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Abstract: This paper describes a multiple time interval (“multi-interval”) parameter estimation 
method. The multi-interval parameter estimation method estimates a parameter from a new 
multi-interval prediction error polynomial that can simultaneously consider multiple time 
intervals. The root of the multi-interval prediction error polynomial includes the effect on each time 
interval, and the important mode can be estimated by solving one polynomial for multiple time 
intervals or signals. The algorithm of the multi-interval parameter estimation method proposed in 
this paper is applied to the test function and the data measured from a PMU (phasor measurement 
unit) installed in the KEPCO (Korea Electric Power Corporation) system. The results confirm that 
the proposed multi-interval parameter estimation method accurately and reliably estimates 
important parameters. 

Keywords: low frequency oscillation; multiple time interval; parameter estimation; prediction error 
polynomial; rolling blackout 

 

1. Introduction 

The power system is connected to generators, loads, and various power equipment through 
transmission lines, and is always exposed to disturbances, such as load fluctuations and line 
failures. In order to supply power stably during such disturbances, a controller, such as an excitation 
system or a governor, must operate properly. In large-scale power systems, wide area low 
frequency oscillation can threaten the stable operation of the system. Therefore, accurate estimation 
of the dominant oscillation mode is one of the important factors for stable operation of the system. 

The oscillation in the power system occurs mainly in the low frequency range below 2.5 Hz, 
and in particular in the wide frequency mode, where it occurs below 1.0 Hz [1,2]. The local mode 
oscillates several generators, while the wide area mode simultaneously oscillates many generators. 
It is necessary to accurately estimate the local mode and the wide area mode for the stable operation 
of the system. So far, the analysis of low frequency oscillations in power systems has been 
performed mainly by eigenvalue analysis based on a linear model [3–7]. However, eigenvalue 
analysis using a linear model does not accurately reflect the rapidly changing system environment, 
and modeling errors can occur [8]. 

With the rapid development of digital technology and communication network technology 
since 1990, parameter estimation methods using measured data in power systems are actively being 
developed. Various algorithms have been proposed for estimating the oscillation mode in the 
acquired data. Among them, Prony analysis is the most frequently applied algorithm for the 
oscillation analysis of power systems [9]. Trudnowski et al. [10] proposed a method of estimating an 
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oscillation mode using several signals, while Pierre et al. [11] proposed a method of estimating the 
modal frequency and damping in ambient data using a Wiener-Hopf prediction equation. 

Various research efforts have also proposed a method of system reduction by obtaining an 
equivalent model of the system using the residue and mode of the signal [12,13], a new method to 
design a PSS (power system stabilizer) controller, wide-area damping control [14–16], and network 
equivalent modeling using Prony analysis [17]. Grund et al. [18] compared Prony analysis and 
eigenanalysis for generating frequency-domain data. 

Sanchez-Gasca and Chow [19] evaluated the performance of three identification methods; 
while other research has included an ARMA (auto-regressive moving average) block-processing 
technique to estimate the modes from measured ambient power system data [20], a least squares 
and generalized least squares time-domain identification algorithm [21], a regularized robust 
recursive least squares method [22], time-frequency analysis method using resonance-based sparse 
signal decomposition and a frequency slice wavelet transform [23], and an algorithm for the extended 
modified Yule Walker [24]. Trudnowski [25] and Shim et al. [26] proposed a theoretical basis for 
estimating an electromechanical mode-shape; in addition, this is applied to various fields, such as fault 
location and accurate frequency estimation. 

However, the parameter estimation methods applied to a power system are sensitive to 
sampling, time interval, and noise [27]. Therefore, considerable experience and effort are required 
to estimate the accurate oscillation mode. 

This paper proposes a multiple time interval (“multi-interval”) parameter estimation method 
that can simultaneously consider multiple time intervals. Linear prediction equations can be 
obtained from the measured signal. By solving the linear prediction equation, we can obtain the 
coefficients of the prediction error polynomial. 

If multiple polynomials of the same order have the same root, the new polynomial summing 
the similar terms of each polynomial has the same root. Therefore, if the order of the prediction 
error polynomials obtained from several measurement data is the same, a new prediction error 
polynomial can be obtained by adding the coefficients of the respective polynomials. 

Suppose that the signal acquired from the system contains an oscillation mode. If the signal is 
divided into several signals, the same oscillation mode is included in the separated signals. 
Therefore, a new prediction error equation can be formed by adding the coefficients of the 
respective prediction error equations that correspond to each time interval. Such a new prediction 
error equation is a multi-interval prediction error equation that considers multiple time intervals. 
Since the root of this equation is the oscillation mode included in the multiple time interval, it is 
possible to estimate the important mode by solving one equation for multiple time intervals or signals. 

The parameter estimation method proposed in this paper is applied to the test function and the 
data acquired from the PMU (phasor measurement unit) installed in the KEPCO (Korea Electric 
Power Corporation) system. We confirmed the efficiency and reliability of the proposed algorithm. 

This paper is organized as follows. Section 2 describes the multi-interval parameter estimation. 
Section 3 describes the September 2011 rolling blackout of the KEPCO system. Section 4 describes 
the results of applying the algorithm proposed in this paper to the test function, while Section 5 
describes the results of applying it to the KEPCO system. Section 6 summarizes the results, and 
Section 7 concludes the paper. 

2. Parameter Estimation Method of Multiple Time Intervals 

2.1. Signal and Modal Decomposition 

Assume that the measured signal consists of the sum of damped cosine functions. If the 
amplitude and phase of the i-th cosine function are Ai and φ i, respectively, and the damping 
coefficient and frequency are αi and ωi, respectively, the measured signal can be expressed as follows: 
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where, N is the number of measured signals. 
Using the damping coefficient and frequency, the complex mode can be expressed as λi = αi + 

jωi. If the sampling is T, the new complex mode zi can be defined as follows: 

T
i

iez   (2) 

If the Vandermonde matrix having the complex mode zi as a matrix element is V, the measured 
discrete signal can be decomposed as follows: 

VByt   (3) 

where the order of the Vandermonde matrix V is N × p, the order of the vector B is p × 1, and p is the 
number of unknowns. 

Therefore, the discrete signal sampled at an equal interval T can be expressed as follows: 
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Since the discrete signal is represented by a set of impulses, if the sampling is too small, integer 
multiple modes for the critical mode can be estimated; while if the sampling is too large, aliasing 
with overlapping spectra can occur. Also, if the time interval is too large, the degree of the linear 
prediction matrix becomes large, which is not only burdensome to calculate, but can also produce 
inaccurate results. Therefore, when estimating parameters in a discrete signal, the selection of an 
appropriate sampling and time interval is very important. 

2.2. Prediction Error Polynomial 

The autoregressive moving average (ARMA) model of the discrete signal can be expressed as 
follows [28]: 
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Assuming that the input signal ut is an impulse signal, it can be expressed as follows: 

tt zByzA )()(   (6) 

From this equation, a linear prediction covariance equation with ai as an unknown is obtained: 

0Ya  (7) 

where if p is the number of unknowns, the order of the matrix Y is N × p, and the order of a is p × 1. 
From the linear minimum mean-squared error (LMMSE) estimation of the linear prediction, 

the prediction error polynomial with unknown coefficients can be expressed as follows: 

1,0)( 0
0




 azazA
p

i

i
i

 (8) 

The complex mode can be estimated by calculating the solution of the prediction error polynomial. 

2.3. Prediction Error Polynomial of Multiple Time Intervals 

In order to accurately estimate the important parameters in the measured signal, it is necessary 
to analyze and experience various sampling and time intervals. The result of the parameter 
estimation is greatly influenced by the number of unknowns (p), the sampling (T), the time interval 
(T0), and the number of data (N). 

Since the time interval is the product of the sampling and the number of data, the entire time 
interval can be represented as T0 = NT. Figure 1 shows that the other time intervals can be set 
differently, according to the number of data: 
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Figure 1. Sampling and number of data at multiple time intervals. 

It is assumed that the same mode z0 is included in the time intervals T1 and T2, as shown in 
Figure 1. Then, the prediction error polynomial for the time interval T1 can be expressed as follows [28]: 
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where p is an unknown number, and A1(z) is a prediction error polynomial corresponding to the 
time interval T1. 

The prediction error polynomial for the time interval T2 can be expressed as follows: 
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Assume that several polynomials of the same order have one or more identical roots. Then a 
new polynomial, which is obtained by the summation of the similar term coefficients of each 
polynomial, has the same root. 

Therefore, the new prediction error polynomials obtained from Equations (9) and (10) have the 
same mode z0. The new prediction error polynomial obtained by the summation of the similar term 
coefficients of the two prediction error polynomials can be expressed as follows: 
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where, a0 + b0 = 2 and ap + bp = 0. 
This equation is a prediction error polynomial for two time intervals in which the same mode 

exists. From this equation, it is possible to derive a generalized equation of the multi-interval 
prediction error polynomial, which can simultaneously consider multiple time intervals. If the same 
mode exists in the n time intervals, the following equation is established: 
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From here, 
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In this equation, ci is the sum of the i-th coefficients of the prediction error polynomials for 
each time interval. If n = 1 in Equation (12), the prediction error polynomial for the entire time 
interval is obtained. Therefore, if the unknown number is fixed as p, it is possible to form a 
prediction error polynomial for various time intervals. 
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2.4. Procedure of the Multi-Interval Parameter Estimation 

The procedure of the multi-interval parameter estimation algorithm proposed in this paper is 
as follows: 

Step 1. Input the measured signal, and set the time interval (n) and the unknown number (p), as 
shown in Equation (12). 
Step 2. For each selected time interval, form a covariance equation, as shown in Equation (7), and 
compute the unknown by solving the equation. 
Step 3. Construct a new multi-interval prediction error polynomial, as shown in Equation (12), using 
the unknowns for each time interval. 
Step 4. Calculate the complex mode, by finding the roots of the multi-interval prediction error 
polynomial. 
Step 5. Construct the Vandermonde matrix with the complex mode, and find the residue 
corresponding to the mode using Equation (3). 
Step 6. Restore the signal using the complex mode and the residue, and compute the SNR 
(signal-to-noise ratio) using the restoration signal and the original signal. 
Step 7. Extract the dominant oscillation mode needed for the power system analysis from the 
estimated parameters. 

3. Rolling Blackout of the KEPCO System 

3.1. Situation of Rolling Blackouts and Implementation 

When the load demand is larger than the power supply, interruptible load shedding is carried 
out to reduce the load. Such an artificial load interruption is the final resort that can be taken to 
ensure the stable operation of the power system; and if conducted properly, it is possible to prevent 
the collapse of the entire power system. 

On 15 September 2011, a large-scale rolling blackout that cut off a total load of 5000 MW 
occurred in the KEPCO system. Forced load shedding was performed to prevent the collapse of the 
system due to the frequency drop. Since the power outage rate of the KEPCO system was relatively 
low, and the first nationwide power outage occurred, the rolling blackout caused great social 
confusion [28]. 

Figure 2 shows the total load and system frequency on the day of the rolling blackout. The 
situation of the power supply and load demand are very significant in a rolling blackout. The 
system with a supply capacity of 70.07 million kW and a maximum load of 64 million kW was 
operating normally by 11:00. Load demand increased steadily due to the sultry weather, and the 
amount of pumped-storage power generation that started from 08:00 continued to increase. 

 
Figure 2. System frequency and load demand during the 15 September 2011 rolling blackout [29]. 

The reserve power decreased to below 4 million kW at 10:50 (A10), and decreased to less than  
3 million kW at 11:35 (A20). After 13:00, the reserve power began to decrease again and decreased 
to 1 million kW or less at 13:35 (A42). The distribution transformer tab was adjusted at 12:50 (A30), 
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and direct load control was enforced at 14:01 (A50). The first forced load shedding was 
implemented at 15:11 (C10), and the load was sequentially cut off by 1000 MW. 

In Figure 2, C10 to C50 represent the moments when the forced load shedding was implemented, 
and these show that after the forced load shedding, the system frequency recovered quickly. 

The figure shows that the frequency of the system changed rapidly at about 11:20 (LFO).  
At that time, the reserve power was small, but there was no large disturbance, such as a line failure 
or generator trip. As a result, it can be seen that a small disturbance, such as a small variation of 
load or generation, can cause system oscillation. 

3.2. PMU Data Measured in the KEPCO System 

In this paper, the parameters were estimated by applying the multi-interval parameter 
estimation method to the data measured during the rolling blackout by the PMU installed at the 
East-Seoul substation. Recently, 40 PMUs have been installed in the KEPCO system. However, on 
the day of the rolling blackout in September 2011, only a few PMUs had been installed for  
testing purposes. 

Figure 3 shows the active power at 11:00 and 17:00 on the data measured during the rolling 
blackout. The figure shows the periodically oscillating active power for 10 s. In the figure, “PMU 
NO1” refers to the PMU installed at the East-Seoul substation, while “D0915” and “T1120” refer to 
the date and time, respectively. 

 
(a) (b)

Figure 3. Active power for 10 s with dominant oscillation. (a) at time 11:22; and (b) at time 17:04. 

The active power shown in the figure is measured at the substation, and therefore represents 
the power flow. Unlike power plants, it is evident that the power flow of the substations is changing 
rapidly. A large variation of power flow is caused by load changes, power generation fluctuations, 
or the tripping of critical lines. Since no line failure occurred on the day of the rolling blackout, most 
of the power flow changes are likely due to the variation of the load or power generation. 

Figure 3a shows that the variation of active power is about 6 MW, and changes about 1.6% 
based on 369 MW. Figure 3b shows the variation of the active power to be about 7 MW, and that it 
fluctuates about 2.6% based on 268 MW. It can be seen that the fluctuation of the power flow is 
larger in the process of releasing the forced load shedding. 

The power flow measured in steady state contains white noise. However the signals in Figure 3 
show relatively distinct periodic characteristics. These characteristics are caused by the inconsistency 
of the power flow between the regions. Therefore, it can be expected that the generators are 
oscillating with relatively larger amplitudes. 
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4. Examples for the Test Function 

To test the multi-interval parameter estimation method described above, this paper defines the 
damped cosine function as Equation (13): 
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Table 1 shows that the test function consists of three damped sinusoidal functions, and shows 
the parameters of each function. Signals were generated by adding 5% and 30% noise to the cases 
shown in Table 1, respectively. Then, the sampling was set to 1/10 s and 1/60 s, respectively, and 
parameters were estimated for the acquired signals for 10 s. 

Table 1. The exact parameters. 

Case Mode No. 
Mode Residue

αi ωi Αi φi 

1 
A1 0.01 3.85 10.0 30 
A2 0.01 6.28 10.0 60 
A3 0.01 8.50 10.0 30 

2 
B1 0.1 3.85 10.0 30 
B2 0.1 6.28 10.0 60 
B3 0.1 8.50 10.0 30 

In order to compare the accuracy of the algorithm, this paper estimated the parameters 10 
times for all cases. In the multi-interval parameter estimation method, the time interval n = 2 and 
the unknown p = 20 were set. Since random noise was added for every iteration, all of the results 
were slightly different. Figure 4 shows the signals with the sampling and damping coefficients set 
to 1/60 s and −0.01, respectively, with 30% noise added. 

 
Figure 4. Signal with sampling 1/60 s and noise 30%. 

Table 2 shows the estimated modes for case 1 and case 2. The results shown in the table 
represent the average of the modes estimated from the 10 signals with random noise added. 
“ExPRO” in the table means the result obtained by applying the extended Prony method [3,14], 
while “MuPRO” means the result of the multi-interval parameter estimation method proposed in 
this paper. The “dt” means sampling, “noise” is the added random noise, and “error” is the 
deviation of the exact mode and the estimated mode. 
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Table 2. Estimated mode mean and error. 

dt (s) Noise (%) Mode No. 

Estimated Mode Mean Error 

ExPRO MuPRO ExPRO MuPRO 

Real Imag Real Imag Real Imag Real Imag 

1/10 

5 
A1 0.008 3.850 0.011 3.851 0.002 0.000 0.001 0.001 

A2 0.010 6.281 0.010 6.280 0.000 0.001 0.000 0.000 
A3 0.012 8.499 0.013 8.500 0.002 0.001 0.003 0.000 

30 
A1 0.025 3.856 0.043 3.902 0.015 0.006 0.033 0.052 

A2 0.007 6.280 0.019 6.269 0.003 0.000 0.009 0.011 
A3 0.008 8.499 0.002 8.506 0.002 0.001 0.008 0.006 

5 
B1 0.100 3.849 0.101 3.846 0.000 0.001 0.001 0.004 

B2 0.100 6.282 0.101 6.282 0.000 0.002 0.001 0.002 
B3 0.103 8.502 0.098 8.501 0.003 0.002 0.002 0.001 

30 
B1 0.161 3.844 0.138 3.868 0.061 0.006 0.038 0.018 

B2 0.112 6.273 0.130 6.220 0.012 0.007 0.030 0.060 
B3 0.094 8.506 0.081 8.521 0.006 0.006 0.019 0.021 

1/60 

5 
A1 0.144 3.890 0.008 3.848 0.134 0.040 0.002 0.002 

A2 0.317 6.410 0.014 6.271 0.307 0.130 0.004 0.009 
A3 0.078 8.542 0.013 8.503 0.068 0.042 0.003 0.003 

30 
A1 - - 0.034 3.812 - - 0.044 0.038 

A2 - - 0.123 6.161 - - 0.113 0.119 
A3 - - 0.063 8.576 - - 0.053 0.076 

5 
B1 0.361 3.963 0.097 3.843 0.261 0.113 0.003 0.007 

B2 0.742 6.473 0.107 6.264 0.642 0.193 0.007 0.016 
B3 0.250 8.584 0.104 8.507 0.150 0.084 0.004 0.007 

30 
B1 - - 0.062 3.781 - - 0.038 0.069 

B2 - - 0.261 6.114 - - 0.161 0.166 
B3 - - 0.154 8.602 - - 0.054 0.102 

First, if the sampling was 1/10 s, both methods accurately estimated the modes within an 
acceptable tolerance. In the case of sampling 1/60 s and noise of 5%, ExPRO and MuPRO estimated 
the dominant modes included in the signal. However, the mode estimated by MuPRO was 
accurate, whereas the mode estimated by ExPRO had a large error. In the case of sampling 1/60 s 
and noise of 30%, ExPRO did not estimate the important mode included in the signal, but MuPRO 
estimated the important mode within an acceptable tolerance. 

Table 3 shows the damping ratios and errors of the estimated modes. The damping ratio ζi is 
computed from the real part (αi) and the imaginary part (ωi) of the mode shown in Table 2, using 
the following equation: 

100
22





ii

i
i




  (14) 

The results shown in the table represent the average of the damping ratios estimated from the 
10 signals. In the case of sampling 1/10 s, both methods accurately estimated the damping ratio 
within an acceptable tolerance. However, ExPRO estimated the damping ratio more accurately  
than MuPRO. 

In the cases where the sampling and damping coefficients were 1/60 s and −0.01, and the noise 
was 5%, both methods estimated the damping ratio within an acceptable tolerance. However, when 
the sampling and damping coefficients were 1/60 s and −0.1, and the noise was 5%, MuPRO 
accurately estimated the damping ratio, whereas ExPRO did not. 
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Table 3. Estimated damping factor and error. 

dt (s) Noise (%) Mode No. 

Damping Factor

Mean Error 

Exact ExPRO MuPRO ExPRO MuPRO 

1/10 

5 
A1 0.260 0.221 0.288 0.039 0.028 

A2 0.159 0.160 0.156 0.001 0.003 
A3 0.118 0.140 0.156 0.022 0.038 

30 
A1 0.260 0.674 0.874 0.415 0.614 

A2 0.159 0.350 0.600 0.191 0.441 
A3 0.118 0.226 0.329 0.108 0.211 

5 
B1 2.597 2.595 2.613 0.002 0.017 

B2 1.592 1.593 1.611 0.001 0.019 
B3 1.176 1.206 1.157 0.030 0.019 

30 
B1 2.597 4.186 3.558 1.590 0.961 

B2 1.592 1.793 2.096 0.200 0.503 
B3 1.176 1.105 0.950 0.071 0.226 

1/60 

5 
A1 0.260 3.687 0.194 3.427 0.066 

A2 0.159 4.938 0.227 4.779 0.067 
A3 0.118 0.913 0.149 0.796 0.031 

30 
A1 0.260 - 0.951 - 0.691 

A2 0.159 - 1.997 - 1.837 
A3 0.118 - 0.739 - 0.621 

5 
B1 2.597 9.078 2.527 6.481 0.070 

B2 1.592 11.390 1.707 9.798 0.115 
B3 1.176 2.913 1.223 1.737 0.046 

30 
B1 2.597 - 1.640 - 0.957 

B2 1.592 - 4.595 - 3.003 
B3 1.176 - 1.795 - 0.618 

In the case of sampling 1/60 s and noise of 30%, ExPRO did not estimate the damping ratio, but 
MuPRO estimated the damping ratio of the critical mode within an acceptable tolerance. 

Table 4 shows the residue and error of the estimated mode. In the table, “ExPRO” and 
“MuPRO” mean the results obtained by applying the extended Prony method [3] and the  
multi-interval parameter estimation method proposed in this paper. The results shown in the table 
are also the averages of the residues estimated from the 10 signals. 

In the case of sampling 1/10 s, both methods accurately estimated the residue within an 
acceptable tolerance. 

However, when the damping coefficient was −0.1 and the noise was 30%, the residues 
estimated in MuPRO and ExPRO were 11.706 and 13.721, respectively. When the noise was large, it 
can be seen that MuPRO estimated the residue more accurately. 

When the sampling and the noise were at 1/60 s and 5%, respectively, the ExPRO estimated the 
residue with a large error, but MuPRO estimated the residue within an acceptable tolerance. In the 
case of sampling 1/60 s and noise of 30%, the residue was not estimated in ExPRO, while the residue 
in MuPRO was estimated within the tolerance range. 
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Table 4. Estimated residue mean. 

dt (s) Noise (%) Mode No. 

Residue Mean

Mean Error (%) 

Exact ExPRO MuPRO ExPRO MuPRO 

1/10 

5 
A1 10.000 9.931 10.048 0.689 0.482 

A2 10.000 9.998 9.991 0.019 0.088 
A3 10.000 10.088 10.189 0.879 1.886 

30 
A1 10.000 10.804 10.711 8.038 7.114 

A2 10.000 9.689 10.000 3.109 0.002 
A3 10.000 9.849 9.306 1.511 6.945 

5 
B1 10.000 9.991 10.016 0.094 0.156 

B2 10.000 9.944 9.965 0.565 0.350 
B3 10.000 10.080 9.878 0.805 1.217 

30 
B1 10.000 13.721 11.706 37.213 17.060 

B2 10.000 10.237 10.620 2.370 6.198 
B3 10.000 9.367 9.285 6.334 7.151 

1/60 

5 
A1 10.000 15.812 9.904 58.120 0.964 

A2 10.000 19.394 10.169 93.939 1.687 
A3 10.000 13.200 10.124 31.997 1.244 

30 
A1 10.000 - 8.101 - 18.988 

A2 10.000 - 12.273 - 22.735 
A3 10.000 - 11.893 - 18.927 

5 
B1 10.000 16.477 9.963 64.771 0.372 

B2 10.000 19.434 10.228 94.336 2.275 
B3 10.000 13.100 10.096 31.000 0.963 

30 

B1 10.000 - 8.949 - 10.510 

B2 10.000 - 12.704 - 27.042 
B3 10.000 - 10.576 - 5.757 

Table 5 shows the result of the phase estimation. When the sampling was 1/10 s, both methods 
accurately estimated the phase within the tolerance range regardless of the noise and damping 
coefficient, as in the previous cases. However, when the sampling was 1/60 s and the noise was 5%, 
the phase estimated by ExPRO had a large error, whereas the estimated phase in MuPRO was 
accurate within an acceptable tolerance. In the case of sampling 1/60 s and noise of 30%, ExPRO 
could not estimate the phase. On the other hand, MuPRO estimated the phase approximately. 

Table 6 shows the signal-to-noise ratio (SNR). The SNR shown in the table is computed by the 
following Equation (15) [9]: 

)(ˆ)(
)(

log20
nyny

ny
SNR


  (15) 

where, )(ny  and )(ˆ ny  are the estimated signals and measured signals, and .  is the mean 

square root. The larger the SNR, the more accurately the signal is estimated. 
Table 6 shows that ExPRO had a larger SNR at sampling 1/10 s, but there was no significant 

difference. However, at sampling 1/60 s, the SNR in MuPRO was much larger. In particular, when 
the noise was 30%, the SNR in ExPRO was very small, and it was hard to estimate the parameter. 
On the other hand, it can be seen that the SNR in MuPRO had a relatively large value, so that the 
parameters were estimated more accurately. 
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Table 5. Estimated phase mean. 

dt (s) Noise (%) Mode No. 

Phase Mean

Mean Error (%) 

Exact ExPRO MuPRO ExPRO MuPRO 

1/10 

5 
A1 30.000 30.037 29.848 0.123 0.507 

A2 60.000 59.868 60.218 0.220 0.363 
A3 30.000 30.385 29.814 1.283 0.620 

30 
A1 30.000 27.509 27.862 8.303 7.127 

A2 60.000 60.423 63.827 0.705 6.378 
A3 30.000 28.487 25.760 5.043 14.133 

5 
B1 30.000 29.869 30.878 0.437 2.927 

B2 60.000 58.878 58.990 1.870 1.683 
B3 30.000 29.441 29.841 1.863 0.530 

30 
B1 30.000 31.024 31.814 3.415 6.048 

B2 60.000 57.696 65.211 3.841 8.685 
B3 30.000 28.924 28.784 3.585 4.052 

1/60 

5 
A1 30.000 16.284 30.517 45.720 1.723 

A2 60.000 42.052 62.578 29.913 4.297 
A3 30.000 23.010 29.092 23.300 3.027 

30 
A1 30.000 - 38.835 - 29.450 
A2 60.000 - 73.043 - 21.738 
A3 30.000 - 18.874 - 37.087 

5 
B1 30.000 7.883 31.153 73.723 3.843 

B2 60.000 51.516 63.375 14.140 5.625 
B3 30.000 25.353 28.529 15.490 4.903 

30 
B1 30.000 - 43.579 - 45.263 
B2 60.000 - 86.115 - 43.525 
B3 30.000 - 12.039 - 59.870 

Table 6. Comparison of signal-to-noise (SNR) ratio. 

dt (s) αi Noise (%) 
SNR Mean

ExPRO MuPRO 

1/10 
−0.01 

5 71.512 67.158 
30 37.909 32.328 

−0.1 
5 64.283 61.155 

30 30.425 28.394 

1/60 
−0.01 

5 15.788 63.533 
30 1.524 21.397 

−0.1 
5 11.290 55.079 

30 2.605 19.169 

4.1. Mode and Residue Comparison 

Figures 5 and 6 represent the estimated mode and residue for 10 signals with 5% random noise 
added. In the figure, “*” indicates the correct mode, and “O” and “X” indicate the parameters 
estimated by MuPRO and ExPRO, respectively. 

Figure 5 shows the mode and the residue for sampling 1/10 s and damping coefficient −0.1. 
Both methods estimated the exact parameters, but ExPRO estimated the modes more accurately 
than MuPRO. However, all the estimated results were within the tolerance range. 

Figure 6 shows the mode and the residue for sampling 1/60 s and damping coefficient −0.01. 
The figure shows that MuPRO estimated the mode and residue more accurately than ExPRO. 
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(a) (b)

Figure 5. Distribution of mode and residue (sampling 1/10 s, α = −0.1). (a) Mode; and (b) residue. 

 
(a) (b)

Figure 6. Distribution of mode and residue (sampling 1/60 s, α = −0.01). (a) Mode; and (b) residue. 

4.2. Estimation Signal Comparison 

Figures 7 and 8 represent the comparison between the estimated signal and the original signal. 
Figure 7a,b show the signals estimated by ExPRO and MuPRO when the sampling was 1/10 s and 
the damping coefficient was −0.01, respectively, and the original signal. In this case, the sampling 
was relatively properly chosen, and both methods accurately estimated the signal. 

 
(a) (b)

Figure 7. Comparison of the original and estimation signal (sampling 1/10 s, α = −0.1). (a) ExPRO; 
and (b) MuPRO. 

Figure 8a,b show the signals estimated by ExPRO and MuPRO when the sampling was 1/60 s 
and the damping coefficient was −0.01, respectively, and the original signal. It can be seen that the 
signal estimated by MuPRO was much more accurate than the signal estimated by ExPRO. The 
signal estimated by MuPRO was estimated similarly for the whole time interval. However, the 
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signal estimated by ExPRO was initially approximated, but it can be seen that an error occurred 
over time. 

 
(a) (b)

Figure 8. Comparison of the original and estimation signal (sampling 1/60 s, α = −0.01). (a) ExPRO; and  
(b) MuPRO. 

4.3. Signal-to-Noise Ratio Comparison 

Figure 9 shows the SNR computed by Equation (15). Each figure is the SNR computed for the 
signal with 5% random noise added. 

Figure 9a shows the SNR computed when the sampling was 1/10 s and the damping coefficient 
was −0.1. In the figure, “X” and “O” represent the SNR estimated by ExPRO and MuPRO, 
respectively. Figure 9a shows that the SNR of the signal estimated by ExPRO was larger than the 
SNR estimated by MuPRO. However, both methods had a large SNR, and thus accurately estimated 
the signal. 

Figure 9b shows the SNR estimated by ExPRO and MuPRO when the sampling was 1/60 s and 
the damping coefficient was −0.01. The figure shows that the SNR estimated by MuPRO was much 
larger than the SNR estimated by ExPRO. This shows that MuPRO estimated the parameters more 
accurately when the sampling was 1/60 s. 

 
(a) (b)

Figure 9. Signal-to-noise ratio. (a) Sampling 1/10 s, α = −0.1; and (b) sampling 1/60 s, α= −0.01. 

5. Results of the KEPCO System 

The rolling blackout implemented in the KEPCO system in September 2011 was a relatively 
long-lasting failure. The actual rolling blackout started at 15:11 with forced load shedding, and 
ended at 19:56 [29]. 

However, in terms of system operation, it is necessary to analyze the system from the time 
when the frequency fluctuation starts to occur due to the reserve power shortage, rather than the 
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load shedding. At 10:50, the reserve power decreased to less than 4 million kW. Considered from 
this time, the rolling blackout can be treated as a system failure that lasted for 9 h. 

In this paper, spectral analysis and mode analysis are applied to the PMU data measured at the 
East Seoul substation on the day of the rolling blackout. Since the PMU data was measured at the 
substation, the cross spectral density (CSD) is meaningless. Therefore, only the power spectral 
density (PSD) is applied to analyze the rolling blackout. 

Figure 10 shows the PSD computed from the power flow measured on the day of the rolling 
blackout. The figure represents the power spectrum magnitude and frequency from 10:30 to 18:00 
during the rolling blackout. In the figure, the power spectral density of 0.68 Hz was very large.  
The oscillation of the frequency 0.68 Hz continued from 11:20 to 11:45. At this time, the power flow 
fluctuated greatly. 

 
Figure 10. Power spectral density of the power flow measured during the rolling blackout. 

The frequency 0.68 Hz is a typical wide area mode frequency, but it is difficult to determine the 
exact cause of the oscillation, because no data was measured in the power plant. However, at this 
time there was an attempt to insert a small generator into the grid. Therefore, there is a high 
possibility that the system was fluctuating due to an inappropriate generator insertion in the 
absence of generation capacity. These oscillations are critical to system operation, because such a 
wide area oscillation can cause a blackout, and there is no clear countermeasure against it. If forced 
load shedding is applied according to the system frequency drop such as a rolling blackout, the 
load shedding should be executed, so that the wide area mode is not activated. After 17:00, the 
power spectrum density near the frequency 0.55 Hz was large during the process of load 
restoration. Therefore, it can be seen that the load restoration should be performed properly. 

Figures 11 and 12 represent the parameters estimated by applying the extended Prony method 
(ExPRO) and the multi-interval parameter estimation method (MuPRO) for the power flow 
measured by the PMU on the day of the rolling blackout. The time interval and the shifting time 
were set to 10 s and 1 s, respectively. The sampling rate was set to 1/10 s, and the parameters were 
continuously estimated for the 40 minute data. In the multi-interval parameter estimation method, 
the time interval were set to 5 s (n = 2). The modes and residues shown in the figure are expressed 
only when the SNR was more than 10 dB. 

Figure 11a shows the mode estimated by ExPRO, where the real part of the mode is the x-axis, 
and the imaginary part is the y-axis. Figure 11b shows the residue magnitude with respect to the 
frequency. In both the mode and the residue, the dots are concentrated around the frequency  
0.68 Hz. Figure 12a,b show the mode and residue magnitude estimated by MuPRO proposed in this 
paper. In this case, the dots are also concentrated near the frequency 0.68 Hz. 
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(a) (b)

Figure 11. Distribution of the mode and residue estimated by ExPRO. (a) Mode; and (b) residue. 

 
(a) (b)

Figure 12. Distribution of the mode and residue estimated by MuPRO. (a) Mode; and (b) residue. 

These results are similar to the results of the power spectrum shown in Figure 10. Therefore, it 
can be seen that the dominant mode of low frequency oscillation that occurred at 11:20 on the day 
of the rolling blackout was 0.68 Hz. 

Figures 11 and 12 show that MuPRO estimated many more modes than ExPRO. Each figure 
shows the modes where the SNR was more than 10 dB. Therefore, MuPRO estimated the mode 
more accurately than ExPRO. 

Table 7 shows the number of SNRs computed from the estimated parameters. For the time 
interval T = 10 s, the SNR of 1,195 was computed. When T = 20 s, the SNR of 1,190 was computed. 

Table 7. SNR Number (shift time = 1.0 s, time = 40 min). 

Method dt (s) T (s) 
SNR 

5 10 15 20 25 30 35 

ExPRO 

1/30 10 
872 233 62 22 4 2 0 

73.0% 19.5% 5.2% 1.8% 0.3% 0.2% - 

1/10 10 
860 248 58 22 4 3 0 

72.0% 20.8% 4.9% 1.8% 0.3% 0.3% - 

1/10 20 
1039 135 16 0 0 0 0 

87.3% 11.3% 1.3% - - - - 

MuPRO 

1/30 10 
100 363 409 230 60 24 9 

8.4% 30.4% 34.2% 19.2% 5.0% 2.0% 0.8% 

1/10 10 
96 352 419 231 63 26 8 

8.0% 29.5% 35.1% 19.3% 5.3% 2.2% 0.7% 

1/10 20 
83 376 408 202 84 26 11 

7.0% 31.6% 34.3% 17.0% 7.1% 2.2% 0.9% 
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The table shows that more than 70% of the SNR computed by ExPRO was less than 5 dB. 
However, in MuPRO, more than 50% of the SNR was larger than 10 dB. This shows that the 
MuPRO estimated the parameters more accurately than ExPRO, even for the data acquired in the 
real system. Figure 13 represents the results shown in Table 7, which shows that MuPRO estimated 
the parameters much more accurately than ExPRO. 

 
(a) (b)

Figure 13. Distribution of SNR (dt = 1/10 s, T = 20.0 s, time = 11:10–11:50). (a) ExPRO; and (b) MuPRO. 

6. Summary and Discussion 

This paper describes the multi-interval parameter estimation method and its application 
results. The proposed algorithm was applied to the test function and the data was measured by the 
PMU installed in the KEPCO system. The parameters were estimated for changes in sampling, 
noise, and damping coefficients. Random noise was added to the given condition, the parameters 
were estimated 10 times, and the results were compared. 

Neither the MuPRO nor ExPRO were sensitive to changes in the damping coefficient. Both 
methods also estimated the parameters within an acceptable tolerance for noise. However, when 
the sampling was 1/60 s and the noise was small, MuPRO accurately estimated the parameter, but 
ExPRO inaccurately estimated it. When the sampling was 1/60 s and the noise was large, ExPRO 
did not estimate the dominant parameter, but MuPRO accurately estimated the parameter. It can be 
seen that the proposed multi-interval parameter estimation method robustly estimates the 
parameters for noise and sampling. 

The proposed method was applied to the data acquired during a rolling blackout of the 
KEPCO system. We repeatedly estimated the parameters by shifting the time interval. As a result, 
the SNR of MuPRO was larger than the SNR of ExPRO. MuPRO more accurately estimates the 
parameters for the data acquired from the actual system. 

The signal measured in the power system includes random noise. The power system has 
inherent low frequency oscillation. Additionally, since the oscillation mode of the system cannot be 
accurately known, it is difficult to select the optimum sampling. Therefore, the multi-interval 
parameter estimation method is robust to noise and sampling, and thus it is more reliable in 
estimating the dominant oscillation modes in the power system. 

7. Conclusions 

This paper describes a multi-interval parameter estimation method that simultaneously 
considers multiple time intervals. When multiple polynomials of the same order have the same root, 
this same root is included in the new polynomial obtained by summation of the similar term 
coefficients of the polynomials. Therefore, if the same mode exists in multiple time intervals, a new 
multi-interval prediction error polynomial can be formed by adding the coefficients of the 
prediction error polynomials that correspond to each time interval. 

The root of the multi-interval prediction error polynomial includes the important mode 
included in each time interval. Therefore, it is possible to estimate the dominant parameters 
included in multiple time intervals with one unknown calculation. 
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The multi-interval parameter estimation method is a very efficient algorithm in terms of 
accuracy and reliability, and is an algorithm suitable for low frequency oscillation analysis of the 
power system. The algorithm of the proposed multi-interval parameter estimation method was 
applied to the test function and to the data acquired from the PMU installed in the KEPCO system. 
As a result, it is confirmed that the multi-interval parameter estimation method accurately and 
reliably estimates important parameters. 
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