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Abstract: Assessment of dynamic stability in a modern power system (PS) is becoming a stringent
requirement both in operational planning and in on-line operation, due to the increasingly
complex dynamics of a PS. Further, growing uncertainties in forecast state and in the response to
disturbances suggests the adoption of risk-based approaches in Dynamic Security Assessment (DSA).
The present paper describes a probabilistic risk-based DSA, which provides instability risk indicators
by combining an innovative probabilistic hazard/vulnerability analysis with the assessment of
contingency impacts via time domain simulation. The tool implementing the method can be applied
to both current and forecast PS states, the latter characterized in terms of renewable and load forecast
uncertainties, providing valuable results for operation and operational planning contexts. Some
results from a real PS model are discussed.
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1. Introduction

The increasing complexity of power system (PS) dynamics, due to the penetration of
non-synchronously connected generation, make the assessment of instability phenomena a
fundamental need in security analyses, both in real time operation and in operational planning.
Moreover, the need to address multiple contingencies, potentially leading to widespread blackouts,
suggests Transmission System Operators (TSOs) adopting risk-based approaches [1] to assess power
system (PS) security.

Probabilistic risk-based approaches have been adopted for many decades in power system
planning [2], but are relatively new in security assessment for operational context, where the N-1
criterion is still deemed to be a good tradeoff between completeness and computational time. Though
several risk-based approaches to security assessment have been proposed by researchers in the last few
years [3–10], the risk concept has been introduced only very recently by a few operational standards to
deal with extreme events affecting an uncertain PS [11–13].

Many risk-based tools only deal with static impact of a contingency (in terms of post-contingency
steady-state high currents or low voltages). Applying risk-based approaches to Dynamic Security
Assessment (DSA) is more challenging because dynamic models are quite more complex to deal with
(analysis techniques are less flexible and computation effort is higher); moreover, the outcome of a
contingency does not only depend on the affected components and initial system state, but also on
control and protection system parameters, as well as fault type, location, and clearing sequence. In [3],
a transient stability margin from Potential Energy Boundary Surface (PEBS) theory is used to quantify
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the impact of a contingency on transient stability. Risk-based approaches are suitable to study the
effects of uncertainties which affect both the system state (in operational planning studies) and the
PS response to disturbances (major sources of uncertainties in on-line operation where the system
state is “known” with good approximation). In particular, Intelligent Systems (IS) and fuzzy inference
can be exploited in the context of dynamic security assessment under uncertainties for operational
planning studies: reference [6] proposes an Artificial Neural Network (ANN) based method to quickly
estimate the long-term voltage stability margin. In [7], the authors present an innovative IS based
on Extreme Learning Machines, which learns very fast and provides an estimate to the credibility of
its DSA results, allowing accurate and reliable results in pre-fault DSA analyses, thus avoiding long
time-domain simulations in online sessions. In [8], a hierarchical IS, the ensemble learning strategy
based on Neural Nets with random weights, is proposed to analyze short term voltage stability. In [9],
a Monte Carlo method is used to get the pdf’s of small and large disturbance rotor angle stability
indicators, considering load and generation and fault-specific uncertainties; the pdf’s are subsequently
decomposed into regions based on user-defined thresholds and the outputs of this decomposition
are analyzed using a fuzzy inference system to complete a stability assessment. In [10], a very large
amount of dynamic simulations are performed to train Decision Trees and generate security rules
which are then used for security assessment for on-line operation.

This paper presents the innovative Risk-Based Dynamic Security Assessment (RB-DSA) approach
developed within the EU FP7 Project AFTER (A Framework for electrical power sysTems vulnerability
identification, dEfense and Restoration). The aim of RB-DSA is to quantify the risk of instability
phenomena in the system due to a set of critical, single, and multiple (also dependent) contingencies
selected on the basis of the threat scenarios affecting a given current (or forecast) operating point.
Thus, the RB-DSA represents an important step forward with respect to more conventional risk-based
approach, such as [3], because the proposed methodology does not compute the failure probabilities
from historical records but from short-term forecasts of hazards and from vulnerability curves of
components, thus linking Hazard Analysis to Contingency Planning, which up to now have been
considered as separate “problems”. This is also an added value with respect to IS systems: In fact,
the IS training set is built starting from a plausible PS states elaborated on the basis of historical data,
which does not assure the good performance of such tools in case of inadvertent “new” states occurring
in the future.

The paper is organized as follows: Section 2 illustrates the risk-based dynamic security assessment
tool developed in the AFTER project. Section 3 presents the indicators used to quantify the impact and
risk of contingencies on a power system. Section 4 describes the test system under study and discusses
some simulation results. Section 5 concludes the paper.

2. The AFTER Risk-Based Dynamic Security Assessment Framework

The fundamentals of the AFTER methodology and tool are presented in [14]. Following a
brief overview of the AFTER risk assessment framework, the section presents the main features of the
developed RB-DSA methodology and tool. The tool can be applied to a forecast (uncertain) or a specific
(current or known) PS state, thus focusing on both operation and operational planning applications.

2.1. AFTER Methodology and Tool

The probabilistic risk assessment methodology developed within AFTER [15,16] is based on the
conceptual bow-tie model describing the relations between causes and consequences of unwanted
events. Figure 1 shows an example where the main unwanted events are contingencies potentially
leading to cascading and blackouts, i.e., with severe (major, critical, or catastrophic) consequences.

The left side shows the adopted threat classification, which distinguishes natural from man-related
threats, both of them are classified as internal or external to the power system: the man-related ones
are further divided into intentional (sabotage, etc.) or unintentional (human error). Threats may lead
to a contingency through a set of causes exploiting vulnerabilities, while the contingency may lead
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to different consequences (impacts) through a set of circumstances. The initial impact may in turn
affect other vulnerabilities, incepting a cascading process that finally results in a blackout. The hazard
analysis performed in the AFTER framework provides a coherent framework where different hazards
(each one usually managed with its own “ad hoc” models and assumptions) are modelled via a unique
mathematical formulation. Moreover, its outcomes are the inputs for the next modules aimed at
assessing the power system security, thus reproducing the straightforward causal process from hazards
to disturbances. Figure 2 shows the architecture of the prototype, developed in MATLAB environment
and aimed to power and Information Communication Technology (ICT) risk assessment.
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In the proposed modeling framework, a threat can affect different vulnerabilities of power-ICT
components by activating stress variables (i.e., the physical quantities through which the threat affects
the component vulnerabilities). For example, a tornado induces additional mechanical forces to
transmission line pylons; the stress may in turn cause the failure of a component.
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Vulnerability can be mathematically interpreted as the conditional probability of failure of a
component given the occurrence of a specific threat. In turn, any threat can also be described in
probabilistic terms; e.g., the probability of a natural threat, such as lightning or a fire, depends on the
weather or environmental conditions at the time of the event.

Based on the above, the computation of component failure probability is performed making use
of threat and vulnerability probabilistic models. In module F (Figure 2), all components are ranked
based on their failure probability PF. The “critical components”, defined as the ones “explaining”
the largest fraction of total failure probability, are identified. To this aim a cumulative sum screening
technique [17] is used, which works as follows:

1. Rank failure probability of all components into decreasing order, creating a map C(l) = l′ between

l and l′ (indexes of original and ordered components) s.t. P(l′)
F > P(l′−1)

F .

2. Calculate the cumulative sum for each ordered component with index l′ F(l′) =
l′

∑
h=1

P(h)
F .

3. Find line lTOT whose F minimizes
∣∣∣∣F(lTOT)− α

N
∑

i=1
P(i)

F

∣∣∣∣ where α, the coefficient of the sum of

failure probabilities of all components, is called “fraction of explained total failure probability”.

4. Get minimum failure probability threshold PF
TOT as: PTOT

F = PC−1(lTOT)
F .

5. Select components with failure probability higher than PF
TOT.

The generic “contingency” at the system level consists of the failure of one or more components.
Starting from critical components, an enumeration technique is adopted in module C to generate a
large set of single and multiple (also common mode and dependent) contingencies, including busbar
or half-busbar faults, power plant outages, and double circuit outages. In a preliminary screening
phase the risk associated to each contingency is computed by combining contingency probability
with a fast evaluation of the impact, based on topological or DC load flow-based metrics. Only those
contingencies which show a risk value higher than a minimum risk threshold are analyzed in detail
by both power flow based analyses and dynamic simulations run in module R: the results of these
analyses are synthetized in impact indices in module I.

The final outcome consists of impact-based and risk-based ranking lists of contingencies. In case of
a forecast PS state, the tool provides the Complementary Cumulative Distribution Curves (CCDFs) of
the risk indicators. In particular, the RB-DSA tool evaluates the severity of the contingency with respect
to angle voltage and frequency dynamics by calculating dynamic impact indicators and combining
them with contingency probability.

2.2. Failure Probability Assessment: Validation and Data Availability

The characterization of the probabilistic models is one of the main barriers for the application of
probabilistic techniques in real world power system operation. In this regard, reference [16] collects
references which provide guidelines for statistical analyses of historical data and for the development
of probabilistic models related to different threats and vulnerabilities (from transmission equipment
to distribution networks), with special focus on long/medium term horizons. Instead, short term
models of threats, like the ones modeled in the present paper, are tuned considering measurements of
stress variables (e.g., wind speed, precipitation rate, etc.), available from technical disturbance reports
concerning specific “real life” weather/environmental hazards.

Some interesting results have been derived from benchmarking the threat and vulnerability
probabilistic models relevant to lightning against real world data. As an example, from statistical
analysis of real data [18], the yearly average failure rate λyearly_average of a 220 kV transmission line for
the Italian system is 3.5 × 10−10 failures/(km·s). Assuming 15 h of severe storms, in the region under
study, allows for estimation of the failure rate λBadWeather over “bad weather” quarters of an hour:

λBadWeather · 15× 4[quarters of hour] = λyearly_average · 365× 24× 3600 = 1.8× 10−4 nr flashes/(km · quarter of hour)
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This means 5.4 × 10−5 failures/(quarter of hour) for any span of a line (assuming a 300 m long
span for a 220 kV line). The simulation of a severe lightning storm was performed by the AFTER tool
on a realistic 220 kV test grid, assuming a flash-to-ground density of 3.2 flashes/(h·km2), i.e., a realistic
value for severe storms as in [17]. Results shows that the maximum 10 min failure probability over the
most exposed 300 m long span of a 220 kV line is 3.6 × 10−5 failures/(10 min), in good accordance
with estimates from historical data.

2.3. Contingency Definition in Dynamics

In dynamic simulations, a contingency is characterized by more elements than in load flow-based
analyses. In fact, besides the components that are in outage and the PS state, the features which affect
the dynamic response are:

1. Specific parameters of the fault (location, type, duration).
2. Control, protection, and defense systems (which affect the behavior over fault-on and

post-fault periods).

With regard to point 1, the proposed RB-DSA exploits the probabilistic models of component
vulnerabilities and of the threats affecting the current (or forecasted) system state, to perform a
probability-based filtering of the most critical components: this drives the choice of the contingency
generation, thus, the location of the faults to be investigated by the RB-DSA. The simulations herein
presented only consider three-phase faults but this is not a limitation for the tool which can simulate
any type of symmetric and a-symmetric faults.

As for point 2, the severity is mainly determined by the behavior of control and protection systems
in the fault-on and post-fault periods. This aspect is not thoroughly tackled by other risk-based DSA
approaches [3]. The clearing time depends on the typical TSO settings of primary and back-up
protections [19]. In particular, Table 1 reports the different types of busbar and branch contingencies
which differ for the behavior of primary and back-up protections in clearing the fault. The time domain
simulator evaluates the system dynamic response in the first seconds after each contingency, including
primary and back up protection logics, i.e., the Bus Differential Protection (BDP), distance relays
(zones 1 and 2), overcurrent protection for transformers, and breaker failure device [19].

The failure probabilities of involved components (ptr2, pl and psb respectively for transformers,
lines and busbars) are calculated from hazard/vulnerability analysis, while the “fail on command”
probabilities (pCBj, p_bdpj, p_dsj, p_ptj and p_BDP respectively for Circuit Breaker (CB), BDP signal,
distance protection signal, transformer protection signal to component j, and BDP operation) are
retrieved from literature [20]. K stands for bus coupler.

Table 1. Definition of dynamic contingencies in the RB-DSA AFTER tool.

Contingency ID
Description Probability ICT Failure/

Stuck Breaker Action

Busbar fault with correct
operation of all CBs and BDP

psb/2 × [Πj(1 − pCBj)] ×
(1 − pK) × [Πj(1 − p_bdpj)] ×
(1 − p_bdpK) × (1 − pBDP)

NO Intervention of BDP

Busbar fault with
malfunction of
one signal to a CB

psb/2 × p_bdpj ×
(1 − pCBj) × (1 − pBDP)

for any j

YES, missing
signal to a CB

Intervention of BDP and breaker
failure device on one CB

Busbar fault with
one stuck breaker

psb/2 × pCBj × (1 − pBDP)
for any j YES, one CB stuck Intervention of BDP and back

up protection for one CB

Busbar fault with missing
signal to K

psb/2 × (1 − pK) ×
p_bdpK × (1 − pBDP)

for any half-busbar

YES, missing
signal to K

Intervention of BDP for faulty
half-busbar + back-up
protections for components of
safe half-busbar
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Table 1. Cont.

Contingency ID
Description Probability ICT Failure/

Stuck Breaker Action

Busbar fault with stuck K psb/2 × pK × (1 − pBDP)
for any half-busbar YES, stuck K

Intervention of BDP for faulty
half-busbar + breaker failure
device for components of
safe half-busbar

Busbar fault with BDP
out of service

psb/2 × pBDP
for any half-busbar

YES, BDP out
of service

Intervention of all backup
protections for all components at
two half-busbars

Line fault pl × (1 − pCBj) × (1 − p_dsj) NO
Opening of faulty line
with distance
protections + telepiloting

Transfo fault ptr2 × (1 − pCBj) ×
(1 − p_ptj) NO

Opening of faulty transformer
with overcurrent/
differential protections

Line fault with stuck breaker plj × pCBj
for any line j YES, stuck breaker

Intervention of breaker failure
device for all safe CBs and
backup protection intervention
for faulty CB

Line fault with missing
tripping signal from distance
protection (telepiloting)

plj × (1 − pCBj) ×p_dsj
for any line j

YES, missing
signal

Intervention of back-up
protections for components of
the whole substation connected
the faulty component

transfo fault with
stuck breaker

ptr2j × pCBj
for any transfo j YES, stuck breaker

Intervention of breaker failure
device for all safe CBs and
backup protection intervention
for faulty CB

transfo fault with missing
signal from overcurrent/
differential protection

ptr2j × (1 − pCBj) × p_ptj
for any transfo j

YES,
missing signal

Intervention of back-up
protections for components of
the whole substation connected
the faulty component

3. Contingency Impact and Risk Assessment

The impact of each of the contingencies is evaluated in terms of three dynamic severity indexes,
respectively related to angle, over- and under-voltage, and frequency instabilities. Impact indicators are
based on rotor angle, bus voltage, or mean frequency deviations. Dynamic risk indexes are defined as
the expected value of the contingency impact and are calculated by combining contingency probability
and impact. Risk and impact indicators can be used to rank contingencies, to focus operators’ attention
on those events which may jeopardize the PS stability in the operating point under analysis.

3.1. Transient Stability Impact

Angle impact indicators consist in integral metrics measuring the “cumulated” displacements,
over time, between rotor angles and center of inertia angle weighted on generator inertia constants:
machine angles are obtained by the time domain simulator. In particular, the Integral Squared
Generator Angle (ISGA) [21] indicator is adopted:

ISGA =
1

MTOTT

t0+T∫
t0

Ng

∑
i=1

Mi(δi − δCOA)
2dτ (1)

where δi is the i-th machine rotor angle, δCOA =

Ng
∑

i=1
Mi ·δi

MTOT
is the Center Of Angles (COA), Mi = 2 × Hi

with Hi = the i-th machine inertia constant on the system base, and MTOT =
Ng
∑

i=1
Mi, Ng is the number
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of generators belonging to the same electrical island. T is the time window (s) and t0 is the initial
time instant.

3.2. Voltage Stability Impact

Voltage impact indicators consist of integral metrics measuring the “cumulated” displacements,
over time, between node voltages and maximum/minimum voltage security limits weighted on node
nominal voltages: voltages are obtained by the time domain simulator. The adopted Dynamic Under
Voltage (DUV) and Dynamic Over Voltage (DOV) indexes are shown in Equation (2) and represents
the mean under- and over-voltage deviations over a time window T starting from time instant t0 [22].

DUV =
1

T
Nn
∑

h=1
Vnom,h

t0+T∫
t0

Nn

∑
h=1

Vnom,h ·max(0,−vh(τ) + Vmin,h)dτ

DOV =
1

T
Nn
∑

h=1
Vnom,h

t0+T∫
t0

Nn

∑
h=1

Vnom,h ·max(0, vh(τ)−Vmax,h)dτ

(2)

where vh(τ), Vmax,h, Vmin,h are respectively the voltage, the maximum threshold and the minimum
threshold for h-th node. A reasonable range for Vmin,h can be given by the typical settings used by
TSOs for under-voltage load shedding activation (0.85–0.89 p.u.). Vmax,h is set considering the upper
limits of voltage operational range for motors and generators (1.15–1.20 p.u.).

3.3. Frequency Stability Impact

System frequency can be evaluated as the weighted average of machine angles in the same
electrical island, where weights are the inertia constants on the system base. However, the presence of
transients due to faults can alter the assessment of the slower frequency dynamics of interest. To filter
out these transients, the RB-DSA calculates a moving average on a 500 ms window of the two signals:

frequency f and frequency time derivative df /dt. The results are the mean average
_
f and the Rate of

Change of Frequency (ROCOF). The severity frequency indicators are defined as follows [23]:

I_FMIN = max

(
0, 1

DFDOWN+deadb f ×
((

min
_
f

f<1
− 1

)
+ deadb f

))

I_FMAX = max

(
0, 1

DFUP−deadb f ×
((

max
_
f

f>1
− 1

)
− deadb f

))
I_ROCOF_DOWN = max

(
0, 1

ROCOFDOWN+minROCOF ×
((

minROCOF
ROCOF<0

)
+ minROCOF

))
I_ROCOF_UP = max

(
0, 1

ROCOFUP−minROCOF ×
((

maxROCOF
ROCOF>0

)
−minROCOF

))
(3)

where deadbf, DFDOWN and DFUP are respectively the mean frequency sensitivity band, the max
admissible under-frequency and over-frequency deviation according to TSO standards, while min
ROCOF, ROCOFDOWN and ROCOFUP are respectively the ROCOF sensitivity band, the max admissible
downward and upward ROCOF deviation.

3.4. Risk Indicators

In general terms, risk is defined by the set of possible events (“contingencies”), their probability of
occurrence, and their impact on the system. More specifically, risk is quantified as the expected values
of the impact of a contingency (or a set of contingencies). With such a definition, contingency risk
indicators are simply calculated by multiplying the impact indicators with contingency probabilities
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found in Subsection II.B. Risk indicators may refer to a set of contingencies deemed as dangerous under
specific weather/environmental conditions (total risk indicators) or to one contingency (individual risk
indicators): The former indexes measures the overall risk of the PS exposure to dynamic instabilities,
the latter ones are useful to rank contingencies and focus operators’ attention on the most risky events.

3.5. Assessing the Effect of Uncertaintites on Forecast PS State

At the operational planning stage, the RB-DSA can be used to assess dynamic risk over a “forecast”
operating point, given k-hour ahead renewable and load forecasts. In particular, the goal is to answer
the following question: How does the operational risk of a PS subjected to a set of contingencies
depend on the forecast error distributions of Renewable Energy Sources (RES) production and load
absorptions available k hours ahead?

To this aim, the RB-DSA exploits the Point Estimate Method (PEM) and Third Order Polynomial
Normal Transformation (TPNT) to generate a set of PS states starting from the marginal probability
distributions of the stochastic INPUTS (k-hour ahead forecast errors of the RES injections and load
absorptions) and their correlation. Then, the RB-DSA runs impact and risk assessment on each of
the abovementioned states. The results consist of probability distributions of dynamic risk indicators
(on the whole contingency set and/or for each contingency) and provide alarms in case of a too high
probability that exceeds max risk limits.

In the present models, the standard deviation of RES generation forecast errors depends on the
level of aggregation and geographic extension of RES, and by the forecast horizon under investigation.
The standard deviation associated with load forecasts is usually very low (typically 1–4% of the rated
power). In general, the k-hour ahead forecast error distributions for RES (solar and wind plants)
can be derived from climatological models or from more advanced models like ensemble forecasts.
The non-symmetry of the RES forecast errors, derived from statistical analyses of historical data,
suggests the use of non-symmetric distributions (like beta distributions), see also [24].

Dependence among inputs is tackled using the Third Order Polynomial normal transformation.
More details about this technique can be found in Appendix A.

3.6. RB-DSA Outcomes

The typical outcomes of the RB-DSA tool consists of:

• Risk and impact based ranking lists of contingencies, to focus operators’ attention and let them
deploy suitable corrective actions, for on-line operation applications.

• Complementary Cumulative Distribution Functions (CCDF), i.e., the probability of overcoming
a certain x-value) for risk and impact indicators referred to the whole threat scenario (global
indicators) or to each contingency (individual indicators), useful for operational planners.

The accuracy of the RB-DSA results essentially depend on the accuracy of (1) contingency
probability, (2) the system response to the contingencies, and (3) the uncertainties on the PS state.
Section 2.2 has demonstrated the good match between short-term single outage probabilities with
real-world available data for a “lightning” threat. Standard impact indicators already proposed and
validated in literature are used to quantify the impact of contingencies. As far as item (3) is concerned,
the PEM method combined with TPNT transformation (used to model uncertainties on PS state) has
been validated by the authors against the Monte Carlo method in [24], demonstrating a good match
between the probability densities of risk indicators evaluated by the two methods.

4. Test System and Simulation Results

This section presents the results of the RB-DSA application on a model of a realistic
220/400 kV system.
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4.1. Test System and Simulation cases

The test system represents a portion of the Italian Extra High Voltage (EHV) grid in a high load
operating condition (autumn peak load) in the early 2000s. The power system includes 80 lines,
70 electrical nodes, and 20 generators. The dynamic model of the test grid includes the 6th order
model of synchronous machines, their prime movers with governors, and their automatic voltage
controls and exciters. As RES are usually interfaced with the bulk systems through power electronics,
the displacement of much of the power from conventional units to renewables determines a lower
system inertia, which affects both angle stability and frequency stability. Moreover, voltage stability
properties can change as a result of the voltage controls enabled by converters (especially those with
Voltage Source Converter (VSC) technology). The time-domain simulator allows for representation
of the RES with different levels of detail: from a simple injection with constant P (active power) and
Q (reactive power), to a more refined VSC model including the inner (current) and outer control
loops of the typical Park’s transformation based controller [25]. In both cases, the dynamics of the
specific RES “behind” the VSC is neglected, which can be a reasonable assumption due to the brevity
(a few seconds) of the time interval for simulations.

The abovementioned operating state represents the “current” system state for the simulation
cases describing the RB-DSA applications to on-line operation sessions. In this context uncertainties
only concern the occurrence of contingencies over a future short time interval (10–15 min).

In operational planning applications of the RB-DSA, the available operating state is the “forecast”
state available k hours ahead and subjected to RES and load forecast uncertainties. To simulate these
uncertainties in the presented simulations, some changes have been performed on the system: two
hydro units at the ANPP power plant and one thermal unit at the TIMP power plant have been
respectively replaced with two aggregated wind farm injections and one equivalent solar power
injection with the same ratings. Moreover, a stochastic load is modeled at one 150 kV busbar of the
CMRP substation. “ANPP”, “TIMP” and “CMRP” are few examples of identification code for the
grid substations. Figure 3 shows the RES and stochastic load connection points to the grid and the
identification codes for the substations mentioned in the analyses.
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analysis and location of stochastic load and RES injections.

The resulting difference between the generators’ injections and the load absorptions is balanced by
the “slack” unit at the SRGP substation which represents the behavior of continental units. The forecast
errors of the aggregated RES injections are modelled as a beta distribution, where mean and variance
are calculated from the data reported in Table 2.
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Table 2. Data for stochastic characterization of RES generation.

RES Type Total Rating
[MW]

Number of
Devices

Equivalent Area
Diameter [km]

Std Dev of
Forecast Error *,

% of Rated Power

Mean Value of
Forecast Error *,

% of Rated Power

Wind Farms 125 63 30 15 0
Solar Farms 12 240 30 25 0

* Referred to a single component (Wind Turbines, or Solar Panels) and to a 24-h ahead horizon.

The load forecast error is modelled as a normal variable with a mean and a standard deviation
of 0.9% and 3%, respectively, of the rated power (corresponding to typical values for an autumn
peak hour condition). The contingency set that is under study includes the set of single and multiple
(also dependent) contingencies which are selected as “dangerous” by the AFTER risk assessment tool,
for a mild wind storm affecting the West side of the island. Different simulations have been performed:
two of them, discussed in detail, are reported in Table 3.

Table 3. Summary of presented simulations.

ID Description Application Goal

1 RB-DSA applied to a set of contingencies due to
a storm threat affecting West side of the system on-line operation Contingency ranking by

dynamic indicators

2
System with stochastic RES power injections
and load absorptions—time horizon = 24 h,
distance among WF’s = 20 km

Operational planning Quantifying the effect of
forecast uncertainties

4.2. RB-DSA Application for On-Line Operation

The following section intends to demonstrate an application of the RB-DSA tool in operation.
For this purpose, we assume that RES generation is known with good accuracy, we are given the
known system “state”, the tool analyses the dynamic response of the PS to a set of single and multiple
dependent contingencies, which are more risky for the specific threat scenario under study. Telepiloting
among distance relays is assumed out of service, thus the zone 2 delay is 400 ms.

Table 4 shows the top 20 list of ranked contingencies based on the angle stability risk index.

Table 4. Top 20 contingencies in the risk-based ranking list for angle stability problems.

Contingency ID Impact Prob. Risk

N-1_BLLP211_CRCP211 0.1623 5.53 × 10−5 3.41 × 10−4

N-1_BLLP211_CRCP211 0.1623 5.53 × 10−5 3.41 × 10−4

N-1_CMRP211_PRRP211 0.1632 4.81 × 10−5 2.95 × 10−4

N-1_CMRP211_PRRP211 0.1632 4.81 × 10−5 2.95 × 10−4

N-1_CRCP211_CORP211 0.1596 4.48 × 10−5 2.81 × 10−4

N-1_CRCP211_CORP211 0.1596 4.48 × 10−5 2.81 × 10−4

SSB1_CMRP211 0.1754 1.51 × 10-5 8.58 × 10−5

SSB2_CMRP211 0.1741 1.49 × 10−5 8.58 × 10−5

N-2_Ln_BLLP211-CRCP211_Ln_BLLP211-CRCP211 0.1625 2.13 × 10−6 1.31 × 10−5

N-2_Ln_CMRP211-PRRP211_Ln_CMRP211-PRRP211 0.1633 1.75 × 10−6 1.07 × 10−5

N-2_Ln_CRCP211-CORP211_Ln_CRCP211-CORP211 0.1599 1.60 × 10−6 1.00 × 10−5

SSB2_CRCP211_stuckCB_FAULT_ON_L_PP2211 1.097 4.83 × 10−8 4.41 × 10−8

SSB1_BLLP211_stuckCB_FAULT_ON_L_PP2211 1.07 4.72 × 10−8 4.41 × 10−8

SSB2_BLLP211_stuckCB_FAULT_ON_L_PP2212 1.061 4.67 × 10−8 4.41 × 10−8

SSB2_CRCP211_stuckCB_FAULT_ON_L_PP2210 1.078 3.92 × 10−8 3.63 × 10−8

SSB1_CORP211_no_signal_to_one_CB 9.475 2.66 × 10−8 2.81 × 10−9

SSB2_CRCP211_stuckCB_FAULT_ON_L_PP2248 1.097 1.75 × 10−8 1.60 × 10−8

SSB1_CMRP211_stuckCB_FAULT_ON_L_PP2248 1.095 1.75 × 10−8 1.60 × 10−8

SSB2_CMRP211_stuckCB_FAULT_ON_L_PP2249 1.09 1.74 × 10−8 1.60 × 10−8

N-2_Ln_BLLP211-CRCP211_Ln_CMRP211-PRRP211 0.1625 1.64 × 10−8 1.01 × 10−7
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It can be noticed that after N-1 branch outages, two N-k contingencies affecting the CMRP
substation have the largest contributions to the risk, mainly due to their significant probability of
occurrence. Subsequent contingencies are N-2 dependent contingencies (double circuit failures)
and some N-k dependent contingencies with high impacts (higher than 1), which involve both
power component failures and ICT malfunctions, and which determine the loss of synchronism
of some units in the system (this is checked with conventional criteria—e.g., maximum angular
deviations—in time domain simulations). The results demonstrate the importance to also consider
N-k dependent contingencies which are neglected in “conventional” dynamic security assessment
analyses; these usually only consider contingencies selected according to a “credibility” (e.g., the N-1)
criterion. In particular, the probability of occurrence of some N-k contingencies caused by a severe
hazard may be relatively high compared to the outage of a single component (N-1) located far from
the impact area of the hazard. This underlines the added value of the proposed RB-DSA method with
respect to similar risk based approaches. In fact, the AFTER approach can exploit the forecasts of an
incumbent hazard and of the PS state to compute the short-term component failure probability (thus,
also the contingency probability), which are of paramount importance in operation.

Figure 4 reports the impact and risk-based ranking lists for angle stability and dynamic
undervoltages. Red, yellow, and green bars correspond respectively to N-k, N-2 and N-1 contingencies.
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It can be noticed that for angle stability problems, the highest impacts are related to multiple N-k
busbar contingencies, especially close to power plants (e.g., CORP and CRCP substations).
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Due to telepiloting malfunction, high impacts both on angle and voltage transients are detected
for those N-k contingencies which imply the intervention of back-up protections (like zone 2 for
distance protections).

In particular, the application of a standard stability criterion (Maximum Angular Deviation)
in time domain simulations shows that the ISGA transient stability impact metrics allows a clear
separation between “stable cases” (impacts < 0.2) and “unstable cases” (impacts > 1).

4.3. RB-DSA Application to Forecast PS State

This section illustrates an example of application of the proposed RB-DSA over a forecast power
system state affected by the uncertainties due to the probability distributions of forecast errors related
to RES and loads, and available k-hours ahead of the PS state under study.

Figure 5 illustrates the CCDF of angle instability risk and of dynamic undervoltage risk indexes
relevant to the whole set of contingencies (total risk) and to a specific contingency, which represents a
fault on one of the lines of the double circuit between the CRCP and the BLLP substations, with one
stuck breaker and the loss of all the bays connected to the half-busbar relevant to the stuck CB.
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Figure 5. (a) CCDF’s of total risk of angle instability (on the left) and of dynamic undervoltage
(on the right); (b) histograms of risk of angle instability indexes in PEM states (on the left) and CCDF
of dynamic undervoltage indexes (on the right) relevant to a multiple N-k busbar contingency.

In the present case, forecast uncertainties do not significantly affect the total risk index which
shows a small variance, due to the fact that the impact of N-1 and dependent N-2 contingencies (which
mainly contribute to the total index) are little affected by the variability of the stochastic injections.
On the contrary, the severity of a very impacting contingency “SSB2+DT_CRCP211_L212-stuck CB”
can be greatly affected by the amounts of renewables: for some states analyzed by the PEM, the RES,
and load configurations determine the rotor angle instability (angle severity impact largely greater
than 1), while for other states, the system is stable (angle severity impacts much lower than 1). This is
explained by the large difference in risk index values among the PEM states illustrated in Figure 5b,
this instability is due to the loss of synchronism of a generating unit in the TIMP power plant, to which
the equivalent solar farm injection is assumed to be connected. A large amount of RES increases the
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power flow between TIMP PP and the rest of the grid, and this can favour the angle instability of
the conventional units of the same plant in case of persisting faults in the surrounding substations.
The tool allows to quantify the effect of system state uncertainties on each contingency. With reference
to angle and dynamic undervoltage problems, Figure 6 reports the coefficients of variation (CV) in
dB, defined as 10 log10(σ/(|µ| × base)), with µ and σ respectively mean and standard deviation of the
individual risk index CCDF, and used to identify the contingencies whose risk is most affected by
uncertainties (adopted base = 10−5).Energies 2017, 10, 475 13 of 15 
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Figure 6. Coefficients of variation (in dB) of (a) angle stability risk; (b) dynamic undervoltage risk
indexes: a subset of the contingencies with highest CV values.

The most affected contingencies which consist of two busbar N-k contingencies involving the
loss of two double circuits: the former connects the BLLP substation in a heavy load area and the
CRCP substation, and the other represents a heavily loaded path from East (generation area) to
West (load area) on the 220 kV ring of the system.

5. Conclusions

This paper has proposed a risk-based dynamic security assessment method which can account
for uncertainties affecting a power system state, initiating events (contingencies), and system response
to contingencies themselves. In quasi real time operation, the tool can rank the selected contingencies
on the basis of the threats currently affecting the system state, thus evaluating the risk of instability
to which the PS is exposed, due to the contingencies. This can help operators focus on the most
risky events, including multiple dependent contingencies on substation busbars and power plants.
In operational planning, the tool can quantify the effect of uncertainties due to RES and load forecast
errors on the risk of losing angle, voltage, and frequency stability, while looking at the complementary
cumulative distribution functions of the risk indicators, and highlighting which disturbances show the
highest impact sensitivity to these uncertainties. This information can be very valuable at an operational
planning stage. Further works will focus on algorithms to elaborate optimal corrective/preventive
control actions in order to reduce risk.
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Nomenclature

Acronym Meaning

ANN Artificial Neural Network
BDP Bus Differential Protection
CB Circuit Breaker
CCDF Complementary Cumulative Distribution Function
COA Center Of Angles
DSA Dynamic Security Assessment
DOV Dynamic OverVoltage
DUV Dynamic UnderVoltage
IS Intelligent Systems
ISGA Integral Squared Generator Angle
PEM Point Estimate Method
PS Power System
RB-DSA Risk Based - Dynamic Security Assessment
RES Renewable Energy Sources
ROCOF Rate Of Change Of Frequency
TPNT Third order Polynomial Normal Transformation
TSO Transmission System Operator

Appendix A. Third Order Polynomial Normal Transformation

The Third Order Polynomial Normal Transformation (TPNT) transformation permits one to
extend the potentialities of probabilistic load flow based on Point Estimation Method (PEM) scheme
also to dependent non-normal distributions. Given the marginal distributions FX of inputs X, the
rationale is to express non normal variables X (i = 1, . . . , m) as a third order polynomial of dependent
normal variables Z:

xi = a0,i + a1,i · Zi + a2,i · Z2
i + a3,i · Z3

i i = 1, ..., m.

Coefficients a0,i, a1,i, a2,i, a3,i are calculated as functions of L-moments [26]. In particular:
a0,i = λ1,i − 1.81379937 · λ3,i

a1,i = 2.25518617 · λ2,i − 3.93740250 · λ4,i
a2,i = 1.81379937 · λ3,i

a3,i = −0.19309293 · λ2,i + 1.574961 · λ4,i

.

L-moments are calculated as a function of the expectation value of an order statistic EX [26]:

λr =
1
r

r−1

∑
k=0

(−1)k ·
(

r− 1
k

)
· EXr−k:r

where EXr−k:r = r!
(r−k−1)!k!

1∫
0

x · [F(x)]r−k−1 · [1− F(x)]k f (x)dx with F and f are respectively the

cumulative distribution function and the probability density function of stochastic variable X.
Also, Z variables are dependent and relevant correlation matrix ρZ can be derived from ρX by

solving the equation below for any pair of X variables:

6a3,ia3,jρ
3
Zi,Zj + 2a3,ia3,jρ

2
Zi,Zj + (a1,i + 3a3,i)(a1,j + 3a3,j)ρZi,Zj+[

(a0,i + a2,i)(a0,j + a2,j)− ρXiXjσXiσXj − µXiµXj
]
= 0

where σXi, µXi are respectively the standard deviation and the mean value of variable i. Again, ρZ
is positive definite and it can undergo Cholesky decomposition. GZ is the resulting matrix so that
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ρZ = GZGT
Z. Using matrix GZ it is possible to link transformed normal dependent variables Z to

independent normal variable Y to which the PEM can be applied. The linear transformation between
Z and Y is given by: Y = G−1

Z · Z.
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