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Abstract: The phase-shifted full-bridge (PSFB) converter is widely employed in high-power
applications. However, circulating current, duty-cycle loss, secondary voltage oscillation, and narrow
zero-voltage-switching (ZVS) range are the main drawbacks of the conventional PSFB converter.
This paper proposes a novel full-bridge converter to improve the performance of the conventional
PSFB converter. The proposed converter contains two paralleled half-bridge inverters and an auxiliary
inductor on the primary side. The rectifier stage is composed of six diodes connected with the form
of full-bridge rectification. This structure allows the stored energy for ZVS operation to change
adaptively with duty-cycle. The power can be transferred from the primary side to the secondary
side during the whole period. Therefore, the requirement of output filter inductance is reduced
and the circulating current is removed. The proposed converter is a good candidate for high power,
high voltage and variable input voltage applications. The operation principle and performance are
verified on a laboratory prototype.

Keywords: phase-shifted full-bridge (PSFB); adaptive energy storage; circulating current; duty-cycle
loss; zero-voltage-switching (ZVS)

1. Introduction

The traditional full-bridge DC/DC converter with phase-shifted control can achieve zero-voltage-
switching (ZVS) without any additional devices. The switching loss can be significantly reduced.
Hence, the converter can achieve high efficiency and power density. These advantages make the
phase-shifted full-bridge (PSFB) converter well-suited for high efficiency, power density, and reliability
applications [1–6]. However, the drawback of the PSFB converter is the dependency of the ZVS
characteristic on the load condition: ZVS is lost as load current decreases. Loss of ZVS at light loads
results in low efficiency and high electro-magnetic interference (EMI) due to the increase of switching
losses [5]. Another drawback is the existence of circulating current, which will significantly increase
conduction loss [6]. Extending ZVS range and reducing circulating current are two key areas to
improve the PSFB converter’s performance.

Many studies have been proposed to overcome the drawbacks of the traditional PSFB converter.
Generally, the ZVS range can be extended by utilizing energy stored in the auxiliary circuits [7–10].
However, the auxiliary circuits lead to higher circulation current and more conduction loss.
The zero-voltage and zero-current-switching (ZVZCS) full-bridge converters are another solution
to the problems [11–14]. In these converters, metal–oxide–silicon field-effect transistors (MOSFETs)
as leading-leg switches are turned on with ZVS, while insulated gate bipolar translators (IGBTs)
as lagging-lag switches are turned off with ZCS. The ZVS operation is achieved over a wide
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range of load conditions, and circulating current can be removed by ZCS operation. Generally,
these ZVZCS converters result in high secondary-voltage stress and increase the ripple of output
voltage. The dual half-bridge converters are a novel solution to extend the ZVS range and remove
circulating current [15–17]. However, these converters require the specified leakage and magnetizing
inductances, which makes the design of transformers complex.

This paper proposes a new dual half-bridge converter with a simple auxiliary circuit. Since the
required energy for ZVS increases as duty-cycle decreases, the proposed converter can achieve ZVS
operation for all of the primary switches over the entire load range. In addition, the energy from
the primary side can be transferred to the output side during the whole switching period, so the
output filter requirement is reduced. The proposed converter is well suited for the high-output-voltage
applications. Because of these applications, a large filter inductor is required to reduce the ripple
current, which results in low efficiency and power density. The operation principle and theoretical
analysis are presented to verify these advantages. Experimental results demonstrate the performance
of the proposed converter.

2. Operation Principle

The circuit diagram of the proposed converter is shown in Figure 1. The converter is composed
of two half-bridge inverters (HBIs) in parallel, which are driven with phase-shifted control.
The transformers of T1 and T2 have the same characteristics with turns ratio of 1:n. Llk1 and Llk2

are the leakage inductances of T1 and T2, respectively. Q1, Q3, Cdc1, and T1 form the lagging-HBI.
Q2, Q4, Cdc2, and T2 form the leading-HBI. The auxiliary inductor Laux is used to adaptively adjust the
energy for ZVS operation. Two full-bridge rectifiers are employed at the rectifier stage.
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Figure 1. Proposed dual half-bridge converter. 
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Figure 1. Proposed dual half-bridge converter.

For the convenience of circuit analysis, the following assumptions are made:

(1) The blocking capacitors Cdc1, Cdc2 are considered as two constant voltage sources of 0.5Vin.
(2) All the output capacitances of MOSFETs have the same values, Coss.Llk1 and Llk2 also have the

same values, Llk.
(3) The output filter inductor Lo is large enough to be treated as a constant current source during a

switching period.

Figure 2 shows the key waveforms of the proposed converter in the steady state. D means the
duty-cycle and Ts is the switching period. All the primary switches’ duty-cycles keep constant (50%) if
the dead-time is ignored. The output voltage is regulated by adjusting the phase-shift time 0.5DTs

between leading-HBI and lagging-HBI. The operating sequence during each switching period can be
divided into two half cycles—t0–t8 and t8–t15. Due to the symmetrical structure, only the first half
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cycle is given. This half cycle can be divided into eight operating modes, whose topological states are
shown in Figure 3.
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Figure 3. Topological stages of the proposed converter: (a) Mode 1 [t0-t1]; (b) Mode 2 [t1-t2]; (c) Mode 
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Figure 3. Topological stages of the proposed converter: (a) Mode 1 [t0-t1]; (b) Mode 2 [t1-t2];
(c) Mode 3 [t2-t3]; (d) Mode 4 [t3-t4]; (e) Mode 5 [t4-t5]; (f) Mode 6 [t5-t6]; (g) Mode 7 [t6-t7];
(h) Mode 8 [t7-t8].
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Mode 1 [t0-t1]: Q1 and Q2 are on. The primary voltages of T1 and T2 are 0.5Vin, which leads
to the current of Laux keeping negative maximum. The output current Io flows through D3 and D4.
Several primary currents are expressed as follows:

iaux(t) = −Iaux

i13(t) = nIo − Iaux

i24(t) = nIo + Iaux

(1)

Mode 2 [t1-t2]: Q2 is turned off at time t1. The voltage across junction capacitances of Q2 and
Q4 are charged and discharged linearly by the constant current source i24(t1). The voltage of point A
VA(t) decreases from Vin to 0.5Vin. vs1(t) keeps 0.5nVin and vs2(t) falls from 0.5Vin to zero. Thus, Vrec(t)
decreases from nVin to 0.5Vin. The voltage of Laux starts to increase from zero. The voltages in this
mode are expressed as:

VA(t) = Vin − i24(t1)
2Coss

(t− t1)

Vrec(t) = nVin − ni24(t1)
2Coss

(t− t1)

(2)

Mode 3 [t2-t3]: When VA(t) becomes 0.5Vin in Mode 2, vs2(t) falls to zero and D2 starts to conduct.
vs2(t) is maintained at zero since D2 and D3 are in conducting state during this mode. The resonance
between Llk2 and the junction capacitances occurs. The capacitances are charged or discharged by the
energy stored in Llk2. VA(t) decrease from 0.5Vin to zero with a resonance waveform. The voltage of
Laux continuously increases. The currents and voltages are expressed as follows:

ip2(t) = i24(t1) cos ω(t− t2)− Iaux

VA(t) = 0.5Vin − i24(t1)
√

Llk
2Coss

sin ω(t− t2)

(3)

where ω1 = 1
2
√

LlkCoss
.

Mode 4 [t3-t4]: VA(t) reaches zero at time t3 and the parasitic diode of Q4 starts to conduct. Q4 can
be turned on with zero voltage in this mode. vs2(t) is maintained at zero and the commutation between
D2 and D3 is progressed during this mode. The voltage of Laux rises to Vin. The primary current of T2

is expressed as:

ip2(t) = ip2(t3)−
Vin
2Llk

(t− t3) (4)

Mode 5 [t4-t5]: Mode 5 begins when ip2(t) falls to zero. The commutation between D2 and D3 is
completed at t4. vs2(t) becomes −0.5nVin and T2 stops to transfer the power from input side to output
side. The voltage of Laux and Vrec(t) are continuously maintained at Vin and 0.5nVin, respectively.
The current of Laux is given by:

iaux(t) = −Iaux +
Vin
Laux

(t− t4) (5)

Mode 6 [t5-t6]: Q1 is turned off at t5. At the same time, the commutation between D4 and
D6 isprogressed. The resonance of junction capacitances and leakage inductances occurs. VB(t) is
decreased from Vin to zero and Vrec(t) falls to zero. The current of Laux can be considered to increase to
the positive maximum (+Iaux). The primary currents of T1 and T2 are expressed as follows:

ip1(t) = (nIo + Iaux) cos ω1(t− t5)− Iaux

ip2(t) = −(nIo + Iaux)[1− cos ω1(t− t5)]

VB(t) = Vin −
√

Llk
Coss

(nIo + Iaux) sin ω1(t− t5)

(6)
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Mode 7 [t6-t7]: Mode 7 begins when VB(t) falls to zero. The body diode of Q3 starts to conduct and
Q3 can be turned on with zero voltage. vs1(t) and vs2(t) are maintained zero in this mode. The voltage
across Llk1 or Llk2 equals to −0.5Vin. The commutation between D4 and D6 is continually progressed.
The currents are expressed as follows:

ip1(t) = −ip1(t6) +
Vin

2Laux
(t− t6)

ip2(t) = −ip2(t6) +
Vin

2Laux
(t− t6)

(7)

Mode 8 [t7-t8]: Mode 8 begins when ip1(t) falls to zero and D4 is naturally turned off. At the same
time, vs2(t) becomes −0.5nVin and vs1(t) becomes zero since the commutation between D1 and D2

starts. The voltage across Llk1 is −0.5Vin and ip1(t) decreases linearly.
Mode 8 ends when ip1(t) reaches nIo and D2 is naturally turned off. The commutation between D1

and D2 ends at t8. The power is transferred from the primary side to the secondary side through T1

and T2. The voltage across Laux is zero and iaux is maintained at the positive maximum.

3. Analysis of the Proposed Converter

3.1. Voltage Gain Analysis

Since the durations of duty-cycle loss and dead-time are very narrow, they can be ignored to
simplify analysis. Figure 4a shows the simplified rectifier output voltage in the proposed converter.
The voltage gain is derived from the volt-second balance of the output filter inductor, and it can be
expressed as follows:

G =
Vo

Vin
=

n(1 + D)

2
(8)
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The rectifier output voltage waveform in the conventional full-bridge converter is shown in
Figure 4b. It can be noted that the energy from the primary side cannot be transferred to the secondary
side during freewheel period. For the proposed converter, the energy can always be transferred to the
output side during the whole period. Therefore, the filter requirement can be significantly less and the
power loss can also be reduced.

As shown in Figure 4b, the voltage of the output filter inductor is nVin − Vo during the duty-cycle
period, while the value is −Vo during the freewheeling period. The output filter inductor for the
conventional full-bridge converter is calculated based on the given current ripple.

Lcon =
D(nVin −Vo)

4 fs∆Iout
=

Vo

4 fs∆Iout
(1− D) (9)

where ∆Iout is the current ripple of Lo. In general, ∆Iout is set at 20 percent of full load current.
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For the proposed converter, the voltage applied on Lo is 0.5nVin − Vo during the freewheeling
period. The filter inductor for the proposed converter is calculated as

Lpro =
D(nVin −Vo)

4 fs∆Iout
=

Vo

4 fs∆Iout

D(1− D)

1 + D
(10)

Figure 5 shows the relationship between the required value of filter inductor and duty-cycle.
It can be noted that the filter inductance of the proposed converter is much smaller than that of the
traditional full-bridge converter. Therefore, the proposed converter benefits from the reduction of the
inductor’s size and copper loss.

Energies 2017, 10, 444 6 of 10 

 

( )
(1 )

4 4

in o o
con

s out s out

D nV V V
L D

f I f I


  

 
 (9) 

where ΔIout is the current ripple of Lo. In general, ΔIout is set at 20 percent of full load current. 

For the proposed converter, the voltage applied on Lois 0.5nVin − Vo during the freewheeling 

period. The filter inductor for the proposed converter is calculated as 

( ) (1 )

4 4 1

in o o
pro

s out s out

D nV V V D D
L

f I f I D

 
 

  
 (10) 

Figure 5 shows the relationship between the required value of filter inductor and duty-cycle. It 

can be noted that the filter inductance of the proposed converter is much smaller than that of the 

traditional full-bridge converter. Therefore, the proposed converter benefits from the reduction of the 

inductor’s size and copper loss. 

0 0.2 0.4 0.6 0.8 1
0

L
o
(m
H

)

D

100

200

300

Conventional converter

Proposed converter

 

Figure 5. Filter inductance versus duty-cycle. 

3.2. ZVS Characteristics 

For the ZVS of leading-HBI switches, the transition is accomplished in Mode 2 and Mode 3. 

During Mode 2, the output filter inductor takes part in the transition and the voltage of leading-leg is 

decreased from Vin to 0.5Vin. Then, the transformer is shorted and the remaining voltage falls by the 

resonance between junction capacitances and leakage inductance of the transformer during Mode 3. 

The required energy for ZVS can be obtained according to (3) 

2 2

2

1
( ) (0.5 )

2
lk o aux oss inL nI I C V   (11) 

When the lagging-HBI switch is turned off during Mode 6, the transformers are shorted and only 

the energies stored in the leakage inductances can be available for lagging-leg transition. According 

to the Equation (6), the ZVS condition of lagging-leg switches can be expressed as 

2 2

1 2

1
( )( )

2
lk lk o aux oss inL L nI I C V    (12) 

According to Equations (11) and (12), the ZVS energies are related to Iaux. If the durations of duty-

cycle loss and dead-time are ignored, Iaux can be calculated as 

(1 )
4

in
aux

aux s

V
I D

L f
   (13) 

According to Equation (13), Iaux and duty-cycle have an inverse relationship. When D is low (e.g., 

increasing the input voltage or decreasing the load current), the maximum value of auxiliary inductor 

current will increase. Sufficient energy can be stored in the leakage inductances to achieve ZVS 

operation. Therefore, the proposed converter can achieve ZVS over the full range of load conditions. 

Figure 5. Filter inductance versus duty-cycle.

3.2. ZVS Characteristics

For the ZVS of leading-HBI switches, the transition is accomplished in Mode 2 and Mode 3.
During Mode 2, the output filter inductor takes part in the transition and the voltage of leading-leg is
decreased from Vin to 0.5Vin. Then, the transformer is shorted and the remaining voltage falls by the
resonance between junction capacitances and leakage inductance of the transformer during Mode 3.
The required energy for ZVS can be obtained according to (3)

1
2

Llk2(nIo + Iaux)
2 > Coss(0.5Vin)

2 (11)

When the lagging-HBI switch is turned off during Mode 6, the transformers are shorted and only
the energies stored in the leakage inductances can be available for lagging-leg transition. According to
the Equation (6), the ZVS condition of lagging-leg switches can be expressed as

1
2
(Llk1 + Llk2)(nIo + Iaux)

2 > CossVin
2 (12)

According to Equations (11) and (12), the ZVS energies are related to Iaux. If the durations of
duty-cycle loss and dead-time are ignored, Iaux can be calculated as

Iaux =
Vin

4Laux fs
(1− D) (13)

According to Equation (13), Iaux and duty-cycle have an inverse relationship. When D is low
(e.g., increasing the input voltage or decreasing the load current), the maximum value of auxiliary
inductor current will increase. Sufficient energy can be stored in the leakage inductances to achieve ZVS
operation. Therefore, the proposed converter can achieve ZVS over the full range of load conditions.
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4. Experimental Results

A prototype was built to demonstrate the performance of the proposed converter. The components
used in the prototype are shown in Table 1. The circuit parameters of the prototype are given as follows:

(1) Input voltage: Vin = 200–300 V
(2) Output voltage: Vo = 150 V
(3) Maximum output current Io(max) = 5 A
(4) Switching frequency: fs = 80 kHz

Table 1. Components list.

Main switches (Q1–Q4) SPW20N60C3

Rectifier diodes (D1–D6) IDH08SG60C

Blocking capacitor (Cdc1Cdc2) 10 µF

Main transformers (T1 T2) Core PQ3535 Turns ratio n = 0.9
Llk1 = Llk2 = 12 µH

Output inductor (Lo) 60 µH

The digital-signal-processor (DSP) TMS320F28027 (Texas Instruments, Dallas, TX, USA) was
adopted for the digital control of the proposed converter. SPW20N60C3 (Infineon Technologies, Munich,
Germany) were used as the primary switches, and the effective output capacitance was 160 pF [18].
The rectifier was formed by IDH08SG60C (Infineon Technologies, Munich, Germany). The input power
was evaluated through DC Power Supply 62150H, and the output power was measured through DC
Electronic Load 63204, manufactured by the Chroma Company (Taiwan, China).

Figure 6 shows the key waveforms of the proposed converter at Vin = 230 V, Io = 5 A. It can
be noted that the experimental waveforms coincide well with the theoretical analysis described in
Figure 3.
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(a) leading-half-bridge inverter (HBI); (b) lagging-HBI; (c) primary voltages of two HBIs and
rectifier voltage.

Figure 7 shows the key waveforms of the auxiliary inductor when the proposed converter operates
at different duty-cycles. As shown in Figure 7, both the maximum current value of the auxiliary
inductor and the available energy for ZVS operation are increased when duty-cycle is decreased.
This characteristic is helpful to realize the ZVS under all kinds of operation conditions and can reduce
the conduction loss caused by the auxiliary circuit.
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In order to compare the performances, a conventional PSFB converter was built with an external
inductance of 20 µH to achieve the ZVS operation over a load range from 50% to 100%. Figure 10 shows
the experimental efficiencies of the proposed converter and the conventional converter under different
load currents. At heavy loads, both converters could achieve ZVS, while the additional components
in the proposed converter increased the conduction losses. Therefore, the efficiency of the proposed
converter was a little lower than that of the conventional converter. At light loads, the switching
losses were dominant and the conventional converter failed to obtain ZVS. The proposed converter



Energies 2017, 10, 444 9 of 10

could maintain the ZVS operation and achieve higher efficiency at light loads, as shown in Figure 10.
The efficiency improvement was determined by the saved switching losses.Energies 2017, 10, 444 9 of 10 
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5. Conclusions

A dual half-bridge converter with an auxiliary inductor was proposed to solve the drawbacks of
the conventional PSFB converters. The proposed converter can transfer the power from the primary
side to the secondary side during the whole period. Therefore, the circulating current is removed and
the filter requirement is reduced. The ZVS energy can be changed with the duty-cycle, which is helpful
for the realization of ZVS under the whole range of operation conditions. The experimental results
coincide with the theoretical analysis. The proposed converter is a good candidate for high power,
high voltage, and variable input voltage applications.
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