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Abstract: This paper proposes a multi-scale parameter identification algorithm for the lithium-ion
battery (LIB) electric model by using a combination of particle swarm optimization (PSO)
and Levenberg-Marquardt (LM) algorithms. Two-dimensional Poisson equations with unknown
parameters are used to describe the potential and current density distribution (PDD) of the positive
and negative electrodes in the LIB electric model. The model parameters are difficult to determine in
the simulation due to the nonlinear complexity of the model. In the proposed identification algorithm,
PSO is used for the coarse-scale parameter identification and the LM algorithm is applied for the
fine-scale parameter identification. The experiment results show that the multi-scale identification
not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also
overcomes the local minimum entrapment drawback of the LM algorithm. The terminal voltage
curves from the PDD model with the identified parameter values are in good agreement with those
from the experiments at different discharge/charge rates.

Keywords: multi-scale parameter identification; lithium-ion battery (LIB); particle swarm optimization
(PSO); Levenberg-Marquardt (LM) algorithm

1. Introduction

Lithium-ion batteries (LIBs) have been widely utilized as power sources of electrical vehicles
(EVs) and hybrid electrical vehicles (HEVs) in recent years, due to their advantages of higher
energy-to-weight ratios, longer cycle life and lower environmental pollution [1,2]. This demand
has fueled the need for the improved safety and performance of LIBs. Elaborate models have been
proposed for the prediction of battery performance [3], such as the empirical model [3], single particle
model (SPM) [4], extended SPM [5], pseudo two-dimensional (P2D) model [6], two-dimensional
potential and current density distribution (PDD) model [7], and temperature distribution model [8].
Among these [6–8] are nonlinear distributed parameter systems (DPSs) [9–11] and can describe the
electrical and thermal performance more accurately. On the other hand, an accurate model of LIBs
requires knowledge of a great number of physical properties; these are difficult to obtain directly.
In this situation, unknown parameter values can be identified indirectly from measurements.

Several different techniques including the gradient method [4], the gradient-free method [12–14]
and Kalman filter method [15,16] have been proposed for the parameter estimation or identification
of LIBs. Among these methods, the gradient method and gradient-free method have been applied
to identify the parameters of electrochemical models. The Levenberg-Marquardt (LM) algorithm
is a gradient-based nonlinear regression method and can converge quickly to the optimum.
Santhanagopalan et al. [4] employed the LM algorithm to identify the parameters of the SPM. However,
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this algorithm suffers from the problem of local minimum entrapment caused by inappropriate initial
parameters [17]. Unlike the LM, some gradient-free methods have also been proposed in order to
determine the global minimum for the objective function, e.g., genetic algorithm (GA) and particle
swarm optimization (PSO). GA [12] was utilized to solve the parameter identification of the P2D
model. The PSO algorithm was also applied in order to identify the parameters of the electrochemical
model [13]. However, the stagnation problem of PSO and GA makes them extremely slow around
the global optimum. Ref. [18] found that LM is better at finding the optimum with appropriate
initial values than PSO. To overcome the drawbacks of LM and PSO, a hybrid PSO-LM algorithm
was proposed in [19] so as to train the weights and threshold of a neural network for the nonlinear
modeling of the fuel cell. Recently, an accelerated PSO algorithm based on LM was proposed in [20].
However, up to now, few PSO-LM based parameter identification algorithm has been proposed for the
LIB models.

This study proposes a multi-scale parameter identification algorithm combining PSO and LM in
order to globally optimize the parameter values for the two-dimensional uneven PDD battery electric
model [7]. In the proposed identification algorithm, a hybrid multi-swarm PSO algorithm [21] is first
applied for the coarse-scale searching in the global space to find near-optimal parameter values. Then
LM is embedded for the fine-scale parameter identification in the vicinity of the optimum within
the local space. Simulation results and the corresponding analysis are provided to demonstrate the
effectiveness of the proposed multi-scale algorithm. The rest of this paper is structured as follows.
Section 2 presents a two-dimensional PDD battery electric model description and the multi-scale
parameter identification problem formulation. Section 3 proposes a weighted PSO-LM algorithm
to address the multi-scale identification complexity for the nonlinear spatiotemporal electric model.
The simulation results with optimized parameters are compared with the measurements in Section 4
which is followed by a detailed parameter analysis. Finally, Section 5 offers some concluding remarks.

2. Battery Electric Model and Problem Formulation

This study considers a simple cell consisting of two parallel plate electrodes and assumes that
the distance between the electrodes is extremely small. Figure 1 shows a schematic diagram of the
current flow in the cell during discharge and charge. Since the distance between the electrodes is
very small, the current flow between the electrodes is perpendicular to the electrodes. However, see
Figure 1, the thickness along axis z is magnified to provide a clear reference. From the continuity
of the current on the electrodes during discharge, the potential density distributions in the positive
and negative electrodes are described by two Poisson equations in the two-dimensional spatial
domain [7], respectively:

∇2φp = −rp Jc in Ωp (1)

∇2φn = +rn Jc in Ωn (2)

where φp and φn are the potentials (V) of positive and negative electrodes, respectively, rp and rn are
the resistances (Ω) of the positive and negative electrodes, respectively, and Jc is the current density,
which is current per unit area (A m−2). Ωp and Ωn are the domains of positive and negative electrodes,
respectively. For the relevant boundary conditions of φp and φn, please refer to [7]. The difference
between the governing equations for charge and those for discharge is that the signs in front of Jc in (1)
and (2) are opposite according to the previous studies [22].
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Figure 1. Schematic diagram of the current flow in the parallel plate electrodes. — for discharge; and 
--- for charge. 
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to obtain in the simulation [28]. The “art” of trial and error [29] was adopted to determine the value 
of x . However, it requires exhaustive enumeration to search the optimal value of x . Therefore, it 

Figure 1. Schematic diagram of the current flow in the parallel plate electrodes. — for discharge; and —
for charge.

The current density Jc is a function of the potential difference between positive and negative
electrodes and is expressed as [23,24]:

Jc = Yx(φp − φn −U) (3)

where φp − φn is the potential difference, Yx and U are the fitting parameters, as suggested by Gu [25],
these two parameters Yx and U depend on the depth of discharge (D) and are expressed by the
following expressions:

U = x1 + x2D + x3D2 + x4D3 (4)

Yx = x5 + x6D + x7D2 (5)

where x1, x2, · · · , x7 are fitting parameters. When the battery is in a discharging process, the
distribution of D on the electrodes is calculated from the integration of Jc as [7,26]:

D =
1

QT

∫ t

t0

Jcdt (6)

where t is the discharge time (s), t0 is discharge starting time (s), and QT is the theoretical capacity per
unit area (Ah m−2) of the electrodes. When the battery is in a charging process, the distribution of D is
calculated as follows [22]:

D = D0 −
1

QT

∫ t

t0

Jcdt (7)

where D0 is the initial value of D, t is the charge time (s), t0 is charge starting time (s). Set x ,
[x1, x2, · · · , x7]

T for the sake of brevity. Due to the hysteresis behavior existed battery [27], the voltage
curves during discharge and discharge process are fitted separately. Thus, two groups of parameters x
and x∗ will be obtained.

The described battery electric model is a time/space coupled high-dimensional nonlinear
system [9]. The proper value of parameter vector x in the seven-dimensional hyperspace is usually
difficult to obtain in the simulation [28]. The “art” of trial and error [29] was adopted to determine the
value of x. However, it requires exhaustive enumeration to search the optimal value of x. Therefore,
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it is valuable and interesting to investigate an efficient parameter identification algorithm to obtain the
optimal value of x.

Although the battery electric model is extremely complicated with high-dimensional nonlinearity,
it can still be approximately linearized in a neighborhood of any given operating point based on the
theory of linear system. Thus, the identification can be considered as a multi-scale problem, for which
a multi-scale approach could be developed as follows.

Multi-Scale Parameter Identification

The multi-scale properties can be described geometrically with a 3-dimensional example as in
Figure 2. Due to the highly nonlinear properties, traditional optimization cannot be applied for the
direct finding of the global optimum point C from a random start point A. However, the non-math-
based coarse method can be easily used for coarse searching on a global scale. Once the proper point
B near the optimum is found, then the model can be linearized at the local scale around the point B.
Through this quantitative searching, the optimum point C can be found.
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Figure 2. Geometric explanation for the multi-scale complexity.

3. Weighted PSO-LM Algorithm for Multi-Scale Parameter Identification

To address the problem of the multi-scale (global and local) complexity existing in the parameter
identification, this section will provide a weighted PSO-LM combined algorithm for the multi-scale
(coarse and fine) identification of parameter vector x. PSO is firstly utilized to implement the coarse-scale
parameter identification to find the near-optimal point in the global space. Then the LM algorithm
is embedded in PSO to conduct the fine-scale parameter identification in the vicinity of the optimum
within the local space. The block diagram of the PSO-LM based identification approach is illustrated
in Figure 3.
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3.1. Search Strategy

The search strategy determines whether PSO or LM is suitable for the next step identification.
An objective/fitness function f is embedded in the search strategy as a criterion for the decision
making. The strategy consists of two steps:

(1) Coarse searching: The identification procedure is assured to start from PSO by initializing a group
of random parameter vectors in the global parameter space. After several generations of PSO
optimization, a near-global optimum is acquired;

(2) Fine searching: The identification procedure is then switched to LM by starting from the
near-global optimum with the gradient search in a local space. The identified parameter vector is
compared with the one obtained in PSO to select a better candidate to enter the next iteration.

The objective/fitness function f is constructed for the optimal identification of the parameter
vector x in the battery electric model (1)–(7), which is a quadratic function of the difference between
the experimental terminal voltage φk and the predicted voltage φ̂k with additional parameters wk > 0,
k ∈ {1, 2, · · · , N}:

f =
k=N

∑
k=1

wk(φk − φ̂k)
2
= (φ− φ̂)

TW(φ− φ̂) (8)

where N is the number of fitting curves, φ , [φ1, φ2, · · · , φN ]
T and φ̂ is the estimation of φ, both

are vectors consisting of φk and φ̂k, k ∈ {1, 2, · · · , N}, respectively, W , diag{w1, w2, · · · , wN} is the
parametric matrix assigned to obtain a better fitness.

In what follows, we will define the specified form of the parameter matrix W, whose element wk
is applied to the k-th experimental terminal voltage curve:

wk = γkχk (9)

where γk takes into account the experimental deviations in the k-th voltage curve and is defined as:

γk =
1

σ2
k

N
∑

k=1
Nk

[
N
∑

k=1

Nk
∑

j=1

1
σ2

j

] (10)

with σk ,

√
1

Nk−1

Nk
∑

j=1
(φ̂k,j − φk,j)

2, in which φ̂k,j is the predicted voltage of the j-th point in the k-th

curve and obtained by calculating the difference between φ̂
p
k,j and φ̂n

k,j, φk,j is the experimental voltage
at the j-th point in the k-th curve, Nk is the number of experimental data points in the k-th voltage
curve. The parameter χk is proportional to the difference between the previous voltage predictions
and the experimental data in the k-th voltage curve and is defined as:

χk = 1 +
(wk,max − 1)ηk

ηk,max
(11)

where wk,max > 1 is a given constant, ηk ,
∣∣φ̂k − φk

∣∣, ηk,max is the maximum value of ηk for each
k ∈ {1, 2, · · · , N}. Obviously, the parameter χk varies between 1 and wk,max, that is, χk = 1 for the best
fitting points and χk = wk,max for the worst fitting ones.

3.2. Implementation of PSO-LM Algorithm

The PSO algorithm adopted here is a variation of conventional PSO, named hybrid multi-swarm
PSO (HMPSO). The HMPSO method divides the swarm into several sub-swarms, and adopts a parallel
PSO search operator for the sub-swarms [30]. For a particle swarm with a population consisting of
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M n-dimensional particles, the velocity vm
i,j and position xm

i,j, i ∈ {1, 2, · · · , M}, j ∈ {1, 2, · · · , n} of the
j-th dimension of the i-th particle are updated as [30]:{

vm+1
i,j = |γ1|(ξm

i,j − xm
i,j) + |γ2|(ψm

i,j − xm
i,j)

xm+1
i,j = xm

i,j + vm+1
i,j

(12)

where ξm
i,j and ψm

i,j are the best previous position of xm
i,j and the best position achieved with its neighbors

at the m-th generation, respectively; γ1 and γ2 are two separately generated random numbers with
uniform distribution in the range of [0, 1]. The privilege of HMPSO lies in that it can explore more
promising regions of the search space by applying differential evolution (DE) to update the personal
best of each particle. In conclusion, it is a more competitive and effective PSO method for solving
optimizing problems. For more details on the HMPSO algorithm, please refer to ref. [30].

The LM algorithm has a strong ability to find a local and more optimistic result. The parameter
correction vector ∆x is obtained based on the objective Function (8) and the Marquardt method
as follows:

∆x = (JTWJ + λI)
−1

JTW(φ− φ̂) (13)

where J is a matrix of partial derivatives of the terminal voltage with respect to the fitting parameter
vector x evaluated at all the experimental voltage data. LM adaptively alters the algorithmic parameter
value λ updates between the gradient descent method and the Gauss-Newton method. The parameter
λ determines how the LM algorithm works and is initialized to be large. If the iteration results in a
better approximation, then the parameter λ is decreased to 0.1λ and LM is more like a Gauss-Newton
update one. If the iteration provides a worse approximation, then the parameter λ is increased to 10λ

and LM approaches that of the gradient descent update. The details of LM can refer to [17].
The proposed PSO-LM algorithm is a hybrid multi-scale approach to determine the value of x

in the battery model (1)–(7) based on the fitness Function (8). It not only improves the convergence
rate and effectively escapes from the stagnation of PSO, but also overcomes the drawback of the
local minimum entrapment of LM. The pseudo code of the suggested weighted PSO-LM algorithm is
shown in Table 1. The coarse-searching procedure of PSO can be found from Step 1 to Step 6, and the
fine-searching procedure of LM is embedded from Step 7 to Step 16.

Table 1. Implementation of PSO-LM algorithm.

Step 1 Initialize the PSO population size, dimensions, and termination conditions, i.e., randomly
generate an initial swarm P0 consisting of M seven-dimensional particles,

x0
i = [ x0

i,1 x0
i,2 · · · x0

i,7 ]
T

, i ∈ {1, 2, · · · , M}, optimization error ( fset);
Initialize the LM parameters, i.e., λ and the maximum number of iteration Rmax;

Step 2 Calculate the potential φ̂i, parameter matrix W, and the fitness value f (x0
i ) given in (7) for each

particle, i ∈ {1, 2, · · · , M};

Step 3 Record particle’s personal bests, i.e., ξ0
1, ξ0

2, · · · , ξ0
M;

Step 4 while (fitness value < fset) do

Step 5 Update the personal best ξm
i at m-th generation using the differential evolution (DE), and evaluate

the fitness value f (ξm
i ) for the personal best;

Step 6 Split the swarm Pm into several sub-swarms, and each sub-swarm evolves in parallel according to
the governing equations of the particles’ velocity and position:
vm+1

i = |γ1|(ξm
i − xm

i ) + |γ2|(ψm
i − xm

i )

xm+1
i = xm

i + vm+1
i

where γ1 and γ2 are two scalars generated randomly in the range of (0, 1), and ψm
i is the best

position achieved with its neighbors;
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Table 1. Cont.

Step 7 Calculate the potential φ̂i, parameter matrix W, and the fitness value f (xm+1
i ) for each particle

xm+1
i , i ∈ {1, 2, · · · , M};

Let x∗i ← xm+1
i and f ∗i ← f (xm+1

i ) ;
Set x∗i be the initial values of LM algorithm;

Step 8 for i = 1 : M do

Step 9 while (iter < Rmax and f ∗i > fset) do

Step 10 Calculate Jacobin matrix Ji = [∂φ̂i/∂x0, ∂φ̂i/∂x1, . . . , ∂φ̂i/∂x6], parameter matrix W, Hessian
matrix Hi = JT

i WiJi;
Calculate the potential φ̂i and f ∗i at current particle x∗i ;

Step 11 Update the Hessian matrix Hi = Hi + λI, the parameter correction vector ∆xi = H−1
i JT

i (φ̂i −φi),
the particle position xlm

i = x∗i + ∆xi, and the potential φ̂i, the fitness value f lm
i at the current

particle xlm
i ;

Step 12 if f lm
i < f ∗i do

λ = λ/10, x∗i ← xlm
i , f ∗i ← f lm

i and go back to Step 10;
else
λ = λ× 10, go back to Step 11;
end if

Step 13 iter = iter + 1;

Step 14 end while

Step 15 f (xm+1
i )← f ∗i , xm+1

i ← x∗i ;
i = i + 1;

Step 16 end for

Step 17 m = m + 1;

Step 18 end while

Step 19 Output the identified parameter vector x.

4. Experimental Validation

4.1. Experimental Setup

To illustrate the validity of the proposed PSO-LM algorithm, discharge experiments are carried
out for a 60 Ah LIB (LiFePO4) at a constant temperature of 25 ◦C on the experimental platform shown
in Figure 4a. This platform consists of a thermal chamber, lithium-ion battery, battery testing system
(BTS-300 A/60 V, Shenzhen Neware Technology, Shenzhen, China), battery management system (BMS)
and computer. The schematic diagram of the signal and data flow for the experimental platform is also
shown in Figure 4a. Figure 4b shows the dimensions of electrodes and positions of the tabs of a 60 Ah
LIB. The discharge and charge tests of the battery are completed on this platform. The battery is first
fully charged and then discharged at various discharging rates namely 1C (60 A), 2C (120 A) and 3C
(180 A) until the cut-off voltage. The experimental terminal voltage data is collected per second during
its discharge. Subsequently, the battery is fully discharged and then charged at various charging rates
namely 1C, 2C and 3C until the cut-off voltage. The experimental terminal voltage data is also collected
during the charging process. Due to the hysteresis behavior existed in battery, the voltage curves
during discharge do not agree with that during charge process and thus are fitted separately [27].
There will be two sets of parameters x1 − x7 and x∗1 − x∗7 for these two processes, respectively.
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4.2. Numerical Calculation and Parameter Setup

The numerical solutions of the battery electric model (1)–(7) subjected to the associated boundary
conditions are obtained by COMSOL (COMSOL Inc., Stockholm, Sweden), which is a commercial
software package for accurate numerical simulation of partial differential equations (PDEs) using
the finite element method. The simulation results and identified parameters are exchanged through
the interface of COMSOL with MATLAB (The MathWorks Inc., Natick, MA, USA). In the proposed
PSO-LM algorithm, set λ = 0.1, Rmax = 20, M = 16, and for the parameter matrix W, set N = 3,
w1,max = 4, w2,max = 8 and w3,max = 10.

4.3. Results and Discussion

The value of the parameter vector x in the battery electric model (1)–(7) is identified using the
proposed algorithm through fitting the three experimental terminal voltage curves simultaneously.
Table 2 gives the identified value of the parameter vector x. As shown in Figure 5a, the predictions
with identified parameter vector x and measurements of the terminal voltage curves are well matched
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with each other, and this demonstrates the effectiveness of the proposed method. Figure 5b depicts the
corresponding trajectory of the weight matrix W = diag{w1, w2, w3}.

Table 2. The identified value of the parameter vector x during discharge.

Parameter x1 x2 x3 x4 x5 x6 x7

Identified value 3.125 −5.077× 10−1 1.492 −1.768 1.286× 104 −6.177× 101 −2.377× 103
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The potential distributions on the positive and negative electrodes during discharge are obtained
as a function of time for various discharge rates of 1C, 2C, and 3C. For example, Figure 6 indicates the
potential distributions on the positive and negative electrodes with discharge rates of 1C, 2C, and 3C
at discharge time t = 14 min, respectively. Because all the current flows into the tab from the entire
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electrode plate, the potential gradient on the positive electrode shown in Figure 6 is seen to be most
severe in the region near to the tab. While the potential gradient on the negative electrode is also the
highest in the region near tab. This is because all the current has to flow from the tab through the entire
electrode plate.
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To demonstrate the advantage of the proposed weighted PSO-LM algorithm, a comparison study
is also conducted among PSO, PSO-LM with W = diag{1, 1, 1}, weighted PSO-LM, LM and the method
of trial and error. Figure 5 also compares the experimental and predicted terminal voltage curves at
discharge rates of 1C, 2C, and 3C through the simultaneous fit by PSO-LM with W = diag{1, 1, 1}
(Figure 5c), PSO (Figure 5d), LM (Figure 5e) and method of trial and error adopted in [29] (Figure 5f).
It is clear from Figure 5 that the proposed weighted PSO-LM algorithm provides a more accurate
discharging curve fitness compared to the other algorithms. Moreover, although the fitting result of
PSO-LM with W = diag{1, 1, 1} is better than that of PSO, it is worse than that of weighted PSO-LM.
This is because the same weights are assigned to different curves but without considering the difference
of the data number of each voltage curve (e.g., there are 2860 data points for the 1C-discharging voltage
curve, 1360 data points for 2C and 850 for 3C). To evaluate the parameter importance, an a-priori
sensitivity analysis is carried out for the identified parameters [27]. Each parameter is tuned to
0.5 times and 1.5 times the identified value. The results, shown in Figure 7, indicate that for the same
range of parameter values, x6 and x7 are less sensitive than other parameters and hence can be held
constant, while the other five parameters x1 − x5 are very sensitive and deserve more attention during
the identification.

A further quantized research needs to be carried to determine the importance order of parameters
x1 − x5. On the other hand, Figure 7 shows that x1 and x5 have the similar effect toward model output,
while x2, x5 and x4 have the similar effect.
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4.3.1. 95% Confidence Interval

From a statistical point of view, it is very useful to obtain the confidence interval instead of the
point estimation for the fitting parameter vector x [31]. In this paper, the 95% confidence interval of the
parameter vector x is calculated as follows:

x∗i − T(1−0.05/2)SE
√

aii ≤ xi ≤ x∗i + T(1−0.05/2)SE
√

aii (14)

where x∗i is the point estimation of the parameter xi, i ∈ {1, 2, · · · , 7}, T(1−0.05/2) is a value of
T -distribution with (N − 7) degrees of freedom, SE is the unbiased estimate of unknown variance σ

and is calculated by SE =

√
1

N−7

N
∑

ς=1

Nς

∑
j=1

(φς,j − φ̂ς,j)
2, N is the number of experimental data points and

derived by N =
N
∑

ς=1
Nς, and aii is the i-th main diagonal element of (JTJ)−1.

To demonstrate the goodness of the simultaneous fit, the model (1)–(7) is also to fit each
experimental curve independently for comparison. The 95% confidence intervals of all seven
parameters obtained from both the simultaneous fit and three independent fits are presented in
Table 3. Although Table 3 shows that each independent fit leads to a smaller SE compared to the
simultaneous fit, the value of SE for the simultaneous fit is also acceptable.
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Table 3. Comparison of the 95% confidence intervals of x estimated from the simultaneous fit and the
independent fit.

Parameter Simultaneous Fit Independent Fit (1C) Independent Fit (2C) Independent Fit (3C)

x1 3.125± 0.0012 3.094± 0.02895 2.844± 0.1022 2.619± 6.178
x2 (−5.077± 0.1509)× 10−1 (−2.929± 1.834)× 10−1 (−3.305± 4.461)× 10−1 −0.3632± 2.268
x3 (1.492± 0.4326)× 10−1 1.092± 0.4250 1.373± 0.05091 1.444± 1.481
x4 (−1.768± 0.3626)× 10−1 −1.465± 0.2131 −1.748± 0.04607 −1.723± 0.4383
x5 12860± 13.14 (1.184± 0.3005)× 104 (1.017± 0.3847)× 104 (1.043± 16.28)× 104

x6 (−0.6177± 4.021)× 102 (6.047± 21.10)× 103 (4.049± 2.459)× 103 (4.429± 77.02)× 103

x7 (−2.377± 0.7177)× 103 (2.298± 24.41)× 103 (−5.160± 3.377)× 102 (−2.390± 55.73)× 103

SE 0.0079 0.0019 0.0037 0.0041

4.3.2. 95% Joint Confidence Region

We know from [17] that the individual confidence interval cannot reflect the correlations between
the parameters in the nonlinear system. Hence it is necessary to construct the joint confidence region.
The 95% joint confidence regions of the parameter vector x are calculated by Equation (15) [17]:

(x− x̂)T(JTJ)(x− x̂)
7SE

2 ≤ F1−α(7, N − 7) (15)

where x is any point in the confidence region, x̂ is the point estimation value, F1−α(7, N − 7) is
the quantile function of the F-distribution with 7 and N − 7 degree of freedom, α is the statistical
significance level. Set α = 0.05, we get from the F-distribution table that F0.95(7, N − 7) = 2.0986.
Without loss of generality, set x̂ to be the estimate of x from weighted PSO-LM, i.e., x̂ = x∗, we have:

x− x̂ = x− x∗ =



x1 − 3.125
x2 + 5.077× 10−1

x3 − 1.492
x4 + 1.768

x5 − 1.286× 104

x6 + 6.177× 101

x7 + 2.377× 103


(16)

The confidence regions are obtained from the following equation:

(xi − x∗i )
2(JTJ)ii ≤ F0.95(7, N − 7)7SE

2 (17)

The confidence region of x1 is obtained from Equation (16) by fixing the parameters x2, x3, · · · , x7

to their estimation value. The 95% joint confidence regions of all seven parameters obtained from
the simultaneous fit are given in Table 4. The comparison of 95% joint confidence regions and 95%
conference intervals of three simulated voltage curves is plotted in Figure 8. It can be observed from
Table 4 and Figure 8 that the values of the parameter vector x defined by the confidence region lead to
less uncertainty in model predictions than those defined by the confidence interval.

Table 4. The 95% joint confidence regions (CR) obtained from the simultaneous fit.

Parameter x1 x2 x3 x4

CR 3.125± 6.762× 10−4 −(5.077± 0.015)× 10−1 1.492± 2.355× 10−3 −1.768± 3.442× 10−3

Parameter x5 x6 x7

CR 1.286× 104 ± 13.83 (−6.177± 6.78)× 101 (−2.377± 0.1052)× 103
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UCIL represent the lower and upper confidence interval limits, respectively; LJCR and UJCR represent
the lower and upper joint confidence region limits, respectively.

As shown in Tables 3 and 4, the confidence interval and confidence region of parameter x6

are much larger than any of other six parameters. This phenomenon is caused by the parameter
correlations as explained by Evans and White [32]. Thus, a thorough correlation analysis of these seven
parameters is conducted in what follows.

4.3.3. Correlation Analysis

The correlation coefficient matrix R of the parameters xi, i ∈ {1, 2, · · · , 7} is a symmetric matrix.
Its elements rij have all their values in the range −1 ≤ rij ≤ 1, are calculated as follows:

rij =
aij
√aiiajj

, i, j ∈ {1, 2, · · · , 7}, (18)
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Let matrix H = JTJ, then aij, i, j ∈ {1, 2, · · · , 7} are the elements of H−1 after the simultaneous fit,
and aii is the i-th main diagonal element of H−1. The matrix H is calculated as:

H = JTJ =



2.485× 103 9.715× 102 5.069× 102

9.715× 102 5.322× 102 3.193× 102

5.069× 102 3.193× 102 2.049× 102

2.988× 102 2.056× 102 1.379× 102

−5.855× 10−2 −3.445× 10−2 −2.294× 10−2

−1.896× 10−2 −1.080× 10−2 −6.631× 10−3

−1.026× 10−2 −6.685× 10−3 −4.372× 10−3

2.988× 102 −5.855× 10−2 −1.896× 10−2 −1.026× 10−2

2.056× 102 −3.445× 10−2 −1.080× 10−2 −6.685× 10−3

1.379× 102 −2.294× 10−2 −6.631× 10−3 −4.372× 10−3

9.592× 101 −1.664× 10−2 −4.346× 10−3 −2.990× 10−3

−1.664× 10−2 5.942× 10−6 8.343× 10−7 5.756× 10−7

−4.346× 10−3 8.343× 10−7 2.471× 10−7 1.545× 10−7

−2.990× 10−3 5.756× 10−7 1.545× 10−7 1.027× 10−7


.

(19)

Hence, the matrix R is obtained according to Equation (18):

R =



1 −0.7211 0.6311 −0.5489 −0.1471 0.0731 −0.0592
−0.7211 1 −0.9352 0.7559 0.5082 0.3639 −0.3952
0.6311 −0.9352 1 −0.9278 −0.6087 −0.1230 0.1899
−0.5489 0.7559 −0.9278 1 0.5769 −0.2034 0.1479
−0.1471 0.5082 −0.6087 0.5769 1 0.1564 −0.2760
0.0731 −0.3639 −0.1230 −0.2034 0.1564 1 −0.9640
−0.0592 −0.3952 0.1889 0.1479 −0.2760 −0.9640 1


(20)

The element rij stands for the correlation between the i-th parameter and the j-th parameter,
where i stands for xi, i ∈ {1, 2, · · · , 7}. As pointed out in [17], the absolute value of the elements of R
is closer to 1, the correlation between two parameters is higher. It is observed from the matrix R given
in Equation (20) that the values of all the main diagonal elements of R are equal to 1. This indicates
that each parameter is highly correlated with itself. We also observe from Equation (20) that the
highest correlation between two different parameters occurs to the x6 − x7 pair. A positive correlation
coefficient between two parameters indicates that the errors causing the estimate of one parameter to
be high also cause the other to be high, and vice versa. It is not difficult to conclude from r67 = −0.9640
that an underestimation of x6 will cause an overestimation of x7. Moreover, the eigenvectors and
eigenvalues of R can be applied to construct a hyperellipsoidal confidence region of the parameter
space in the vicinity of the solution, where the model can be approximated linearized [17]. On the
other hand, the high correlation between parameters also implies that it is difficult to obtain separate
estimates of these parameters with the available data. The regression must be repeated and restarted
from different initial parameter values many times to bypass the local minimum. While the multi-scale
(global and local) approach provides a possible solution to find the global optima in this study.

4.4. Fitting to Charge Curves

The weighted PSO-LM algorithm is also applied to identify the parameters of x∗1 − x∗7 during the
charge process. The identified parameter values are in Table 5.
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Table 5. The identified value of the parameter vector x∗ during charge.

Parameter x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7
Identified value 3.370 −1.033 2.142 1.459 1.078× 104 −3.101× 103 2.617× 103

Figure 9 compares the experimental and predicted terminal voltages curves at charge rates of
1C, 2C, and 3C by the proposed PSO-LM algorithm and the method of trial and error adopted in [22].
It is concluded that the proposed PSO-LM algorithm provides a more accurate prediction than the
method of trial and error. This result further demonstrates the effectiveness of the proposed multi-scale
method. The analysis of the charge parameter values can refer to those during the discharge process,
and thus is omitted.
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5. Conclusions

A multi-scale parameter identification approach has been developed to identify the proper
parameter value of the PDD model for the LIB during charge and discharge. This multi-scale approach
is a combination of the PSO algorithm and the LM algorithm. PSO has the advantage of the coarse
searching in large scale and LM has the advantage of the fine searching in small scale. Integration of
them can effectively solve the difficult identification of the model with multi-scale complexity. To obtain
a better fitness, a weighted objective/fitness function is implemented in this algorithm to reduce the
difference among the multiple curves. The experimental results demonstrate the effectiveness of the
proposed multi-scale identification approach.
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