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Abstract: In a conventional electricity market, trading is conducted based on power forecasts in the 
day-ahead market, while the power imbalance is regulated in the real-time market, which is a 
separate trading scheme. With large-scale wind power connected into the power grid, power 
forecast errors increase in the day-ahead market which lowers the economic efficiency of the 
separate trading scheme. This paper proposes a robust unified trading model that includes the 
forecasts of real-time prices and imbalance power into the day-ahead trading scheme. The model is 
developed based on robust optimization in view of the undefined probability distribution of 
clearing prices of the real-time market. For the model to be used efficiently, an improved 
quantum-behaved particle swarm algorithm (IQPSO) is presented in the paper based on an 
in-depth analysis of the limitations of the static character of quantum-behaved particle swarm 
algorithm (QPSO). Finally, the impacts of associated parameters on the separate trading and 
unified trading model are analyzed to verify the superiority of the proposed model and algorithm. 

Keywords: day-ahead market; improved quantum-behaved particle swarm algorithm (IQPSO); 
real-time market; robust optimization; unified trading model; wind power 

 

1. Introduction 

In a conventional day-ahead electricity market, in order to obtain the minimum purchase cost, 
bidding is organized according to the load forecast and security constraints. After the day-ahead 
market is closed, the real-time market is organized typically within 1 h before the operating hour 
based on the very short-term load forecast by taking into account the constraints such as power 
network topology, generators’ operation, and so on. Participants can bid their upward regulating 
power or downward regulating power as well as their prices in the real-time market. Then bids are 
accepted so that the minimum regulating cost and power balance are ensured for the next period 
without grid congestions in the real-time market. The above electricity market operational 
mechanism has been widely used. Similar mechanisms and frameworks have been built in China, 
where electricity markets are not fully deregulated and the main market participants are 
conventional generators at present. 

With the increasing connection of wind power to the grid, more uncertain factors emerge in the 
power system, and electricity trading is becoming more complicated [1,2]. A number of studies have 
investigated the impacts of large-scale wind power integration on the day-ahead market [3–6]. In [3], 
a two-stage stochastic programming model is used to clear the day-ahead market, instead of 
deterministic models, for handling uncertainties better. The impact of wind power on the day-ahead 
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market prices in the PJM electricity market is examined by using robust economic models and 
statistical inference [4]. Furthermore, the impacts of demand response and wind power on the 
day-ahead market prices are described in [5,6]. The day-ahead scheduling with wind power is 
presented in [7–9]. When a large amount of intermittent renewable energy is connected to the grid, 
the higher ramping capability of dispatchable generation is required. An improved day-ahead 
scheduling is therefore proposed by taking multiple-period ramping capability into account [7]. The 
authors in [8] demonstrate a chance-constrained stochastic programming model for the day-ahead 
scheduling, taking into account load forecast errors, stochastic renewable sources, and random 
outages of the power system components. Robust optimization is suggested in [9] because of the 
randomness of the wind generation. The above summarized literature focuses on reforming 
approaches to the day-ahead electricity markets. 

On the other hand, for the real-time market, reference [10] optimizes the cost of the dispatchable 
generators’ regulating power and forecast errors of wind power based on the fact that wind speed 
fits the normal distribution in a short-period. The authors in [11] review advanced typical real-time 
markets respectively in the North America, Australia, and Europe for integrating renewable energy 
and demand response in electricity markets. It also explains the classical market architecture which 
contains the independent day-ahead and real-time markets. In [12], the day-ahead and real-time 
markets are treated separately; firstly, the day-ahead market is cleared; then the real-time market is 
modeled on the basis of the day-ahead market clearing results. The analysis indicates that the 
real-time market is helpful for reducing the uncertainty of wind power and the demand of operating 
reserves, thereby making power system operation more economical.  

In the above literature, electricity trading activities in the day-ahead and real-time markets are 
considered independent of each other in the power system with high wind power penetration. In the 
separate trading scheme, energy trading is performed in the day-ahead market according to the 
difference between the hourly load forecast and wind power forecast to make full use of wind 
power, while imbalance power is dealt with in the real-time market through real-time prices that are 
typically different from the day-ahead market prices. Because of the strong randomness of wind 
power, imbalance power increases greatly in the real-time market, which makes the separate trading 
scheme not optimal. One possible way of improving the market efficiency is to combine the separate 
trading activities in the day-ahead and real-time markets into one unified optimum strategy which 
includes the forecasts of real-time prices and imbalance power into the day-ahead trading scheme. 
The combination has already been applied in strategic bidding to maximize the benefit of market 
participants such as virtual power plants , micro-grids, and wind farms [13,14], which did not 
discuss how to build a unified trading model from the market operators’ point of view yet. The 
authors in [15] establish the day-ahead market clearing model considering the mean adjustment cost 
of the real-time market, which is calculated based on definite cost coefficients of thermal generators 
instead of uncertain clearing prices. In [16], a unified market for the day-ahead and real-time 
markets is proposed for the dispatch strategy of VPP, which utilizes definite real-time prices. In fact, 
the forecasted real-time prices are uncertain due to the fact that it is difficult to predict real-time 
prices accurately and obtain their correct probability distribution function since they are always 
subject to many factors, such as uncontrolled market conditions, balance between supply and 
demand, flow congestion, and so on [17–19]. So this optimum strategy may be unrealistic if we use 
fixed prices in the unified trading model. Moreover, the increase of wind power penetration in a 
power system will make the performance even worse due to the increased fluctuation of both the 
imbalance power and the corresponding real-time prices. To improve the unified trading model 
further, the real-time market price needs to be regarded as a random variable without an explicit 
probability distribution. Now there are three optimization approaches for dealing with stochastic 
variables: stochastic optimization, fuzzy optimization, and robust optimization. The stochastic 
optimization method works only when the variables’ probability distribution functions are known a 
priori, while the fuzzy optimization method needs more information to convert fuzzy problems into 
clear ones, and the solutions may not be single. Compared to those two, the robust optimization 
method is effective even when only the interval of a stochastic variable is known rather than its 
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probability distribution function. Although the solution derived via robust optimization is a little 
conservative, it is a feasible solution no matter how the stochastic variables change. The robust 
optimization has recently been widely applied in different areas [9,18,20]. So this paper proposes a 
robust optimization-based approach to address the optimality challenge of the unified trading 
scheme. 

The main contributions of this paper are as follows: 

(1) A unified trading model of the day-ahead and real-time markets based on robust optimization 
is described considering the uncertainty of the load, wind power, and real-time market price, 
where the hourly purchase power is regarded as an optimized variable instead of forecast in 
the day-ahead market.  

(2) The static character of the quantum-behaved particle swarm algorithm (QPSO) is analyzed to 
show its limitations in solving the problem and an improved QPSO algorithm (IQPSO) is 
presented. 

(3) In order to demonstrate the superiority of the robust unified trading model, we compare it with 
a separate trading scheme in the day-ahead and real-time markets. Additionally, an analysis is 
conducted to examine the impacts of several key influencing factors on the trading results, 
including the robust coefficient, forecast accuracy of wind power, load, and real-time market 
price. 

The rest of the paper is organized as follows. The unified trading scheme is presented in Section 
2. The unified trading model based on robust optimization is formulated in Section 3. IQPSO is 
introduced in Section 4. The numerical results are presented and analyzed in Section 5 and the 
conclusions are drawn in Section 6. 

2. Scheme of Unified Trading with Wind Power 

Wind power forecast accuracy is relatively low because of the randomness and fluctuation of 
wind power. Given that the short-term forecast error is about 5% to 20% [21], the increasing demand 
of imbalance power in the real-time market with large-scale wind power is foreseeable. This paper 
will brush aside the power imbalance caused by reliable factors’ change in the power grid, such as 
accidental outages, generators’ forced outages, and so on, to highlight its research emphasis. The 
power imbalance is taken into account as shown in Equation (1): 

( ) )()( tttP WLr ζζ −=Δ  (1) 

The load forecast error at time t is presumed to be normally distributed [22], as shown below: 

( )( )2( ) ~ 0,  L Lt N tζ σ  (2) 

( )( )2( ) ~ ( ),  r f
L L LP t N P t tσ  (3) 
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The wind power forecast error at time t is also presumed to be normally distributed [23], as 
shown below: 

( )( )2( ) ~ 0,  W Wt N tζ σ  (5) 

( )( )2( ) ~ ( ),  r f
W W WP t N P t tσ  (6) 
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f

W

r

W ζ+=  (7) 

In the separate trading scheme, energy trading is executed in the day-ahead market according 
to the value Pf 

r (t) (i.e., Pf 
r (t) = Pf 

L(t) − Pf 
W(t)). Pf 

r (t) is the equivalent load forecast at time t in the 
day-ahead market, and also equals the purchase power forecast at time t when neglecting power 
loss. Then in the real-time market, upward regulating power is purchased when the system 
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imbalance power is insufficient at time t (i.e., ( ) 0rP tΔ > ), and downward regulating power is sold 
when the system imbalance power is excessive at time t (i.e., ( ) 0rP tΔ < ) in order to adopt more wind 
power. 

The above trading scheme does not consider the organic combination of the day-ahead and 
real-time markets, and the purchase cost is not optimal, nor is the generators’ power settlement. In 
particular, randomness and low forecast accuracy of wind power may generate bigger errors of 
bidding power at time t based on Pf 

r(t) when plenty of wind power is integrated, which will result in 
a higher purchase cost during a power shortage or a lower sale revenue during a power surplus in 
the real-time market. Since there is a higher cost for the separate trading scheme, we can unify the 
day-ahead and real-time trading into a corporate trading scheme where the purchase power at time t 
in the day-ahead is Po 

r (t) which needs to be optimized and is a decision variable rather than Pf 
r(t) in 

the day-ahead market. For the unified trading scheme, ( )tPrΔ  is presented as follows: 

( ) )()]()([()()( tPttPttPtP o
rW

f
WL

f
Lr −+−+=Δ ζζ  (8) 

where Po 
r (t) is the decision variable to be optimized, i.e., the equivalent load, and also equals the 

purchase power at time t in the day-ahead market when the power loss is omitted. 
The probability distribution for ( )tPrΔ  in the unified trading scheme is: 

( ) ( ) ( )( )tttPtPtPNtP WL
o

r
f

W
f

Lr
22),()()(((~ σσ +−−Δ  (9) 

The day-ahead and real-time markets are combined closely through optimizing Po 
r (t) instead of 

Pf 
r(t), which will reduce the total trading cost. 

3. Model of Unified Trading 

3.1. Objective Function 

Nowadays, there are two types of market price: the Market Clearing Pay (MCP) and Pay As Bid 
(PAB). This paper clears the unified trading by MCP. 

In the day-ahead market, the purchase cost CD is given by: 

( ) ( )
1 1

jt
NN

D d j
t j

C t P t
= =

=ρ  (10) 

where each time interval is one hour, and hourly power is the numeric equivalent of energy. 
The system imbalance power is random due to the randomness of forecast errors of wind 

power and load in the real-time market. Since market operators cannot estimate the system 
imbalance power accurately in the day-ahead market, it is hard to predetermine whether the system 
imbalance power is positive or negative. Alternatively, the purchase cost or sales revenue in the 
real-time market can be calculated by the probability distribution and expectation of ( )tPrΔ   

If the system imbalance power is surplus at time t in the real-time market, market operators 
have to sell the imbalance power that is bought in the day-ahead market. Because market operators 
have already paid generators according to the clearing prices and energy bids in the day-ahead 
market, market operators will obtain the revenue RDR  through selling the surplus power as shown 
in Equation (11): 

( ) ( ) ( )_

1

tN

RD r r
t

R t t P t
−−

=

= Δβ ρ  (11) 

Of course, market operators may abandon wind power in the above case. 
If the system imbalance power is insufficient at time t in the real-time market, market operators 

have to purchase the imbalance power. The purchase cost 
RUC  is presented as follows: 
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Generally, the condition ( ) ( ) ( )ttt rdr

−+ ≥≥ ρρρ  needs to be fulfilled in order to reduce imbalance 
power in the real-time market [14]. β+(t) and ΔPr(t)+ have the same probability of occurrence; the 
probability of occurrence of β−(t) and ΔPr(t)− is also equivalent. 

According to Equation (9), we have: 
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where ( ) ( ) ( ) ( )tPtPtPtu o

L

f

W

f
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222 σσσ += ; and ( )xΦ  is a normal distribution 

function. 
The objective function of the unified trading model is presented as follows: 

)min( RDRUDU RCCC −+=  (17) 

Although these random variables ( )tr
+ρ  and ( )tr

−ρ  cannot be described by definite probability 
distributions, their reasonable interval ranges can be determined based on statistical data and 
forecast results. According to these ranges, ( )tr

+ρ  and ( )tr
−ρ  are modeled as independent, 

symmetric, and bounded random variables (with unknown distribution) as follows: 
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The two variables take the values respectively in [ ( ) ( )tt rru
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++ + δρ ] and 
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−− + δρ ] with ( ) 0≥+ trδ  and ( ) 0≥− trδ . Because ( )tr

+ρ  and ( )tr
−ρ  are random 

variables without the determined probability distribution, we can only construct the model by 
robust optimization instead of stochastic optimization. 

According to Equations (11) and (20), we have: 
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According to Equations (12) and (18), we have: 
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As the robust optimization gets its solution in the worst situation, the trading cost function in 
the real-time market is presented as follows: 

( ) ( )
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tztz
B RCC −=

−+ ，
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According to Equations (17) and (24), the objective function of the unified trading model of the 
day-ahead and real-time markets is described as follows:

 

( ) ( )
( )








−+=

−+ RDRU
tztz

DU RCCC
，

maxmin  (25) 

The box space based on Equations (18)–(21) will lead to the most conservative solution. 
Although each parameter may reach its boundary value, in fact, it is almost impossible to reach the 
respective boundary simultaneously which is decided by the central limit theorem. So an additional 
constraint is added in Equation (26): 

( ) ( )( ) Γ≤+ −+

t

tztz  (26) 

where each random variable is the same as the forecast value without deviation when Γ = 0. The 
bigger the Γ, the higher the degree of uncertainty will be. 

However, theoretically, Γ can take any value, but this paper chooses a more reasonable value in 
light of the central limit theorem [24]. |z+(t)| and |z−(t)| cannot be expressed by determining the 
probability distributions because ( )tr

+ρ  and ( )tr
−ρ  are random variables without a determined 

probability distribution. We cannot choose any biased probability distribution function against those 
random variables without a definite probability distribution. So |z+(t)| and |z−(t)| are presumed to 
be uniformly distributed in [0, 1]. According to the central limit theorem, Γ is calculated as shown in 
Equation (27): 

( ) zzz JJ σβμ 1−Φ+=Γ  (27) 

If Nt = 24, J = 48, and if μz = 0.5, then 121=zσ  when |z+(t)| and |z−(t)| are uniformly 
distributed. 

According to Equation (25), it is very difficult to solve this model which is a Min-Max 
optimization problem. Therefore, we use the nonlinear duality theory to convert the maximum 
optimization problem of the real-time market into the minimum optimization problem. 

Based on the nonlinear duality theory, we assume the original problem is: 

( )max
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f x

g x


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where x = [x1, x2 … xn] is an n-dimensional optimization variable; and g(x) = [g1(x), g(x) … gm(x)]T are 
the set of constraints. 

Its dual problem is: 
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According to the deduction, Equation (24) can be converted into the standard form of Equation 
(29) as follows: 
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where z+(t) and z−(t) symbolize x. 
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The partial derivatives with respect to x are deduced according to Equation (29). However, 
Equation (30) contains the absolute values of z+(t) and z−(t), and we need to introduce the piecewise 
functions as follows: 
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According to Equations (25) and (32), we have: 

{ }minU D RU RD RFC C C R C= + − +  (33) 

Now the objective function belongs to the minimum optimization problem. 

3.2. Constraints 

The power balance in the day-ahead market is: 
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The power balance in the real-time market is: 
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The capacity limits of conventional generators in the day-ahead market are expressed as: 

( ) maxmin
jjj PtPP ≤≤  (36) 

The capacity limits of conventional generators in the real-time market are expressed as: 

( ) ( )tPPtP jjj
−≤≤ + max0  (37) 

( ) ( ) min0 jj PtPtP
j

−≤≤ −  (38) 

The ramping rate limits of conventional generation are expressed as: 

( ) ( ) 60160 ×≤−+≤×− up
jjj

down
j rtPtPr  (39) 

The AC flow constraint is formulated as shown in Equation (40): 

),...,2,1()sincos( max2 LlPbgVVgV lmnmnmnmnnmmnm =≤+− θθ  (40) 

4. Solving the Model: IQPSO 

4.1. QPSO Introduction 

The Particle Swarm Optimization (PSO) is characterized as a simple heuristic of a well-balanced 
mechanism with robust search ability and fast computation, which is widely used to solve power 
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system optimization problems [25,26]. However, once it traps in the local optimum, it is hard to 
break away from the local optimum. In order to improve the global search ability, the 
quantum-behaved particle swarm optimization algorithm (QPSO) according to quantum mechanics 
was proposed in 2004 [27]. 

The state of the particle for QPSO is determined by the wave function. Particles’ move can be 
obtained according to the following Equations: 

( ) ( ) ( )[ ]hhXmbestPhX iii μα 1ln1 ×−±=+  (41) 

( )GbestPbestP ii ϕϕ −+= 1  (42) 


=

=
M

i
iPbest

M
mbest

1

1  (43) 

where μ(h) takes a value from [0, 1]. If μ(h) > 0.5, then “ ±” becomes “+”, otherwise it becomes “−”. α 
is the only parameter for QPSO except for the number of iterations and the population size. QPSO 
has a strong global search ability and a low convergence speed when α is large. When α is small, 
QPSO has a strong local search ability and a high convergence speed. Particles will move to Pi 
during the search process. 

QPSO does not need the velocity information of particles. It has simpler evolution equations, 
less control parameters, faster convergence speed, and a simpler operation than PSO. 

4.2. IQPSO 

Although QPSO is superior to the standard PSO, it does not always guarantee the discovery of 
globally optimal solutions when the dimensions of a particle are large by the tests. In the next 
paragraph we will analyze the static character of QPSO and discuss its shortcomings compared to 
the improved method proposed in this paper. 

For simplicity, this paper tests the static character of a particle in one-dimensional space since 
the multidimensional variable can be formed by multi and independent one-dimensional variables. 
Some parameters take the following values: mbest = 0, Pi = 0, Xi(1) = 100, and α = 1. According to 
Equation (41), we test Xi(2) 100,000 times at random and obtain the frequency distribution histogram 
of Xi(2) as shown in Figure 1. 

Figure 1 illustrates: 

(1) The upward search ability of QPSO is limited because the probability of Xi(2) > 70 is zero. 
Meanwhile, the downward search ability of QPSO is limited because the probability of −70 < 
Xi(2) < 0 is zero. There are dead-band searching problems for QPSO and the dead zones vary 
with the number of iterations. 

(2) There is a higher convergence speed when the optimal solution is close to the lower boundary 
because the static character of QPSO is asymmetric on both sides of Pi and there is a lower 
convergence speed when the optimal solution is close to the upper boundary. 

(3) There are different dead zones for every iteration and a particle needs at least two iterations in 
order to search the dead-band space, which reduces the search ability and increases the number 
of iterations when the optimal solution is in the dead-band space. 

Since every dimension has dead zones during the iteration of every multi-dimensional particle, 
the dead zones grow in size and number with the increase of dimensions. The search range of the 
population is the union of the search ranges of all particles while iterating. When a particle has less 
dimensions, the dead zones decrease in size and number, which makes it easier to cover the whole 
search space by the union of the search ranges of all particles, leading to better convergence 
performance of the algorithm. When the population size remains the same, the increased dimensions 
of a particle increase dead zones in size and number, which brings about the difficulty in achieving 
coverage for the whole search space by the union of the search ranges of all particles, causing worse 
convergence performance of the algorithm. 
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Figure 1. Frequency distribution histogram of Xi(2). 

In order to enhance the convergence performance of QPSO, this paper proposes improvements 
in the static character since it suffers from the above analyzed shortcomings, meeting the following 
conditions: 

(1) There is no dead zone. 
(2) It is symmetric on both sides of Pi. 
(3) There is higher search probability in the neighborhood of Pi to guarantee the local search ability, 

and there is a certain search probability even if the space is far away from Pi to guarantee the 
global search ability by mutating. 

In summary, in the proposed IQPSO method, Equation (41) is replaced by Equation (44) as 
follows: 

( ) ( ) φα ×−+=+ hXmbestPhX iii 1  (44) 

Assuming that the same test is applied, the improved frequency distribution histogram of Xi(2) 
is shown in Figure 2. It can be seen that, compared to Figure 1, the requirements of the static 
character are dramatic. 
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Figure 2. Improved frequency distribution histogram of Xi(2). 

4.3. Programming of IQPSO 

The contraction-expansion coefficient α affects the convergence performance of QPSO. At the 
beginning of an iteration process, the algorithm must have the global search ability, and at the end of 
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an iteration process, the algorithm must have the local search ability. To meet this requirement, α 
changes with the number of iterations as follows [28]: 

( )2 21.2exp /h maxgen= −α  (45) 

The major steps are described as follows: 

(1) Some parameters are set such as ε, maxgen, M, and βz. 
(2) The population with the dimensions of Nt × Nj is initialized. 
(3) h is set equal to 1. 
(4) The fitness value CU(i) of particle i is calculated, according to Equation (25). 
(5) The best previous personal position Pbesti and the best personal fitness value fPbesti of particle i 

are obtained, and the global best position Gbest and the global best fitness value fGbest are 
obtained. 

(6) If max[CU(i)] − min[CU(i)] < ε or h = maxgen, it proceeds to step (11), otherwise to step (7). 
(7) Pi and mbest are calculated according to Equations (42) and (43). 
(8) α is calculated according to Equation (45). 
(9) The position of particle i is updated according to Equation (44). 
(10) h = h + 1, and then it proceeds to step (4). 
(11) The global best position Gbest and the global best fitness value fGbest are obtained. 

5. Case Studies 

5.1. Test System Data 

A numerical case for evaluating the proposed model and algorithm is performed on an IEEE 
30-bus system. The thermal generators’ parameters are shown in Table 1. Hourly load forecast and 
wind power forecast are shown in Figure 3. Purchase and sale power average prices forecast in the 
real-time market are shown in Figure 4. Standard deviations of hourly load forecast and wind 
power forecast are shown in Figure 5. According to Equation (27), Γ = 28.1. Other parameters take 
the following values: er = 10%, βz = 0.98, maxgen = 2000, and M = 50. The thermal generators’ 
quotation function is given as follows: 

( ) ( ) ( ) ( )tPtatbtp jjjj +=  ($/MW) (46) 

where bj(t) and aj(t) are shown in Figures 6 and 7, respectively. 

Table 1. Parameters of the thermal generators. 

Generator Bus 1 2 5 8 11 13
Maximum capacity (MW) 200 80 50 35 30 40 
Minimum capacity (MW) 80 30 15 10 12 18 
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Figure 3. Hourly load and wind power forecasts. 

 
Figure 4. Purchase and sale power price forecasts in the real-time market. 

 
Figure 5. Standard deviations of the hourly load forecast and wind power forecast. 

 

Figure 6. Thermal generators’ quotation parameter bj(t). 
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Figure 7. Thermal generators’ quotation parameter aj(t). 

5.2. Algorithm Comparison 

According to the above robust optimization model and case parameters, the results are shown 
in Table 2 with a comparison between QPSO and IQPSO. 

Table 2. Optimal total cost of the two algorithms. 

Algorithms  Optimal Total Cost ($) The Number of Iterations  
QPSO  4.260 × 105 2000 
IQPSO 4.064 × 105 1447 

Figure 8 visualizes the convergence process of QPSO on the left-hand side and IQPSO on the 
right-hand side. It can be seen that IQPSO has the better global search ability while QPSO is trapped 
in the local optimum. 
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Figure 8. Convergence curves of the two algorithms (QPSO left IQPSO right) 

5.3. Comparison of Purchase Power in the Day-Ahead Market for the Unified and Separate Trading 

The optimal purchase power schedule for the unified and separate trading schemes in the 
day-ahead market is shown in Table 3 with IQPSO applied to achieving the optimal solutions. In 
Table 3, UT is short for the unified trading and ST is short for the separate trading. On the basis of 
the above parameters, the hourly total purchase power Po 

r (t) is less when applying UT than the 
amount Pf 

r(t) when applying ST. 
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Table 3. Hourly optimal purchase power for the unified and separate trading in the day-ahead market (MW). 

Hour UT BUS1 ST BUS1 UT BUS2 ST BUS2 UT BUS5 ST BUS5 UT BUS8 ST BUS8 UT BUS 11 ST BUS 11 UT BUS 13 ST BUS 13 UT TOTAL ST TOTAL 
1 89.62 87.74 68.94 70.32 49.81 49.60 27.13 34.76 29.91 28.08 18.00 18.00 283.4 288.5 
2 87.94 89.28 79.97 55.10 25.84 36.25 26.23 33.83 16.48 27.34 18.00 18.00 254.5 259.8 
3 86.18 85.61 32.21 78.91 49.54 15.20 21.72 13.89 28.60 29.99 18.00 18.00 236.3 241.6 
4 87.03 91.76 30.01 30.28 49.56 46.20 29.59 34.99 14.73 13.27 18.00 18.00 228.9 234.5 
5 84.74 86.62 35.16 35.44 49.21 34.63 12.05 34.21 29.80 25.50 18.00 18.00 229.0 234.4 
6 83.85 82.08 41.64 53.72 47.89 23.88 14.84 34.45 29.88 29.77 18.00 18.00 236.1 241.9 
7 87.96 87.28 56.77 44.73 46.78 48.92 12.08 27.79 17.19 18.17 18.01 18.00 238.8 244.9 
8 93.44 95.08 54.14 74.06 43.56 37.90 32.94 12.15 17.03 28.51 18.00 18.00 259.1 265.7 
9 91.07 99.72 77.47 77.36 45.58 47.72 32.30 33.78 29.96 24.92 18.01 18.00 294.4 301.5 
10 104.1 107.8 79.89 80.00 49.99 50.00 35.00 35.00 29.99 29.99 19.11 23.28 318.0 326.1 
11 116.6 120.6 79.66 80.00 49.98 50.00 35.00 35.00 29.84 30.00 26.06 30.56 337.2 346.2 
12 119.9 124.1 80.00 80.00 50.00 50.00 34.98 35.00 29.76 30.00 29.74 34.46 344.4 353.6 
13 124.5 127.7 79.81 80.00 50.00 50.00 34.85 35.00 29.98 30.00 34.90 38.47 354.1 361.2 
14 110.4 114.3 79.99 80.00 49.96 50.00 34.98 35.00 29.94 30.00 19.05 23.43 324.3 332.7 
15 98.76 96.35 79.91 79.98 49.88 48.55 27.40 34.74 27.44 29.38 18.00 18.00 301.4 307.0 
16 101.9 105.4 79.99 80.00 49.57 50.00 34.40 35.00 29.92 30.00 18.00 20.65 313.8 321.1 
17 106.2 111.8 79.98 80.00 50.00 50.00 34.94 35.00 29.97 30.00 27.52 33.70 328.5 340.5 
18 109.6 115.6 79.98 80.00 49.95 50.00 34.86 35.00 29.99 30.00 31.28 37.89 335.7 348.5 
19 114.0 120.6 79.99 80.00 49.98 50.00 34.98 35.00 29.99 30.00 36.06 40.00 344.9 355.6 
20 127.7 139.4 79.99 80.00 50.00 50.00 34.99 35.00 29.98 30.00 38.46 40.00 361.1 374.4 
21 129.5 144.3 80.00 80.00 50.00 50.00 35.00 35.00 30.00 30.00 39.97 40.00 364.5 379.3 
22 121.3 124.0 79.97 80.00 49.99 50.00 34.88 35.00 28.62 30.00 31.23 34.30 346.0 353.3 
23 100.9 104.2 79.97 80.00 49.82 50.00 33.86 35.00 29.93 30.00 27.00 30.60 321.5 329.8 
24 92.55 94.41 79.18 80.00 49.94 50.00 34.38 35.00 30.00 30.00 18.00 19.89 304.1 309.3 
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5.4. Impact Analysis of Price Forecast in the Real-Time Market  

The comparison between Po 
r (t) and Pf 

r(t) in the day-ahead market is further shown in Figure 9 
with different prices in the real-time market. 

 
Figure 9. Impact of real-time prices on Po 

r (t) in the day-ahead market. 

The comparison between Po 
r (t) (dotted line) and Pf 

r (t) (solid line with dot) is shown in the 
baseline scenario as explained in Figure 4, where Po 

r (t) < Pf 
r(t), as seen in Table 3. Following an 

increase of the purchase power prices in the real-time market, the re-derived Po 
r (t) (dashed line) 

becomes higher than the baseline value Pf 
r(t). While increasing the sale power prices in the real-time 

market, the re-derived Po 
r (t) (solid line) is lower than Pf 

r(t) and Po 
r (t) (dotted line). 

5.5. Impact of σr, Γ, er 

Po 
r (t) in the day-ahead market is shown in Figure 10 when σr, Γ, and er change, respectively.  

 
Figure 10. Po 

r (t) in the day-ahead market when σr, Γ, and er change, respectively. 

As the robust optimization focuses on the worst performance of the real-time market, the total 
purchase cost of the real-time market will increase when increased er (i.e., the price forecast deviation 
ratio at time t in the real-time market) makes the purchase environment worse; meanwhile, the total 
sale revenue of the real-time market will decline so that the purchase power strategies of the 
day-ahead market are more conservative, which reduces the difference between Pf 

r(t) (solid line with 
circle ) and Po 

r (t) (dashed line) when er increases, according to Figure 10. 
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The decrease of Γ reduces the confidence level βz and facilitates the better economic 
environment of the real-time market, which increases the difference between Pf 

r(t) and Po 
r (t) (dotted 

line), leaving more power for trading in the real-time market. 
According to Figure 9, Po 

r (t) < Pf 
r(t) when ρ+ 

ru(t) and ρ− 
rd(t) remain unchanged, showing that the 

economic environment for selling power is worse than for purchasing power in the real-time market, 
so that it is necessary to reduce Po 

r (t) (solid line with star) in order to reduce the sale power in the 
real-time market with the increase of σr(t). On the other hand, the power for trading in the real-time 
market increases because the increase of σr(t) reduces the accuracy of the purchase power forecast. 
For these two reasons, the difference between Pf 

r(t) and Po 
r (t) (solid line with star) increases (i.e., Po 

r (t) 
decreases) with the increase of σr(t), as illustrated in Figure 10. 

The impact of Γ on the total purchase power cost is shown in Figure 11, which shows that the 
total cost of the separate trading scheme (dotted line) is higher than the unified trading scheme 
(solid line). 

 
Figure 11. The impact of Γ on the total cost.  

The increase of Γ increases the total costs because the stronger robustness and the higher 
confidence level βz lead to considering worse scenarios. In addition to that, it can be seen that the 
growth rate of the total cost of the unified trading becomes slower with the increase of Γ. According 
to Figure 9, Po 

r (t) < Pf 
r(t) when ρ+ 

ru(t) and ρ− 
rd(t) are kept the same as the prices in Figure 4, which shows 

that a portion of the purchase power is transferred to the real-time market from the day-ahead 
market, leaving more power to be purchased and less power to be sold in the real-time market. In 
this case, the impact of ( )tr

+ρ  on the total cost is bigger than the impact of ( )tr
−ρ . The robust 

optimization works in the worst case of the real-time market, which will firstly consider the highest 
( )tr

+ρ  so that the total cost increases quickly until ( )tr
+ρ  reaches the maximum and then a smaller 

( )tr
−ρ  is taken into account in the robust optimization while Γ continues to increase. As mentioned 

above, the total cost is less affected when the sale power is reduced, resulting in the curve slowing 
down at the end. 

In separate trading, the impact of the economic environment for purchasing power on the total 
cost is the same as that for the selling power because the power forecast errors are symmetrical, 
which leads to a smoother cost curve. 

The total costs are shown in Table 4 when σr is multiplied based on the data in Figure 5 and  
Γ = 28.1. 
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Table 4. The impact of σr on the total costs. 

Multiple of 
σr 

Total Cost of the Unified Trading
(UTTC) ($) 

Total Cost of the Separate Trading 
(STTC) ($ ) 

Reduction Ratio of Cost 
(%) 

1 4.066 × 105 4.078 × 105 0.33 
2 4.078 × 105 4.103 × 105 0.59 
3 4.092 × 105 4.127 × 105 0.85 
4 4.108 × 105 4.152 × 105 1.06 

In Table 4 above: 

STTC UTTC
Reduction ratio of cost 100%

UTTC

−= ×   

As shown in Table 4, the increase of σr leads to the increase of both the total cost and the 
reduction ratio of cost. For the increase of the total cost, this is because the low power forecast 
accuracy results in more power for trading increases in the real-time market. For the reduction 
ration of cost, there are two reasons. Firstly, in the separate trading scheme, the energy trading is 
performed according to Pf 

r(t) and the purchase cost is fixed in the day-ahead market in any case, but 
the power for

 
trading increases greatly in the real-time market with the increase of σr, making the 

total cost of the separate trading increase quickly in light of ( ) ( ) ( )ttt rdr

−+ ≥≥ ρρρ ; Secondly, in the 
unified trading model, the energy trading is implemented based on Po 

r (t) in the day-ahead market 
and the power for trading increases slowly in the real-time market with the increase of σr, which 
leads to less cost increase in the unified trading than that in the separate trading. In view of the 
above analysis, the unified trading model is superior to the separate trading model with the increase 
of σr. In particular, the unified trading model is more advantageous when large-scale wind power is 
integrated into the grid. 

The total costs are shown in Table 5 when er changes and Γ = 28.1. 

Table 5. Impact of er on the total purchase costs. 

er (%) Total Cost of the Unified Trading ($ ) Total Cost of the Separate Trading ($ ) Reduction Ratio of Cost (%)
10 4.066 × 105 4.078 × 105 0.33 
20 4.077 × 105 4.085 × 105 0.20 
30 4.088 × 105 4.092 × 105 0.11 
40 4.096 × 105 4.099 × 105 0.07 

As is seen in Figure 10, the difference between Pf 
r(t) and Po 

r (t) decreases with the increase of er, 
meaning that the total cost of the unified trading is closer to the total cost of the separate trading. 
Table 5 reports that the unified trading model with robust optimization is less advantageous 
because the economic environment for purchasing power is worse in the real-time market with the 
increase of er. 

6. Conclusions 

The day-ahead and real-time markets are combined to form a unified trading scheme with wind 
power integration in this paper. The robust optimization model is adopted by taking into account 
the uncertainty of the real-time market prices, load, and wind power, and then IQPSO is proposed to 
solve the optimization problem. The conclusions are as follows: 

• The unified trading model based on robust optimization can optimize the purchase power in 
the day-ahead market and reduce the total cost for the two markets, which shows it is superior 
to the separate trading model due to large-scale wind power connected into the power systems. 

• It is proven that the IQPSO has a higher convergence speed and stronger global search ability 
when compared with the standard QPSO. 

In addition, the impact analysis of each parameter is summarized as follows: 
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 The strategy of purchasing power in the day-ahead market is directly affected by the real-time 
price. The optimized purchase power will increase in the day-ahead market with higher 
purchase power prices and lower sale power prices in the real-time market and vice versa. 

 The unified trading model is superior when the power forecast errors become greater. 
 The lower the accuracy of the real-time market prices forecast, the worse the economic 

environment of the real-time market is. This reduces the economic efficiency of the unified 
trading model because the purchase strategy in the day-ahead market is more conservative. 

 The economic efficiency of the unified trading model is degraded when the confidence level is 
higher with the increase of the uncertain operator Γ. We can use the rational value of Γ to 
improve the economic efficiency as much as possible, following the requirement of the 
confidence level. 

A direction for further research will consider the units’ startup and shutdown for the unified 
trading model and apply algorithms such as PSO, benders decomposition [20,29], genetic algorithm, 
and so on to solve the above optimization problem with comparisons in terms of the optimality, 
efficiency, and scalability. 

Author Contributions: Yuewen Jiang conceived of the project and proposed the methodological framework 
and implementation roadmap; Meisen Chen performed the simulations; Shi You reviewed and improved the 
methodological framework. All authors discussed and approved of the simulation results. Yuewen Jiang 
mainly wrote this paper. 
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Nomenclature 

Indices 
t Index of time periods Running from 1 to Nt, 1 h for every time period  
j Index of dispatchable generators Running from 1 to Nj 
l Index of line Running from 1 to L  
m, n Index of bus of line l  
Decision Variables 
Po 

r (t) Optimized purchase power at time t in the day-ahead market 
Pj(t) Power purchase schedule for dispatchable generator j at time t in the 

day-ahead market  
P+ 

j (t)/P— 
j (t) Upward/downward regulating power for generator j at time t in the 

real-time market  
Other Variables 

)(tLζ  Load forecast error at time t in the day-ahead market 

)(tWζ  Wind power forecast error at time t in the day-ahead market  

)(tPr
L

/ ( )r
WP t  Real load/real wind power at time t 

( )tLσ / ( )tWσ  Load forecast/wind power forecast standard deviation at time t in the 
day-ahead market 

)(tP f
L / ( )f

WP t  Load forecast/wind power forecast at time t in the day-ahead market 

( )tPrΔ  Imbalance power at time t in the real-time market  
Pf 

r(t) Purchase power forecast at time t in the day-ahead market 
CD Purchase cost in the day-ahead market 

( )tdρ  Day-ahead market clearing price at time t 

RDR / RUC  Revenue/purchase cost in the real-time market 

( )tr
+ρ / ( )tr

−ρ  
Purchase power/sale power price at time t in the real-time market 

ΔPr(t)+/ΔPr(t)− Power shortage/power surplus expectation at time t in the real-time 
market 

β+(t)/β−(t) Probability of ‘upward regulation’/‘downward regulation’ at time t in the 
real-time market 

( )tur  Difference between purchase power forecast and the optimized purchase 
power at time t 
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( )trσ  Imbalance power standard deviation in the unified trading scheme at time 
t 

UC  Total cost of the unified trading 
z = z+(t), z−(t) Random variables in [–1, 1] 
μz Mean value of interval variables z+(t) and z−(t) 
σz Standard deviation of interval variables z+(t) and z−(t) 
Vm/Vn Voltage magnitudes at bus m/bus n of line l  
θmn Difference of voltage phase-angle between at bus m and bus n of line l 
μ(h) Random variable for the hth iteration in [0, 1] 
Xi(h) Position of particle i for the hth iteration 
Pi Center of the potential well 
h Number of current iterations  
ϕ  Random variable in [0, 1] 
mbest Central position of personal best positions 
Pbesti Personal best position of particle i 
Gbest Global best position  
φ  Stochastic variable with standard normal distribution
Constants and Parameters 
er Deviation ratio to the expected price in the real-time market 

( )tr
+δ / ( )tr

−δ  Deviation from the expected price at time t in the real-time market 

( )tru
+ρ / ( )trd

−ρ  Purchase power/sale power expected price at time t in the real-time 
market 

Γ Degree of uncertainty for random variables 
J Number of interval variables z+(t) and z−(t) 
Pmin 

j /Pmax 
j  Minimum/maximum capacity of the dispatchable generator j 

down
jr / up

jr  Ramp down/up rate limit of the generator j 

max
lP  Upper limit for power flow of line l 

gmn/bmn Conductance/susceptance of line l  
M Population size 
α Contraction-Expansion Coefficient 
ε Convergence accuracy 
βz Interval confidence level 
maxgen Maximum number of iterations 
aj(t), bj(t) Thermal generators’ quotation parameters of generator j at time t 
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