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Abstract: This paper presents a new method for improving the assessment of energy and resources
of waves in the cases of finite water depths in which the historical and some ongoing sea wave
measurements are simply given in forms of scatter diagrams or the forms of (significant) wave
heights and the relevant statistical wave periods, whilst the detailed spectrum information has
been discarded, thus no longer available for the purpose of analysis. As a result of such simplified
wave data, the assessment for embracing the effects of water depths on wave energy and resources
becomes either difficult or inaccurate. In many practical cases, the effects of water depths are simply
ignored because the formulas for deep-water waves are frequently employed. This simplification
may cause large energy under-estimations for the sea waves in finite water depths. To improve the
wave energy assessment for such much-simplified wave data, an approximate method is proposed
for approximating the effect of water depth in this research, for which the wave energy period or
the calculated peak period can be taken as the reference period for implementing the approximation.
The examples for both theoretical and measured spectra show that the proposed method can
significantly reduce the errors on wave energy assessment due to the approximations and inclusions
of the effects of finite water depths.

Keywords: wave energy; wave energy assessment; finite water depth; energy assessment method;
wave energy resources

1. Introduction

Wave energy resource assessments have been an important factor for wave energy developments
in recent years, and the focus has been on the assessment and characterisation of wave energy
resources [1–13], with the global wave energy resource assessments on the overall resources and
the distributions of wave energy [3–6], and the regional and national wave energy resources on the
potentials for developing wave energy [7–13]. As pointed out by Cahill et al. [7], the primary purpose of
these studies is to examine the available potential energy at the locations of interest, and of the seasonal
and annual trends in the resources. Another important issue is the identification of extreme events and
wave conditions, which may be of critical importance on the operation and survival of wave energy
converters (WECs). Recent global efforts on standardisation of wave resource assessments [14,15]
have led to the development and publication of the International Electrotechnical Commission (IEC)
technical specification [16]. An application of the IEC standard to the wave energy resources at the
Irish West Coast has been published [17].

For the practical purposes and the cost of wave energy production, so far nearshore and shallow
water regions have been frequently considered for deploying wave energy converters and wave farms
due to their closeness to the shore and the available infrastructure for cable connection and for easy
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access for the operation and maintenance. Magagna et al. [18] collected the information of current
and proposed wave energy deployments (see Figure 1), and it can be seen that most of the installed
wave energy converters have been deployed in water depths less than 50 m, and these trends can
be also seen for the proposed wave farms. Similarly, Johanning et al. [19] indicated early that wave
energy converters will be very likely installed in the shallow to intermediate depths typically at the
50 m contour in the open areas for wave energy production. For such developments, the availability
of wave energy resources in those regions would be important and it was confirmed by a study in
Folley et al. [8] that the reduction in the net wave energy resource from a water depth = 50 m to a
nearshore location of water depth = 10 m is about 10%. In this regard, the available wave resources
in nearshore areas may be still good enough for promoting wave energy production. All of these
considerations have been confirmed by the installed and proposed wave energy converters and wave
farms (see Figure 1).
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Due to the deployments of wave energy converters in relatively small water depths, it is very
important to assess the wave energy and wave energy resources more accurately because the effects of
finite water depths must be considered. In the cases of regular waves, the effect of water depths on
wave energy can be easily calculated due to their well mathematically defined wave periods. In the
cases of the sea waves (i.e., the irregular waves), it would be straightforward to assess their energy if
the detailed spectra (i.e., their spectral distributions and shapes) are known, since the spectra can be
regarded as a sum of many narrow bandwidths, and each narrow bandwidth corresponds to a regular
wave with the given wave amplitude and frequency/period, hence its corresponding wave energy
can be accurately calculated for including the effect of water depth. The sum of the energy of all the
regular wave components is the wave energy for the sea wave/spectrum. However, in many practical
cases, the historical and ongoing sea wave measurements are frequently given in simple forms of
scatter diagrams or some statistical parameters, such as the significant wave height and statistical
periods, while the important spectrum information (spectral shape and distribution) for assessing
the effect of water depths on wave energy has been discarded and no longer available for analysis.
As such, the effect of water depths on wave energy and resource assessments becomes difficult or
inaccurate when only the significant wave heights and characteristic periods are available, and the
simple option is to use the formulas for deep-water waves by ignoring the effect of water depths.
Such simplification may cause large errors in the wave energy and resource assessment (up to 14%
under-estimation). For improving the wave energy and resource assessment, a method is proposed in
this investigation, with the inclusion of the effects of finite water depths on wave energy assessment.
From the examples, it can be seen that the proposed method is capable of improving the wave energy
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assessment in the cases of finite water depths: for both popular theoretical spectra (Bretschneider
spectrum and JONSWAP spectrum) and the measured spectra from the Irish Coast, the proposed
method could reduce the errors of wave energy assessment to less than 5% for the individual sea state
(from the error of more than 14% when using the deep-water formulas), and to less than 4% for wave
resources (compared to the error of more than 10% using the deep-water formulas).

2. Wave Energy Assessment

2.1. Wave Equation

Linear wave theory is very well developed, and the details can be found in many standard text
books [20–22]. For completeness and reference, some basic equations are given.

In the linear wave theory, the wave velocity potential in water depth, h, is given as

φ =
gA
ω

cosh k(z + h)
cosh kh

sin(kx−ωt), (1)

where A is the wave amplitude, h the water depth, k the wave number (k = 2π/λ, λ is the wave length),
ω the wave circular frequency. x and z are the coordinates along the x-axis (wave travel direction) and
z-axis (vertical up positive with z = 0 at the calm water surface).

The wave elevation has a form as

η = A cos(kx−ωt), (2)

with a dispersion relation as
ω2 = gktanh(kh). (3)

2.2. Wave Energy in Deep Water

For convenience of the presentation, the formulas in deep water are given first. The deep water
condition here is given when the water depth, h, is larger than half of the wave length, λ0, i.e., h≥ λ0/2
(λ0 is the wave length without seabed effect, and hereafter the subscript “0” means the parameter in
deep water), though some other definitions for deep water conditions can be also seen, for instance,
h ≥ λ0/4 ([22], p. 287). However, when the deep water condition (h ≥ λ0/2) is used, the maximal error
of the wave length is about 0.36%, given by following formula:

err =
|λ− λ0|

λ0
× 100%, (4)

where λ is the actual wave length at a water depth h = λ0/2.
Similarly, when the deep water condition (h ≥ λ0/4) is used, the maximal error in wave length

is 6.67% (also for a comparison, 2.67% for h ≥ λ0/3). It will be seen in the analysis below that the
deep-water condition (h ≥ λ0/4) may cause a large error in terms of wave energy assessment.

In deep water conditions, the wave energy of regular waves can be expressed in a popular form
of wave height and period, as

Preg0 =
1

32π
ρg2H2T, (5)

where H is the wave height (i.e., H = 2A).
For a given spectrum, corresponding to the frequency ω with a frequency bandwidth ∆ω, the

wave power is calculated from (5), as

∆Pirr0 =
1

32π
ρg2[8S(ω)∆ω]

2π
ω

=
1
2

ρg2S(ω)
∆ω

ω
. (6)

Therefore, the total time averaged wave power for the given spectrum is calculated as
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Pirr0 =
1
2

ρg2
∞∫

0

S(ω)
dω

ω
. (7)

For the given spectrum, the wave height is given by

Hs = 4
√

m0, (8)

and the wave characteristic/statistic periods can be defined as:

Te = 2π
m−1

m0
, T01 = 2π

m0

m1
, T02 = 2π

√
m0

m2
, (9)

where Te, T01 and T02 are the energy period, the spectral mean period and the mean zero-upcrossing
period, respectively, with the spectral moment being defined as

mn =
∫ ∞

0
S(ω)ωndω, (10)

where n = −2, −1, 0, 1, 2, . . .
Using the definitions of the significant wave height, the energy period and the spectral

moments yields
∞∫

0

S(ω)
dω

ω
= m−1 =

Te

2π
m0 =

1
32π

H2
s Te. (11)

Thus, the wave energy in irregular waves can be calculated as

Pirr0 =
1

64π
ρg2H2

s Te, (12)

which is same as that given by Tucker and Pitt [22]. A more popular form is given in the unit of the
wave power of kW/m, as

Pirr0 = 0.49H2
s Te. (13)

It must be emphasised that this formula for the wave energy of a sea state is the only correct
and universal formula for calculating wave energy in deep water. From the formula, it can be seen
that the wave energy is proportional to the significant wave height squared and proportional to
wave energy period. The formula has been specified in the recent international standards, the IEC
technical specification (IEC 62600-101 [16]), indicating that the wave scatter diagram is given only by
the significant wave height, Hs, and the energy period, Te. It is worth mentioning that some historical
and ongoing wave measurement data (or the scatter diagrams) are still given either in the spectral
peak period, Tp, or the mean zero upcrossing period, Tz (note: in such cases, the relation between Tp or
Tz vs. Te must be specified so to make the data useful). A typical example is the wave data for a few
locations at Irish Coast (the Irish Ocean Energy Expertise [23]), the available wave periods are only
given in Tp or Tz or both, but Te is not an option in the available data.

2.3. Waves in Finite Water Depths

From the dispersion relation (3), the wave length in a finite water depth, h, can be calculated using
an iterative method (the initial wave length can be taken as the deep-water wave length, λ0) as

λ = λ0tanh
(

2πh
λ

)
, (14)

and the wave length in finite water depths can be seen in Figure 2.
The celerity in the finite water depth is (also see [21])
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C =
1
2

(
1 +

2kh
sinh(2kh)

)
ω

k
= C0

(
1 +

2kh
sinh(2kh)

)
k0

k
, (15)

where C0 (=ω/k0) is the celerity of the wave in deep water.
Thus, the wave power in finite water depth is calculated as

Preg = Preg0

(
1 +

2kh
sinh(2kh)

)
k0

k
, (16)

which indicates that the wave celerity and the wave power in finite water depth can be regarded as the
celerity and wave power in deep water modified with a coefficient, defined as

Ch =

(
1 +

2kh
sinh(2kh)

)
k0

k
. (17)
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Figure 2. Wave lengths in finite water depths and deep water.

From the modification coefficient curve in non-dimensional frequency shown in Figure 3, it can
be seen that, for a given water depth, the modification coefficient, Ch, is a function of wave frequency,
hence, it is noted as Ch(ω) hereafter. For a given spectrum in a finite water depth, the spectrum can
be divided into many small bandwidths ∆ω, and each bandwidth corresponds to a regular wave
component. For each regular wave component corresponding to the frequency ω, Ch(ω) can be
calculated accurately for a given water depth. As such, the accurate wave energy assessment for the
spectrum can be conducted (similar methodologies can be found in references [4,7,16,24]).
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The wave power of a regular wave component in the irregular waves can be calculated as

∆Pirr =
1
4

ρg[2S(ω)∆ω]
ω

k0
Ch(ω). (18)

Therefore, the total average wave power for the given spectrum is thus

Pirr =
1
2

ρg2
∞∫

0

Ch(ω)S(ω)
dω

ω
. (19)

The direct numerical integral of Equation (19) in the case of the available spectrum can be taken
as the accurate wave power for the spectrum, denoted as P0

irr, and the error (%) of the result from the
approximation is calculated as

error =
Pirr − P0

irr
P0

irr
× 100%, (20)

where Pirr is the calculated wave power using the proposed method.
Generally, the accurate integration of Equation (19) can only be possible when the spectral

components are known (the corresponding Ch can be calculated accurately). However, in the case
of deep water, the modification coefficient is a constant, i.e., Ch = 1.0, when the non-dimensional
frequency is larger than

√
π in Figure 3. Hence, it becomes obvious that to accurately assess the wave

power in finite water depth, the wave spectrum must be used.
Now, a method is proposed for solving the problem as follows. To more accurately assess the

wave power in the cases of finite water depths, it is reasonable to assume that an actual wave spectrum
may concentrate on a limit bandwidth of frequencies. For instance, for a Bretschneider spectrum
(Tp = 8 s, Hs = 2.0 m), 50% of the energy is concentrated within a bandwidth of 0.305 rad/s around
the peak period (see Figure 4). Hence, it can be suggested that Ch in the integral in Equation (19) can
be approximated with a constant, the constant modification coefficient corresponding to a specific
spectral characteristic frequency, ωc, as,

Pirr ≈
1
2

ρg2
∞∫

0

Ch(ωc)S(ω)
dω

ω
. (21)

With this assumption, the wave power (in kW/m) in irregular waves in finite water depths can
be calculated as

Pirr = 0.49H2
s TeCh(ωc), (22)

where ωc can be either the spectral peak frequency, ωp (=2π/Tp), or energy frequency, ωe (=2π/Te).
For comparison, the other statistic frequencies/periods may be used as well in the following analysis.

For convenience in the analysis, the modification factor in Equation (22) can be referred to one of
the statistic periods; hence, the wave power estimation is given as

Pirr = 0.49H2
s TeCh(Tc), (23)

where Tc can be one of the popular statistic periods, such as Tp, Te, T01 or T02, and it will be seen that
the first two periods may be the best choice in this regard.
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2.4. Theoretical and Measured Wave Spectra

Sea waves are irregular, meaning the wave period and wave height vary from wave to wave, thus
irregular waves are often characterised by some popular and most used statistical parameters, such as
the significant wave height, Hs, the characteristic wave periods: Tp (spectral peak period), Te (energy
period), T01 (mean spectral period), and T02 (mean zero upcrossing period). In addition, the wave
spectral shape/type is an important factor in applications.

The most accepted theoretical wave spectra include the Bretschneider spectrum for the fully
developed waves, and the JONSWAP spectrum for the limited developed waves. They can be
expressed using a generalised JONSWAP spectrum, as

S(ω) = (1− 0.287 ln γ)
5ω4

p

16ω5 H2
s e−

5ω4
p

4ω4 γα, (24)

with α = exp
(
− (ω−ωp)

2

2ω2
pσ2

)
and σ =

{
0.07, ω ≤ ωp

0.09, ω > ωp
. γ can take a value between 1.0–5.0 depending

on the actual wave conditions and locations (see Det Norske Veritas (DNV) standard [25]), with γ = 3.3
for the standard JONSWAP spectrum, and γ = 1.0 for the Bretschneider spectrum.

As it can be seen from Equation (24), the theoretical spectrum is defined using the spectral
peak frequency/period, ωp/Tp. For measured waves, their spectra can often be spiky. Figure 5 show
two measured spectra for the different measured sea states at Atlantic Marine Energy Test Site (AMETS),
Belmullet, Ireland. Physically, the spectral peak period can be easily decided by simply choosing the
corresponding frequency/period to the spectral peak. However, this may be very dependent on how
the measured data have been recorded and analyzed; for instance, the sampling length and sampling
frequency. A better choice for deciding the spectral peak period would be the calculated spectral peak
period recommended by Tucker and Pitt [22] (p. 41). As such, the calculated spectral peak period has
similar features as those well-defined statistical periods including Te, T01, T02 (Tz) in Equation (9).
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Following Tucker and Pitt [22], the calculated peak period is calculated using the relevant spectral
moments, as

Tpc = 2π
m−2m1

m2
0

. (25)

This formula works generally well for both the Breschneider and the standard JONSWAP
spectrum. However, it is also found that this formula gives a small yet a consistent over-estimation of
the peak periods by 2–3%. It is therefore suggested that a slightly modified formula can be used as

Tpc = 2π
m−2m1

m2
0

/1.025. (26)

Formula (26) gives much better approximations for the peak period for the theoretical spectra.
However, in the practical applications, especially when the wave spectrum has double peaks, such as
those waves combining the swells and wind-generated waves, the formula will over-estimate the peak
period very much. In that case, a limit may be applied as,

Tpc =

 2πm−2m1
m2

0
/1.025, f or 2πm−2m1

m2
0

/1.025 ≤ 1.25Te

1.25Te, f or 2πm−2m1
m2

0
/1.025 > 1.25Te

(27)

Note that the coefficient 1.25 in the second equation in Equation (27) was obtained using the wave
measurements in 2010 in AMETS, Ireland, and the total number of the measurements is 13,189 for two
data buoys in the year of 2010.

3. Results and Analysis

In this section, the assessment of the wave energy in finite water depths will be conducted
and compared. The accurate assessment of wave energy in a finite water depth is the one using
the available spectra per Equation (19), which is taken as the reference in the comparison (in the
figures as “Ref”), while the approximations using different Ch are identified as “Mod_Tp”, “Mod_Te”,
“Mod_T01” and “Mod_T02” in the figures, denoting the modifications Ch are calculated using the
peak period Tp, energy period Te, mean spectral period T01 and mean zero upcrossing period, T02,
respectively. In addition, the uncorrected wave energy is plotted as “DeepWater”, which is the case
without including the effect of water depth on wave energy assessment.

3.1. Bretschneider Spectra (Hs = 2 m for All Cases)

Figure 6 shows the comparison of the wave energy calculations using different correction methods.
It can be seen that for the small wave periods (Te < 7.0 s), the water depth of 50 m would be considered
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as deep water, thus all corrections are all very small. For the long waves, the deep water condition
generally under-estimate the wave energy assessment by up to 13% (see Figure 7). The correction
with the peak period slightly underestimates the wave power for the short waves (similar to other
corrections), and then over-estimate the wave power for the wave energy periods between 8–17 s, with
the maximal error less than 5%. For other correction methods including the one with the energy period
tend to under-estimate the power in short waves and then to over-estimate the wave power in the long
waves. The maximal errors are 6% for “Mod_Te”, 8% for “Mod_T01” and 9% for “Mod_T02”.
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In the case of water depth of 25 m, it can be seen from Figures 8 and 9 that the deep water
condition gives under-estimations for short waves (Te < 15 s) with a maximal error of 13.5%. For the
correction using Tp, it slightly over-estimates the wave power in the short waves (Te < 12 s), and then
under-estimates the wave power, with a maximal error about 5% (slightly larger errors in the very
long waves for Te > 16 s). For the correction using energy period, it under-estimates the wave power
for short waves (Te < 8 s), and then over-estimates the power almost constantly larger than 5% when
Te > 10 s. For the correction with T01 and T02, the corrected wave powers are similar to the case using
the energy period, but with larger errors (maximal errors are 11% and 16%, respectively). Figure 10
shows the comparisons of the errors in different water depths (50 m and 25 m). The general trends are
the same; for instance, the maximal errors are similar but occur at different wave periods. The error
curves shift to longer periods in a deeper water condition. If we plot these using the non-dimensional

wave energy periods, Te
*, defined as T∗e = Te

√
g
h , the differences for the different water depths

disappear (see Figure 11).
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3.2. Standard JONSWAP Spectra (Hs = 2 m for All Cases)

In the cases of the standard JONSWAP spectra, it can be seen from Figures 12–15 that similar
results can be obtained to the cases of Bretschneider spectra, but with the following differences: (i) the
deep water condition gives worse under-estimations of the wave power (maximal error is 14.5%);
(ii) the corrections using peak period and energy period give better assessments, and the maximal
errors are smaller (about 3%), even in the shallower water condition (water depth 25 m).
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3.3. Spectra from Measured Waves (AMETS)

In this section, the comparison will be made for the spectra from the measured waves from seas.
In getting the correct wave conditions for comparison, the measured waves are binned/grouped using
the given significant wave height (Hr = 0.5 m, 1.0 m, . . . , representing the significant wave height
bins: 0–0.5 m, 0.5–1.0 m, . . . ) and the given reference energy periods (Tr + 0.25 s, with Tr = 6 s, 6.5 s,
7 s, . . . , 15 s) for the bins (bin size: 0.5 s for Te). All the binned spectra are averaged to represent the
respective wave spectra for the given wave conditions. Thus, the calculated wave significant heights
and energy periods may be slightly different from the given values, but they may be very close to these
given values. Figures 16 and 17 show the binned average spectra for two different sea states (for a
comparison, the corresponding Bretschneider and JONSWAP spectra are also plotted). In Figure 16,
the spectrum corresponds to the waves of a short energy period, and it can be seen that the spectra
are closer to the Bretschneider spectra (and their spectral bandwidths are closer). In the cases of a
long wave period of Te = 13.99 s, the recorded waves have double peaks, including both the locally
wind-generated waves (at a higher frequency) and the swells (at a lower frequency) (see Figure 17).
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Figure 17. Measured spectrum (average) and the corresponding Bretschneider and JONSWAP spectra
(Te = 13.99 s, Hs = 2.04 m), Tpc is calculated using Equation (27).

Figures 18 and 19 show the corrections and the corresponding errors for the wave power
assessment in the water depth of 50 m. From the figures, it can be seen that the deep-water formulas
under-estimate the wave power constantly, with a maximal error of 14%. The correction using the
peak period over-estimates the wave power for almost all the wave periods, with a maximal error less
than 5%, whilst the correction using energy period under-estimates the wave power for the waves of
Te < 11 s and then over-estimates the wave power for the long waves. The maximal error can be larger,
about 10% at the longest wave period Te = 15 s. When using T01 and T02 as the reference periods, the
corrections for wave energy assessment in the finite water depths give larger errors than those using
peak and energy periods.
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4. Discussions

4.1. Peak Periods from Spectra

Spectral peak period/frequency is a very important parameter when the theoretical spectrum
is defined (see Equation (24)), together with the possible requirement of the spectral peak
period/frequency for wave energy assessment as shown in the previous sections, a reliable, consistent
and representative spectral peak period is very desirable. As shown in the examples of the spectra
from the measured sea waves in Figures 5 and 17, it is easy to pick the physical spectral peak
periods/frequencies from the spectral curves, but these peak spectral periods may be very subjective
due to the fact that it may be very dependent on the length of the measured data and the sampling rate,
as well as the method for processing the data. Generally speaking, there is no well-accepted definition
for the spectral peak period, unlike other wave statistic periods, such as Te, T01 and T02 in Equation (9).
For solving this difficulty, Tucker and Pitt [22] proposed a so-called calculated spectral peak period Tpc,
Equation (25), and it is found that the definition works very well with the theoretical spectra, but with
a small and consistent over-estimation. The formula has been refined in Equation (26) for a better and
more consistent calculation of the spectral peak period.

Table 1 gives a comparison of the calculated spectral peak periods for the theoretical wave spectra,
including the well-developed sea state (γ = 1.0), the standard JONSWAP spectrum (γ = 3.3) and the
more peaked wave spectrum (γ = 5.0). It can be seen that the refined spectral peak period method
(given by Equation (26)) predicts the spectral peak periods with much improved accuracy: the errors
are less than 0.5%, whilst the Tucker and Pitt’s formula (i.e., Equation (25)) consistently over-predicts
the spectral peak period by about 3%.
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Table 1. Spectral peak period calculation for the theoretical spectra.

γ Tp (Given) Tp
via Equation (25) err0 (%) Tp

via Equation (26) err1 (%)

1.0

5 5.130 2.600 5.005 0.098
8 8.214 2.679 8.014 0.174
10 10.269 2.692 10.019 0.188
15 15.405 2.703 15.03 0.198

3.3

5 5.146 2.929 5.021 0.418
8 8.239 2.986 8.038 0.474
10 10.300 2.996 10.048 0.484
15 15.450 3.003 15.074 0.491

5.0

5 5.137 2.731 5.011 0.226
8 8.222 2.78 8.022 0.273
10 10.279 2.788 10.028 0.281
15 15.419 2.794 15.043 0.287

4.2. Wave Resource Assess in Finite Water Depth: Belmullet 50 m Water Depth

In the following analysis, the spectra from the sea wave measurements are same as those in
Cahill et al. [7]. The total number of wave measurements is 13,189 from two data buoys in the year of
2010 in the Atlantic Marine Energy Test Site (AMETS) in the 50 m water depth (Belmullet, Ireland).
The overall availability of the measured data is about 75% (the detailed availability of the data can be
seen in [7]). These measured spectra are used for the following analysis and comparison.

From the available measured wave spectra, the wave energy and resource assessment can be
accurately calculated using the direct numerical integration Equation (19). In addition, using these
available wave spectra, a wave scatter diagram can be easily generated (Figure 20 showing the
occurrence of the waves in the year in 2010), and based on which, the wave energy and resource in a
water depth of 50 m (a finite water depth) will be assessed by including the effect of the water depth.
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Figure 20. Scatter diagram of the waves in AMETS in 2010 (available data points 13,189 for two wave
buoys with 75% availability, detailed description can be found in [7]).

Two approximation methods are compared here: the approximation using the deep-water formula
and the proposed method in this study using the water depth modification factor Ch (the results
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are both compared to the accurate wave energy resource, P0
irr). From Table 2, it can be seen that

the deep-water formula gives an under-estimation of 10.18% for the annual mean wave power.
The correction method based on the spectral peak periods gives 3.86% over-estimation, and based on
the energy periods gives 1.47% under-estimation. It seems that the correction with the energy period
gives a better wave resource assessment, but it is caused by the under-estimation for short waves
and over-estimation for long waves (Figure 19) for this particular water depth and wave condition,
thus they cancel each other in the overall wave energy assessment so to give a better result, while
for this particular water depth, the correction using the calculated peak period gives more consistent
over-estimation of the wave energy for all waves (less than 5%).

Table 2. Wave power assessment for AMETS.

Water Depth (m) Method Annual Mean Power (kW/m) Error (%)

50

Direct calculation, Equation (19) 37.41 -
Deep water, Equation (13) 33.60 −10.18

Correction with ωp, Equation (22) 38.76 3.86
Correction with ωe, Equation (22) 36.86 −1.47

5. Conclusions

In the paper, the effect of water depths on wave energy assessment has been studied, and a
method has been proposed for improving the wave energy assessment in finite water depth for the
cases of only the simple scatter diagram available. From the analyses and comparisons, the proposed
method can improve the assessment of the wave energy and resource, and following conclusions can
be drawn:

1. For the cases of finite water depths, using the deep water formulas may under-estimate the wave
power by up to 14.5% in irregular waves of interest for wave energy production.

2. For the wave measurement data in simple forms of scatter diagrams, the proposed method in
this investigation can improve the wave energy assessment. For both the theoretical spectra
(Bretschneider and JONSWAP) and the measured spectra, the proposed method can improve the
accuracy of the wave energy assessment, reducing the maximal error from about 14.5% to less
than 5%.

3. The proposed method using either the calculated peak period or the energy period can
significantly improve the assessment of the annual mean wave power. For the AMETS data, the
deep water formulas give an error more than 10%, whilst with the proposed method, the error
can be reduced to less than 4% or even less.

4. The calculated spectral peak period for the measured waves can be reliably calculated using
Equation (27) for those wind-generated waves.
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