signal is the wide-area signal
which can ensure inter-area mode observability, while the output signal vPOD

s is used to adjust SVC
reactive power injection. An anti-windup limiter with minimum and maximum of ∆uPOD (±0.1 p.u.)
limits a too large output of POD. The amount of damping introduced by POD is determined by
the stabilizer gain KStab while the phase compensation of the damping signal is adjusted by the 2nd
lead-lag compensator stage.
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2.3. DFIG-Based Wind Farm with POD Model

To simplify the modeling, a wind farm composed of multiple parallel DFIG-based wind turbines
usually can be equivalent to a single aggregated wind power plant. Since we mainly focus on the
electromechanical dynamic behavior of wind generators, the dynamic model of DFIG-based wind
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turbine depicted in Figure 4 is adopted in this study [35]. The algebraic relations of the DFIG’s electrical
equations are described as follows.Energies 2017, 10, 565 5 of 22 
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vds = −rsids + ((xs + xµ)iqs + xµiqr)

vqs = −rsiqs − ((xs + xµ)ids + xµidr)

vdr = −rridr + (1−ωm)((xs + xµ)iqr + xµiqs)

vqr = −rriqr − (1−ωm)((xs + xµ)idr + xµids)

(5)

where vds, vqs, vdr, and vqr are the stator and rotor voltages of d and q axis, ids, iqs, idr, and iqr are the
stator and rotor currents d and q axis, rs and rr are the stator and rotor resistances, xs and xµ are the
stator self and magnetizing reactance, and ωm is wind turbine rotor speed.

The d and q stator voltage are calculated by:

vds = −v sin θ

vqs = v cos θ
(6)

The wind generator output powers P and Q are described as:

P = vdsids + vqsiqs + vdcidc + vqciqc

Q = vqsids − vdsiqs + vqcidc − vdciqc
(7)

where vdc, vqc, idc and iqc are the converter voltages and currents of d and q axis, respectively. On the
grid side, the converter powers Pc and Qc are:

Pc = vdcidc + vqciqc

Qc = vqcidc − vdciqc
(8)
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Whereas, on the rotor side, the converter powers Pr and Qr are:

Pr = vdridr + vqriqr

Qr = vqridr − vdriqr
(9)

With the assumption of ideal converter model, it can be obtained that Pc = Pr. The powers injected
into the grid are:

P = vdsids + vqsiqs + vdridr + vqriqr

Q = − xµvidr
xs+xµ

− v2

xµ

(10)

The DFIG rotor motion equation is expressed by:

.
ωm = τm−τe

2Hm

τe = ψdsiqs − ψqsids
τm = Pw

ωm

(11)

where Hm is wind turbine rotor inertia, Pw is the mechanical power, τm and τe are mechanical and
electrical torques, and ψds and ψqs are the stator fluxes of d and q axis. The relationship between stator
fluxes and generator currents is:

ψds = −((xs + xµ)ids + xµidr)

ψqs = −((xs + xµ)iqs + xµiqr)
(12)

Therefore, the electrical torque τe is described as:

τe = xµ(iqrids − idriqs) (13)

and it is approximated as:

τe = −
xuviqr

ωb(xs + xu)
(14)

where ωb is the system frequency.
For detailed dynamic models of rotor speed control, voltage control, and pitch angle control,

please refer to [35]. The dynamic equations as well as the control structure of wide-area signal based
DFIG POD are the same as the SVC POD. The input wide-area signal of DFIG POD is the line active
power measured by PMU, and the output signal vPOD

s is used to modulate the voltage control loop
of DFIG.

2.4. Linearized Power System Dynamic Model

A multimachine power system dynamic is mathematically represented as follow:

.
x = f(x, y, u)
0 = g(x, y, u)
z = h(x, y, u)

(15)

where f(x, y, u) is the differential equations of dynamic components, g(x, y, u) is the network algebraic
equations, h(x, y, u) is the output equations. x is the state variable, y is the algebraic variable, u is the
input variable, and z is the system output variable.

After solving the network power flow solution, the linearized state-space equations of (15) are
formulated as: .

x = A x + B u
z = C x + D u

(16)
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where the incremental symbol ∆ is omitted, A is the system state matrix, B is the input matrix, C is
the output matrix and D is the feedforward matrix. This state-space Equation (16) is used for power
system modal analysis and damping controller design. From the stability theory of Liapunov’s indirect
method, the eigenvalues of linear system state matrix A reveals the equilibrium point asymptotic
stability of the studied dynamic power system.

3. Proposed Simultaneous Robust Coordinated Damping Control Design

3.1. Selection of the Wide-Area Feedback Signals

In general, inter-area oscillation modes cannot be well suppressed by local feedback signal-based
damping controller. That is because inter-area oscillation modes are usually globally observable.
GPS-based WAMS, composed by multiple dispersed PMUs and central phasor data concentrators
(PDCs), is used to preferably understand and control the increasingly complex dynamic behaviors
exhibited by large-scale power systems [3]. The selection of appropriate feedback signals for PODs
plays an important role in not only designing an effective damping controller but also coordinating
multiple wide-area damping controllers. The principle of selecting wide-area POD feedback signals is
to achieve a superior damping effect on the concerned electromechanical oscillation modes and try
not to affect other oscillation modes. A plenty of research has demonstrated the theoretical validity
and practical availability of geometric and residue approaches to choose the most suitable wide-area
feedback signal for POD [36–38]. In this study, the concept of joint modal controllability/observability
index is adopted as wide-area feedback signals selection method to decouple modal interactions of
multiple feedback signals [32].

Based on the modal analysis theory, the modal controllability index (COIj) and observability index
(OBIk) of the ith oscillation mode is expressed as:

COIj(i) = cos(δ(Ψi, Bj)) =

∣∣∣BT
j Ψi

∣∣∣
‖Bj‖‖Ψi‖

(17)

OBIk(i) = cos(δ(Φi, Ck)) =
|CkΦi|
‖Ck‖‖Φi‖

(18)

where Bj is the jth column of input matrix B and Ck is the kth row of output matrix C. δ(Ψi, Bj) is the
angle of the input vector Bj and the right eigenvector Ψi, and δ(Φi, Ck) is the angle of the output vector
Ck and the left eigenvector Φi.

Then, the joint modal controllability/observability index COBIi(j,k) is expressed by:

COBIi(j, k) = COIj(i) ·OBIk(i) (19)

where COIj(i) indicates the controllability of the jth actuator (generator or FACTS) for stabilization of
the ith oscillation mode (λi); OBIk(i) indicates the observability of the kth input signal (local or remote)
for observation of the ith oscillation mode (λi).

For a power system with multiple wide-area controllers, the wide-area signal of each controller
can be obtained through finding the corresponding signal with maximum COBI index. In case that the
signal with maximum COBI index cannot be accessed, such as remote signal which cannot be measured
by PMU, the subprime indicators of COBI index for POD signal can be considered. A relatively optimal
damping performance can also be obtained.

3.2. Formulation of the Optimization Problem

The fundamental purpose of the coordinated multiple damping controllers design strategy is
to improve overall power system oscillation stability by the supplementary damping controllers.
To maximize damping performance of overall multimachine power systems, an eigenvalue-based
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objective with maximization of damping ratios is taken into consideration in this paper. Thus,
the objective function J is given to be:

Minimize J =
np

∑
j=1

∑
ζi,j<ζ0

(ζ0 − ζi,j)
2 (20)

where np is the system operation scenario number considered in the PSSs and PODs parameter
optimization tuning process. ζ0 is the expected minimum damping ratio, and ζij is the ith damping
ratio of oscillation mode eigenvalue corresponding to the jth operating condition. The damping ratio
ζij < ζ0 is considered in the optimization objective function J, and the minimization of J will move the
eigenvalues to the specified sector region in left half s-plane with damping ratio ζij > ζ0, as shown in
Figure 5.

Energies 2017, 10, 565 8 of 22 

 

ζij < ζ0 is considered in the optimization objective function J, and the minimization of J will move the 
eigenvalues to the specified sector region in left half s-plane with damping ratio ζij > ζ0, as shown in 
Figure 5. 

σ

jω
0ζ

, 0i jζ ζ>
0

 
Figure 5. The specified sector region in left half s-plane. 

The optimization constraints are the bounds of the optimized parameters such as stabilizer gain 
K (including KPSS and KStab) and the time constants T1,2,3,4 (including T1PSS, T2PSS, T3PSS, T4PSS, T1POD, T2POD, 
T3POD, and T4POD, where T1 = T3, T2 = T4). Therefore, the optimization process is expressed as minimizing 
J subject to: 

min max

min max
1,3 1,3 1,3

min max
2,4 2,4 2,4

K K K

T T T

T T T

≤ ≤
≤ ≤

≤ ≤

 (21) 

The upper and lower bounds are [0.1, 50] for K, [0.01, 1.0] for T1,3 and [0.01, 0.1] for T2,4. The 
typical time constants Tw is considered as 10 s as in [39]. 

3.3. Application of GWO Algorithm 

GWO algorithm, invented as an optimization tool by Mirjalili et al. [40] in 2014, is a high 
searching performance heuristic algorithm. It imitates the hunting behaviour of grey wolves and 
utilizes the leadership hierarchy of wolf pack [40]. This algorithm is adopted here for searching the 
appropriate parameters of multiple damping controllers. 

A typical feature of the grey wolves is that a strict social dominant hierarchy relationship exists 
in different individuals of grey wolves. And the grey wolves can be divided into four hierarchies. 
They are called α , β , δ , and ω , whose dominance decreases in turn. The hunting is led by α , β
, and δ , which means, these three kinds of wolves guide the ω  wolves in the optimization process 
of GWO algorithm. 

Besides the social organization hierarchy of grey wolf pack, the hunting behaviour is 
mathematically modeled to implement GWO and perform optimization. The hunting behaviours of 
grey wolves mainly include three stages: (i) Tracking the prey; (ii) Encircling the prey; and (iii) 
Attacking the prey. The hunting behaviours mainly used for modelling GWO algorithm are described 
as following. 

• Encircling prey 

The encircling behaviour of prey can be described as following equations: 

1

2

( )

( 1) ( )

2

2

p

p

D C X t X

X t X t A D

A a r a

C r

= ⋅ −

+ = − ⋅

= ⋅ −

= ⋅

  

  

   
 

 (22) 

where t denotes the current generation, pX


 and X


 indicate the positions of the prey and a grey wolf, 
A


 and C


 are coefficients and can be calculated as (22), a  is linearly decreasing from 2.0 to 0 during 
the iterative process of the optimization, 1r

  and 2r
  are two random vectors between 0 and 1. 

Figure 5. The specified sector region in left half s-plane.

The optimization constraints are the bounds of the optimized parameters such as stabilizer gain K
(including KPSS and KStab) and the time constants T1,2,3,4 (including T1PSS, T2PSS, T3PSS, T4PSS, T1POD,
T2POD, T3POD, and T4POD, where T1 = T3, T2 = T4). Therefore, the optimization process is expressed as
minimizing J subject to:

Kmin ≤ K ≤ Kmax

Tmin
1,3 ≤ T1,3 ≤ Tmax

1,3
Tmin

2,4 ≤ T2,4 ≤ Tmax
2,4

(21)

The upper and lower bounds are [0.1, 50] for K, [0.01, 1.0] for T1,3 and [0.01, 0.1] for T2,4. The typical
time constants Tw is considered as 10 s as in [39].

3.3. Application of GWO Algorithm

GWO algorithm, invented as an optimization tool by Mirjalili et al. [40] in 2014, is a high searching
performance heuristic algorithm. It imitates the hunting behaviour of grey wolves and utilizes the
leadership hierarchy of wolf pack [40]. This algorithm is adopted here for searching the appropriate
parameters of multiple damping controllers.

A typical feature of the grey wolves is that a strict social dominant hierarchy relationship exists in
different individuals of grey wolves. And the grey wolves can be divided into four hierarchies. They
are called α, β, δ, and ω, whose dominance decreases in turn. The hunting is led by α, β, and δ, which
means, these three kinds of wolves guide the ω wolves in the optimization process of GWO algorithm.

Besides the social organization hierarchy of grey wolf pack, the hunting behaviour is
mathematically modeled to implement GWO and perform optimization. The hunting behaviours
of grey wolves mainly include three stages: (i) Tracking the prey; (ii) Encircling the prey; and
(iii) Attacking the prey. The hunting behaviours mainly used for modelling GWO algorithm are
described as following.
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• Encircling prey

The encircling behaviour of prey can be described as following equations:

→
D = |

→
C ·
→
Xp(t)−

→
X|

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D

→
A = 2

→
a ·→r 1 −

→
a

→
C = 2 ·→r 2

(22)

where t denotes the current generation,
→
Xp and

→
X indicate the positions of the prey and a grey wolf,

→
A

and
→
C are coefficients and can be calculated as (22),

→
a is linearly decreasing from 2.0 to 0 during the

iterative process of the optimization,
→
r 1 and

→
r 2 are two random vectors between 0 and 1.

• Hunting prey

In the hunting process, it assumes that the α, β, and δ wolves have better information about the
location of the prey. Therefore, the best three solutions obtained in the current generation are used
to guide the ω wolves and update their positions. The mathematical formulation of the grey wolves’
hunting behavior is described as follows:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣

→
X1 =

→
Xα −

→
A1 ·

(→
Dα

)
→
X2 =

→
Xβ −

→
A2 ·

(→
Dβ

)
→
X3 =

→
Xδ −

→
A3 ·

(→
Dδ

)
→
X(t + 1) = (

→
X1 +

→
X2 +

→
X3)/3

(23)

• Attacking prey

Grey wolves attack the prey and finish the hunting process when they stop moving. The value of
→
a gradually decreases from 2.0 to 0 to formulize the approaching of the prey. While the fluctuating

region of the randomized A in [−2a, 2a] is also decreased by a. When the values of
→
A are in the range of

[–1, 1] (which is
→
A < 1), then, the next position of a grey wolf can be at any possible position between

itself and the prey. The operators of hunting and attacking may lead to the GWO algorithm easily
falling into local minimum. Although the proposed encircling mechanism of GWO shows exploration
to some extent, it needs more operators to enhance the ability of exploration.

• Searching for prey

Grey wolves mainly find their prey according to the current position of the α, β, δ, and ω wolves.
They go away from each other to search a proper prey. Finally, the wolves attack the prey and converge

to it. The random values |
→
A| > 1 indicate that the grey wolf is to deviate from the prey. The operator

of searching is to emphasize the global search ability of GWO and achieve the global optimal solution
efficiently. The main flow chart of the suggested GWO algorithm for tuning the parameters of multiple
PSSs and PODs is presented in Figure 6.
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4. Case Study of Two-area Kundur Test System

To verify the feasibility and effectiveness of the presented coordinated multiple damping
controllers design strategy and optimization algorithm, a comprehensive case study is implemented
on a modified classical two-area Kundur test system. Firstly, there is no PSS and POD controller
equipped in the system. Secondly, only local PSS is used to improve oscillation mode damping.
Thirdly, supplementary controllers (PODs) of SVC and DFIG are adopted. The proposed coordinated
design strategy enables local PSSs to cooperate with wide-area PODs to damp out local and inter-area
electromechanical oscillations.

PSAT 2.1.8 and Matlab 2014a programs are employed in this study to perform the optimization
process of damping controller parameter design, system eigenvalue analysis, as well as dynamic
time-domain simulation [41]. The initial parameter settings of GWO algorithm are: the number of
search agents is 50, the number of iterations is 100, the dimensionality of search variables depends on
the number of controllers (PSSs and PODs), while each controller corresponds to three search variables.

4.1. Study System

A system single line diagram shown in Figure 7 is modified from the classical two-area Kundur test
system, which is a classically used study system for small signal stability analysis and damping control
design of power system. In this approximate symmetrical system, not only local but also inter-area
oscillation modes can be distinctly observed. The original data of the network and synchronous
generators can be found in [34]. All of the four generators are described by 6-order dynamic models
and IEEE Type-ST1 simple static excitation system are installed. WG represents a 100 MW (or 50 with
2 MW each) DFIG based wind farm and is integrated into the system at bus 6 of area 1. A 200 MVar
SVC equipped at the middle of the interconnection line 7–9 is utilized to enhance the system voltage
stability, and meanwhile, improve the power transmission capacity.

To verify the superiority of the proposed coordinated design strategy, four scenarios are assumed
as follows:

(1) The test system without PSS and POD;
(2) The test system with PSSs only;
(3) The test system with PSSs and SVC POD;
(4) The test system with PSSs, SVC and DFIG POD.



Energies 2017, 10, 565 11 of 23

To strengthen the robustness of the proposed coordinated design strategy, three power flow
operating conditions are considered during the optimization procedure. The active power transfer
from area 1 to 2 are about 380, 480 and 580 MW, representing the light, normal and heavy inter-area
power flow transmission condition, respectively.
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4.2. Eigenvalue Analysis without Controllers and with PSSs Only

Eigenvalue analysis under three transmission power levels of the tie lines reveals that the
studied system is unstable if there is no damping controller. As listed in Table 1, there are four
electromechanical oscillation modes, including two local oscillation modes with low damping ratio,
one unstable/critical stable inter-area oscillation mode (Mode 3 is in bold font in the table), and one
additional poorly damped global oscillation mode corresponding to DFIG wind farm and all of the
synchronous generators. It can be discovered that the integration of DFIG-based wind farm in power
system introduces an additional underdamped oscillation mode M4.

Table 1. The oscillation modes without PSS and POD.

Case Mode Eigenvalue Frequency (Hz) Damping Participation Generator

380 M light
power

M 1 −0.783 ± j6.93 1.11 11.2 G1, G2
M 2 −0.893 ± j7.11 1.14 12.5 G3, G4
M 3 −0.005 ± j4.02 0.639 0.12 All G
M 4 −0.014 ± j0.77 0.123 1.82 WG & G

480 M normal
power

M 1 −0.782 ± j6.93 1.11 11.2 G1, G2
M 2 −0.890 ± j7.10 1.14 12.4 G3, G4
M 3 0.0011 ± j3.98 0.633 −0.03 All G
M 4 −0.018 ± j0.85 0.135 2.12 WG & G

580 M heavy
power

M 1 −0.781 ± j6.92 1.11 11.2 G1, G2
M 2 −0.890 ± j7.08 1.14 12.6 G3, G4
M 3 0.0088 ± j3.87 0.616 −0.23 All G
M 4 −0.028 ± j0.96 0.153 2.91 WG & G

When the system undertaken is only equipped with two local generator rotor speed feedback PSSs
at G1 and G3 and without any wide-area POD, the results of the electromechanical oscillation modes
obtained by modal analysis are listed in Table 2. Obviously, all of the four oscillation modes’ damping
ratios are improved, and the damping ratios of two local modes are larger than 20% under all of the
three operating conditions, so the local mode oscillations can be well damped by two PSSs. However,
the critical inter-area oscillation mode M3 (bold in the table) is still low damping (ζM3 ≈ 7.5%) under
all of the three operating conditions. The damping ratios do not meet the expected requirements
of 20%.
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Table 2. The oscillation modes with PSSs only.

Case Mode Eigenvalue Frequency (Hz) Damping Participation Generator

380 M light
power

M 1 −1.638 ± j7.45 1.21 21.4 G1, G2
M 2 −1.773 ± j7.70 1.26 22.5 G3, G4
M 3 −0.311 ± j4.07 0.650 7.62 All G
M 4 −0.202 ± j0.76 0.125 25.7 WG & G

480 M normal
power

M 1 −1.639 ± j7.44 1.21 21.5 G1, G2
M 2 −1.768 ± j7.67 1.25 22.5 G3, G4
M 3 −0.303 ± j4.02 0.642 7.52 All G
M 4 −0.205 ± j0.83 0.136 23.9 WG & G

580 M heavy
power

M 1 −1.641 ± j7.42 1.20 21.6 G1, G2
M 2 −1.769 ± j7.64 1.25 22.7 G3, G4
M 3 −0.286 ± j3.90 0.622 7.31 All G
M 4 −0.229 ± j0.94 0.154 23.7 WG & G

4.3. Eigenvalue Analysis with PSSs and SVC POD

When SVC POD is considered in this system, the suitable input remote signal needs to be selected
first. Modal analysis is applied to the linearized two-area test system to obtain the geometric measures
of COBI. The COBI results with respect to SVC of all lines’ active powers for two inter-area oscillation
modes are shown in Figure 8. We can see from the histogram in Figure 8 and find that the active power
in line 8–9 has the highest observability of both two inter-area modes, therefore, the best wide-area
feedback input signal for SVC POD is the active power in line 8–9.
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The GWO algorithm proposed in Section 3.3 is adopted to realize a coordinated tuning of PSSs
and SVC POD parameters. The dimension of the optimization problem is 9 for two PSSs and one SVC
POD. After the optimization process, the parameters are obtained and listed in Table 3. As the modal
analysis results shown in Table 4, all of the four oscillation modes’ damping ratios are increased by the
coordinated PSSs and SVC POD, especially, those of the two inter-area oscillation modes.

Table 3. Optimized parameters of PSSs and SVC POD.

Stabilizer K T1, T3 T2, T4

PSS1 18.4 0.966 0.046
PSS3 21.6 0.593 0.083

SVC POD 16.8 0.627 0.056
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Table 4. The oscillation modes with PSSs and SVC POD.

Case Mode Eigenvalue Frequency (Hz) Damping Participation Generator

380 M light
power

M 1 −2.681 ± j8.51 1.42 30.1 G1, G2
M 2 −2.858 ± j9.00 1.50 30.3 G3, G4
M 3 −0.734 ± j3.98 0.644 18.1 All G
M 4 −0.642 ± j0.56 0.136 75.4 WG & G

480 M normal
power

M 1 −2.676 ± j8.48 1.42 30.1 G1, G2
M 2 −2.869 ± j8.93 1.49 30.6 G3, G4
M 3 −0.723 ± j3.93 0.636 18.1 All G
M 4 −0.637 ± j0.65 0.145 70.0 WG & G

580 M heavy
power

M 1 −2.683 ± j8.43 1.41 30.3 G1, G2
M 2 −2.890 ± j8.83 1.48 31.1 G3, G4
M 3 −0.700 ± j3.82 0.618 18.0 All G
M 4 −0.684 ± j0.74 0.160 67.9 WG & G

4.4. Eigenvalue Analysis with Simultaneous Coordinated PSSs, SVC POD and DFIG POD

As aforementioned, the simultaneous coordinated PSSs and wide-area PODs are implemented
in the two-area test system by the proposed design strategy. The wide-area feedback signal of SVC
is selected as former subsections according to the indicator of COBI. The COBI results with respect
to DFIG of all lines’ active powers for two inter-area oscillation modes are depicted in Figure 9. We
can find that the active power in line 5–6 has the highest modal observability of critical inter-area
oscillation modes M3. Thus, the active power in line 5–6 is considered as the most effective wide-area
feedback input signal for DFIG POD.Energies 2017, 10, 565 13 of 22 
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The dimension is 12 for two PSSs and two PODs. The controller parameters of coordinated
PSSs and wide-area PODs are optimally tuned under three operating conditions as given in Table 5.
And Table 6 shows the modal analysis eigenvalue results of all three operating conditions. It can be
seen from Table 6 that all of the four low frequency oscillation modes’ damping ratios are greatly
enhanced in comparison to that with no PSS and POD. What is more, the damping ratio of critical
inter-area oscillation mode M3 are further improved in comparison to former two damping control
strategies as discuss in Sections 4.3 and 4.4. Therefore, according to above analysis results, we
concluded that the coordinated parameters design of multiple damping controllers can achieve better
damping performance.

Table 5. Optimized parameters of PSSs and PODs.

Stabilizer K T1, T3 T2, T4

PSS1 16.7 0.995 0.050
PSS3 28.9 0.771 0.038

SVC POD 10.4 0.217 0.046
DFIG POD 13.6 0.749 0.055
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Table 6. The oscillation modes with PSSs and PODs.

Case Modes Eigenvalue Frequency (Hz) Damping Participation Generator

380 M light
power

M 1 −2.434 ± j8.50 1.41 27.5 G1, G2
M 2 −2.885 ± j9.04 1.51 30.4 G3, G4
M 3 −1.08 ± j3.79 0.627 27.4 All G
M 4 −0.417 ± j0.87 0.154 43.2 WG & G

480 M normal
power

M 1 −2.424 ± j8.47 1.40 27.5 G1, G2
M 2 −2.888 ± j8.96 1.50 30.7 G3, G4
M 3 −1.100 ± j3.71 0.616 28.4 All G
M 4 −0.473 ± j0.88 0.159 47.4 WG & G

580 M heavy
power

M 1 −2.451 ± j8.46 1.40 27.8 G1, G2
M 2 −2.891 ± j8.82 1.48 31.2 G3, G4
M 3 −0.827 ± j3.81 0.620 21.2 All G
M 4 −0.667 ± j0.96 0.186 57.1 WG & G

4.5. Nonlinear Time-Domain Simulation

To further verify the damping performance of the proposed coordinated design strategy in this
paper, nonlinear time-domain simulations under the above four damping controller situations and
three operating conditions are carried out by PSAT. A 3-phase fault is applied to the two-area test
system at bus 7. It is assumed that the fault duration is six cycles (100 ms) and the fault is cleared
without any topology change. In all the three operating conditions, the loads are regarded as PQ type.

The power angle differences of generators G1, G2 and G4 with respect to generator G3 under
light, normal and heavy conditions are described in Figures 10–12, respectively. From these figures,
the relative power angle low frequency oscillations can be damped out more or less by all of the three
damping controller strategies. The simultaneous coordinated damping control design strategy achieves
the satisfying damping effect with three power flow scenarios under consideration. The oscillations of
disturbance dynamic response are effectively restrained in a very short time. Time domain simulation
results are in accord with the previous eigenvalue analysis. Furthermore, the proposed coordinated
design strategy is robust under all of the three operating conditions.

It is noteworthy that no much difference exists between the “PSS SVCPOD” and “PSS SVCPOD
DFIGPOD” cases. That’s because the whole system dynamic response is determined by the combined
action of multiple controllers, such as AVR, PSS, and POD, and the damping effect of DFIG POD may
not be obviously reflected in the disturbance response. Moreover, the system is already a relatively
strong damping under the action of PSS SVCPOD, as shown in Table 4.
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Figure 10. System bus 7 3-phase fault responses under light inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3. 
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Figure 11. System bus 7 3-phase fault responses under normal inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3. 
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Figure 12. System bus 7 3-phase fault responses under heavy inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3.  

Figure 10. System bus 7 3-phase fault responses under light inter-area power flow transmission
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2
and G3; and (c) Relative power angle of generator G4 and G3.
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Figure 11. System bus 7 3-phase fault responses under normal inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3. 
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Figure 12. System bus 7 3-phase fault responses under heavy inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3.  

Figure 11. System bus 7 3-phase fault responses under normal inter-area power flow transmission
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2
and G3; and (c) Relative power angle of generator G4 and G3.

Energies 2017, 10, 565 14 of 22 

 

oscillations of disturbance dynamic response are effectively restrained in a very short time. Time 
domain simulation results are in accord with the previous eigenvalue analysis. Furthermore, the 
proposed coordinated design strategy is robust under all of the three operating conditions. 

It is noteworthy that no much difference exists between the “PSS SVCPOD” and “PSS SVCPOD 
DFIGPOD” cases. That’s because the whole system dynamic response is determined by the combined 
action of multiple controllers, such as AVR, PSS, and POD, and the damping effect of DFIG POD may 
not be obviously reflected in the disturbance response. Moreover, the system is already a relatively 
strong damping under the action of PSS SVCPOD, as shown in Table 4. 

0 5 10 15 20
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
A

ng
le

 G
1,

3  
(r

ad
)

Time (s)

 No PSS                   Only PSS          
 PSS+SVCPOD       PSS+SVCPOD+DFIGPOD

 
0 5 10 15 20

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
A

ng
le

 G
2,

3  
(r

ad
)

Time (s)

 No PSS                   Only PSS          
 PSS+SVCPOD       PSS+SVCPOD+DFIGPOD

0 5 10 15 20
-0.2

-0.1

0.0

0.1

0.2

R
el

at
iv

e 
A

ng
le

 G
4,

3  
(r

ad
)

Time (s)

 No PSS                   Only PSS          
 PSS+SVCPOD       PSS+SVCPOD+DFIGPOD

(a) (b) (c) 

Figure 10. System bus 7 3-phase fault responses under light inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3. 

0 5 10 15 20
-0.3

0.0

0.3

0.6

0.9

1.2

1.5

R
el

at
iv

e 
A

ng
le

 G
1,

3  
(r

ad
)

Time (s)

 No PSS                   Only PSS          
 PSS+SVCPOD       PSS+SVCPOD+DFIGPOD

 
0 5 10 15 20

-0.3

0.0

0.3

0.6

0.9

1.2

R
el

at
iv

e 
A

ng
le

 G
2,

3  (
ra

d)

Time (s)

 No PSS                   Only PSS          
 PSS+SVCPOD       PSS+SVCPOD+DFIGPOD

0 5 10 15 20
-0.3

-0.2

-0.1

0.0

0.1

0.2

R
el

at
iv

e 
A

ng
le

 G
4,

3  
(r

ad
)

Time (s)

 No PSS                   Only PSS          
 PSS+SVCPOD       PSS+SVCPOD+DFIGPOD

(a) (b) (c) 

Figure 11. System bus 7 3-phase fault responses under normal inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3. 
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Figure 12. System bus 7 3-phase fault responses under heavy inter-area power flow transmission 
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2 
and G3; and (c) Relative power angle of generator G4 and G3.  

Figure 12. System bus 7 3-phase fault responses under heavy inter-area power flow transmission
condition. (a) Relative power angle of generator G1 and G3; (b) Relative power angle of generator G2
and G3; and (c) Relative power angle of generator G4 and G3.

4.6. Robustness Analysis

To further evaluate the robustness of the proposed coordinated design strategy of multiple
damping controllers, line outage or power flow reversing scenarios are considered in this two-area test
system. The fault is the same as that in the previous simulation. Three scenarios are:

(1) Line 7–8 outage;
(2) Line 8–9 outage;
(3) The tie-line 7–9 active power is about −310 MW.

The relative power angle with respect to three system operating scenarios are given in Figure 13.
It can be seen from the relative power angle oscillation curves that the proposed coordinated multiple
damping controllers design strategy has much better dynamic performance than other damping
control strategies under the scenario 1 and 2. However, the system is unstable when the tie-line power
flow orientations change, just like scenario 3. That’s because the input signal of SVC POD is from
the active power of tie-line 8–9. When the tie-line power flow reverses, the sign of the input signal
is changed, and the system damping will degenerate greatly and even become negative. Therefore,
the coordinated control strategy is robust under most kinds of power flow operating conditions and
topological changes. But, it may become invalid if the system undergoes some thorough change, for
example, power flow reversal of tie lines, as demonstrated in Figure 13c. Under such a circumstance,
online adaptive coordination design [42–44] should be adopted to recover the validness of the strategy.
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Figure 13. System bus 7 3-phase fault responses under different system operating scenarios. (a) Line 
7–8 outage; (b) Line 8–9 outage; and (c) Tie-line active power is −310 MW. 
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When the operation mode of the studied system is changed greatly, the POD controllers’ parameter
values are switched to other sets of values, which are optimized off-line and matched with the
considered operating condition. Based on this “off-line parameters optimization and on-line real-time
matching” mechanism, the coordinated control strategy is more robust and the system has strong
stability under various operating conditions.

5. Case Study of New England Test System

5.1. Study System

To investigate the applicability and scalability of the presented design strategy in coordinating
multiple damping controllers in a much larger power system, IEEE 39 bus New England test system
depicted in Figure 14 is considered in this study. To clarify the optimization design procedure, some
modifications have been made in this system. For instance, three aggregated wind farms of which each
has a capacity of 200 MVA are connected to the system at bus 14, 16 and 17, respectively. Two SVCs
with the capacity of 200 MVar are placed at bus 8 and 20 to improve the system voltage stability.Energies 2017, 10, 565 16 of 22 
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Figure 14. Modified IEEE 39 bus New England test system. 

5.2. The Selection of Wide-Area Feedback Signals for PODs 

The modal analysis eigenvalue results in Table 7 reveal that the modified New England test 
system is unstable when there is no damping controller equipped. The three lowest frequency 
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In addition to normal operating condition, two other operating conditions corresponding
to line 14–15 and line 21–22 outage are considered during the damping controller parameters
optimization procedure.

5.2. The Selection of Wide-Area Feedback Signals for PODs

The modal analysis eigenvalue results in Table 7 reveal that the modified New England test system
is unstable when there is no damping controller equipped. The three lowest frequency oscillation
modes are negative damping (Modes 7, 8 and 9 are in bold font in the table), so a damping controller
should be installed to the system. The most suitable wide-area feedback signals of PODs are determined
by COBI index outlined in Section 3.1. And the final results are as following. The most appropriate
feedback signals for the two SVC PODs are the active power in line 3–18 and line 17–27, while those
for the three DFIG PODs are the active power in line 1–2, line 9–39, and line 9–39, respectively. These
wide-area feedback signals are assumed to be measured by multiple dispersed PMUs and transmitted
via WAMS.

Table 7. The oscillation modes without and with damping controllers.

Case Modes Eigenvalue Frequency (Hz) Damping

No PSS and POD controllers

M 1 −3.15 ± j9.77 1.63 30.7
M 2 −0.38 ± j9.52 1.52 3.99
M 3 −0.53 ± j9.37 1.49 5.65
M 4 −0.45 ± j8.45 1.35 5.26
M 5 −0.15 ± j7.98 1.27 1.91
M 6 −0.23 ± j7.54 1.20 3.00
M 7 0.006 ± j6.83 1.09 −0.0008
M 8 0.36 ± j6.24 0.99 −5.70
M 9 0.15 ± j4.07 0.65 −3.60

Uncoordinated PSS and
POD controllers

M 1 −2.53 ± j10.2 1.67 24.1
M 2 −2.56 ± j8.49 1.41 28.8
M 3 −0.76 ± j8.10 1.29 9.34
M 4 −0.55 ± j7.55 1.20 7.27
M 5 −1.22 ± j6.86 1.11 17.5
M 6 −1.21 ± j5.00 0.82 23.5
M 7 −1.89 ± j3.85 0.68 44.1
M 8 −1.07 ± j3.48 0.58 29.3
M 9 −0.79 ± j3.20 0.52 24.0

Coordinated PSS and
POD controllers

M 1 −2.21 ± j10.8 1.75 20.1
M 2 −2.98 ± j8.97 1.50 31.5
M 3 −1.68 ± j8.22 1.34 20.0
M 4 −1.59 ± j7.64 1.24 20.4
M 5 −2.01 ± j6.24 1.04 30.7
M 6 −1.23 ± j4.86 0.80 24.5
M 7 −1.71 ± j3.90 0.68 40.2
M 8 −1.10 ± j3.45 0.58 30.4
M 9 −0.68 ± j3.02 0.49 21.9

5.3. Eigenvalue Analysis with Uncoordinated and Coordinated PSSs and wide-area PODs

Firstly, the stabilizer gains and time constants of PSSs and PODs are calculated by the
residue-based phase compensation theory at system normal operating condition without considering
the coordination. The controller parameter results are shown in Table 8. Eigenvalue analysis results in
Table 7 indicate that the modified New England test system with the uncoordinated PSSs and PODs
has 9 electromechanical oscillation modes. And the frequency range of the oscillation modes is from
about 0.5 Hz to 1.7 Hz. It is obviously shown in Table 7 that three electromechanical oscillation modes
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do not meet the expected damping criterion (the damping ratios of Modes 3, 4 and 5 is less than 20%),
hence the controller parameters of PSSs and PODs need to be redesigned.

Table 8. Optimized parameters of PSSs and PODs.

Stabilizer
Residue-Based Method Proposed Method

K T1, T3 T2, T4 K T1, T3 T1, T3

PSS1 20.2 0.580 0.032 2.86 0.461 0.086
PSS2 11.8 0.845 0.076 17.6 0.139 0.054
PSS3 22.1 0.702 0.015 16.3 0.395 0.051
PSS4 9.8 0.980 0.023 28.5 0.675 0.034
PSS5 5.7 0.353 0.044 10.4 0.987 0.072
PSS6 35.9 0.923 0.069 27.6 0.535 0.087
PSS7 26.5 0.674 0.074 8.89 0.365 0.021
PSS8 26.8 0.289 0.019 12.4 0.992 0.075
PSS9 17.3 0.536 0.038 13.5 0.879 0.069

SVC1 POD 5.6 0.237 0.023 1.34 0.413 0.020
SVC2 POD 9.6 0.112 0.096 7.87 0.463 0.089
DFIG1 POD 17.1 0.354 0.083 18.9 0.570 0.042
DFIG2 POD 5.9 0.935 0.055 13.6 0.764 0.086
DFIG3 POD 20.9 0.656 0.034 22.0 0.312 0.054

Then, the simultaneous coordinated control presented in this paper is adopted to improve system
damping performance. During the controller parameters optimization design process, the expected
damping ratio ζ0 is set as 20%. The selected bounds for stabilizer gains and time constants are the
same as the previous example. The dimension of the optimization problem is 42, corresponding to nine
PSSs and five PODs. The simultaneous tuning of the PSSs and PODs is demonstrated by considering
three operating conditions. The final optimal parameter results of the PSSs and PODs with optimum
objective value J = 0 are listed in Table 8. Meanwhile, Figure 15 depicts the optimization iteration
convergence curve of the optimum objective J. The fast convergence curve indicates that the GWO
algorithm can search for the optimal results with high efficiency even when dealing with such a
complex high-dimensional problem. In Table 7, it’s also listed that the eigenvalue analysis results of
the modified New England test system with the proposed coordinated multiple damping controllers.
From the damping ratios shown in Table 7, and the final objective value J = 0, it can be concluded that
all of the electromechanical oscillation eigenvalues are shifted to the specified sector region in left half
s-plane. In other words, it ensures that the damping ratios of electromechanical oscillation modes are
larger than 20%, which is better than the uncoordinated situation.
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It’s worth noting that although the GWO algorithm is highly efficient, the eigenvalue calculation
requires a lot of time in each fitness function evaluation. For a large system, the dimension of
the optimization problem will increase greatly. Thus a more advanced algorithm, especially for
high-dimensional problems, need to be developed.

5.4. Nonlinear Time-Domain Simulation

To confirm the superior damping performance of the proposed coordinated multiple damping
controllers, nonlinear dynamic simulations are performed in the modified New England test system by
PSAT. A 3-phase fault disturbance is applied to the system at bus 29, and the fault is cleared without
any topology change after 100 ms. The fault disturbance rejection performance and damping effect
of the proposed coordinated multiple damping controllers control strategy are compared to those
in the uncoordinated control situation. The relative power angle differences of all generators with
respect to equilibrium generator G1 are depicted in Figure 16, whereby Figure 16a,b is the overall
dynamic response under the action of coordinated and uncoordinated damping control strategy, and
Figure 16c–f is the detailed comparisons of some generators’ relative power angles with different
damping control strategies.
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Figure 16. Relative power angle response of synchronous generators with different coordinated
damping controllers. (a) Coordinated damping controllers; (b) Uncoordinated damping controllers;
(c) G10,1 response under different control strategy; (d) G8,1 response under different control strategy;
(e) G4,1 response under different control strategy; and (f) G2,1 response under different control strategy.
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The relative power angle oscillation curves shown in Figure 16 confirm that the system
oscillations can be damped in a very short time by the proposed coordinated PSS and POD controllers.
The relative power angle oscillation responses are quickly damped out. The disturbance response
damping performance of the New England test system with the proposed coordinated multiple
damping controllers is better than that of the system with uncoordinated PSS and POD controllers.
The time-domain simulations are consistent with eigenvalue analysis results and demonstrate the
scalability of the proposed coordinated design strategy.

5.5. Robustness Analysis

To further evaluate the robustness of the proposed coordinated design strategy of multiple PSSs
and PODs damping controllers in the modified New England test system, a number of scenarios have
been simulated. Only three of them are described here due to the space limitation:

(1) The power outputs of all three wind farms are decreased to 100 MW. The system is in the normal
condition and subjected to a temporary fault at bus 15 with a duration of 100 ms.

(2) The system loads increase by 10%, and the fault is the same as aforesaid.
(3) Line 14–15 and Line 21–22 are out simultaneously, and the fault is the same as aforesaid.

The relative power angles of some generators with respect to G1 are shown in Figure 17. From
these figures, it clearly indicates that the proposed coordinated design strategy can maintain the
modified New England test system dynamic stability with an acceptable damping performance
subjected to a short-circuit fault under a variety of operating conditions. The proposed coordinated
controllers are more robust and effective than the uncoordinated controllers.
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6. Conclusions 

This paper investigates the potential of coordinating multiple damping controllers, including 
PSS, SVC POD and DFIG POD, to damp out both local and inter-area low frequency oscillation modes 
in multimachine power systems. The parameter optimization of the fixed-structure lead-lag type PSS 
and POD is carried out simultaneously. Joint modal controllability/observability index is utilized to 
select the most appropriate wide-area feedback signals for PODs. To tune the optimal damping 
controller parameters, a GWO algorithm is employed to efficiently search for the eigenvalue-based 
parameter optimization solution. Frequency-domain eigenvalue analysis and nonlinear time-domain 
dynamic simulation studies in two classical modified benchmark test systems verify the feasibility 
and effectiveness of the proposed coordinated multiple damping controllers design strategy in 
stabilizing power system electromechanical oscillations. The simultaneous coordinated damping 
control design strategy is far superior to those with only one or two types of controllers or 
uncoordinated controllers. By implementing the proposed design strategy, the DFIG wind turbine 
equipped with POD can coordinate well with other damping controllers for contributing to power 
network damping performance. 

It is worth noting that the coordinated multiple damping controller design strategy suggested 
in this paper can be easily expanded to the design of various kinds of multiple damping controllers. 
However, it may have some difficulty in obtaining the optimization solution within a reasonable 
time, when the size of the studied power system is extremely large. The parallel computing 
technologies and intelligent optimization algorithms which are suitable for solving high-dimensional 
problems need to be developed. How to apply this to design strategy for a large system is an ongoing 
work. Moreover, the volatility and uncertainty of wind power induced by ungovernable wind speed 
further increase the complexity of the simultaneous coordinated damping controller design. Future 
research will also be focused on extending the proposed design strategy to handle the robustness 
problem for the stochastic uncertainty of wind farm integrated power system. 
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6. Conclusions

This paper investigates the potential of coordinating multiple damping controllers, including
PSS, SVC POD and DFIG POD, to damp out both local and inter-area low frequency oscillation
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modes in multimachine power systems. The parameter optimization of the fixed-structure lead-lag
type PSS and POD is carried out simultaneously. Joint modal controllability/observability index
is utilized to select the most appropriate wide-area feedback signals for PODs. To tune the
optimal damping controller parameters, a GWO algorithm is employed to efficiently search for
the eigenvalue-based parameter optimization solution. Frequency-domain eigenvalue analysis and
nonlinear time-domain dynamic simulation studies in two classical modified benchmark test systems
verify the feasibility and effectiveness of the proposed coordinated multiple damping controllers design
strategy in stabilizing power system electromechanical oscillations. The simultaneous coordinated
damping control design strategy is far superior to those with only one or two types of controllers or
uncoordinated controllers. By implementing the proposed design strategy, the DFIG wind turbine
equipped with POD can coordinate well with other damping controllers for contributing to power
network damping performance.

It is worth noting that the coordinated multiple damping controller design strategy suggested
in this paper can be easily expanded to the design of various kinds of multiple damping controllers.
However, it may have some difficulty in obtaining the optimization solution within a reasonable time,
when the size of the studied power system is extremely large. The parallel computing technologies
and intelligent optimization algorithms which are suitable for solving high-dimensional problems
need to be developed. How to apply this to design strategy for a large system is an ongoing work.
Moreover, the volatility and uncertainty of wind power induced by ungovernable wind speed further
increase the complexity of the simultaneous coordinated damping controller design. Future research
will also be focused on extending the proposed design strategy to handle the robustness problem for
the stochastic uncertainty of wind farm integrated power system.
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