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Abstract: This paper proposes a distributed control strategy that considers several source
characteristics to achieve reliable and efficient operation of a hybrid ac/dc microgrid. The proposed
control strategy has a two-level structure. The primary control layer is based on an adaptive droop
method, which allows local controllers to operate autonomously and flexibly during disturbances
such as fault, load variation, and environmental changes. For efficient distribution of power, a higher
control layer adjusts voltage reference points based on optimized energy scheduling decisions.
The proposed hybrid ac/dc microgrid is composed of converters and distributed generation units
that include renewable energy sources (RESs) and energy storage systems (ESSs). The proposed
control strategy is verified in various scenarios experimentally and by simulation.

Keywords: ac/dc hybrid microgrid; adaptive droop control; autonomous operation; distributed
generation; energy management system

1. Introduction

To reduce carbon emissions, increased penetration of renewable energy sources (RESs) in power
systems is desirable. This adoption of distributed energy resources can enhance energy security for
local regions [1,2]. However, the effective utilization of intermittent RES generation and the integration
of multiple distributed energy resources remain significant challenges. Furthermore, power quality
and system reliability requirements are also increasing. Therefore, microgrids are attracting interest as
alternative systems that could enable an intelligent power grid in the future, owing to the capability of
microgrids to strengthen grid resilience and to enable the integration of distributed energy resources
such as RESs, diesel generation, and energy storage systems (ESSs) [2–5].

A microgrid is a localized small grid that can operate in both grid-connected and off-grid modes
to enhance energy security. Depending on the type of bus voltage, microgrids are categorized into
ac, dc, and hybrid systems [6–9]. Comparing ac and dc systems, dc microgrid systems feature
improved efficiency, requiring fewer conversion stages for RESs than ac systems. In addition, dc
systems substantially reduce the impacts of synchronization and harmonic distortion, resulting in
improved power quality compared to ac systems. However, low-voltage dc distribution systems
require consideration of technical issues such as protection and grounding, as well as practical issues
such as the limited number of commercially available dc components [10–12]. For these reasons,
hybrid ac/dc microgrid systems are often investigated as alternative distribution networks. In hybrid
ac/dc systems, there are separate ac and dc voltage buses for ac and dc loads, respectively, and the
buses are interfaced through power electronics devices [7,13].

A microgrid contains multiple power electronics blocks connected to the system in parallel
operation. These converters must be controlled to satisfy several essential microgrid requirements,
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including reliability, voltage regulation, and power sharing [14–17]. To address the aforementioned
challenges, a number of control approaches have been proposed in microgrid applications.
The control approaches can be divided into two classes based on their architectures: centralized
and decentralized [17–22]. The centralized strategy increases efficient energy management through
high-level communications, but is inadequate for microgrids requiring high reliability and scalability.
The decentralized strategy, which is usually based on a droop scheme in a local controller, has improved
reliability and facilitated power sharing without the need for communication between the components,
although mode transition flexibility and optimized energy management are restricted [8,23–26].

This paper proposes a distributed control strategy for autonomous operation of a hybrid ac/dc
microgrid. A hybrid ac/dc microgrid is considered in which distributed generation units and ESSs
are connected to the dc bus as shown in Figure 1. The overall control structure is formulated
with low-speed communication between two layers of controllers: the primary decentralized local
controllers and the higher central controller. This hybrid control strategy enables autonomous
operating mode transitions including in a fault situation; a supervised controller is not required
because operating modes are based on events and bus voltage levels. The central controller executes
an energy management system (EMS) to optimize the energy utilization of the system. Optimal energy
scheduling is derived based on a dynamic programming method, using the information measured by
the local controllers. To minimize energy costs, both the state of charge (SOC) and energy fluctuation
trends are considered, and the optimal power dispatch is performed by adjusting the offset voltage
level. The control architectures of the converters are discussed in more detail in Sections 2 and 3.
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Figure 1. System diagram of hybrid ac/dc microgrid with communication links.

The local controllers are operated following the droop control method and are designed to
inspect the operation conditions of each power electronics block: (1) the grid-interfaced converter (GC)
manages islanding and reconnection to the grid; (2) the storage converter (SC) is used to implement
the energy management strategy for energy optimization; and (3) the RES converter (RC) maximizes
the RES output power.

The paper is organized as follows. In Section 2, the overall system structure of the proposed
hybrid ac/dc microgrid is described, and the fundamental control philosophy of the proposed strategy
is introduced, with descriptions of the converters’ operation modes. In Section 3, the design method
of the central control is discussed, with a mathematical formulation of the EMS strategy and its brief
results. Section 4 presents primary control designs for different power sources with different control
objectives. In Section 5, the proposed control strategy is experimentally verified in various scenarios.
Finally, Section 6 presents the conclusions.
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2. Configuration and Control Strategy of a Hybrid AC/DC Microgrid

2.1. System Description

Figure 1 diagrams the entire system, including the electric network and communication network.
The proposed microgrid consists of a photovoltaic (PV) RES, ESS, and utility grid, all of which are
coupled to the bus using converters. Ac and dc loads are connected to each bus. The loads are either a
resistive load or a constant power load. Connection of the distributed generation units to the dc bus
improves the system efficiency by reducing the number of conversion stages if the combined generated
power is consumed in the dc network. Moreover, connection to the dc bus eliminates the control
issues associated with synchronization and reactive power. The static transfer switch can connect
and disconnect to the utility grid by fault signals or by a supervisory control strategy. The dc bus is
interfaced to the ac bus through an ac/dc converter. The GC located between the ac bus and the dc bus
works as a rectifier to regulate dc bus voltage during grid-connected operation, and as an inverter to
form the ac bus and feed the ac load during off-grid operation. The topology of the GC is a single-phase
voltage-source converter with an LCL filter. A lithium-ion battery set as an ESS is connected through a
bidirectional synchronous buck converter. The PV source is the RES and is connected to the dc bus
through a boost converter. The RC performs the maximum power point tracking (MPPT).

The local controllers of each converter share a single communication bus. Each local controller
measures local voltage and current, and controls the dedicated converter and the switch of the nearby
source. The specific designs of these controllers will be detailed in the Sections 3 and 4.

2.2. Control Strategy

The overall control structure is formulated with two layers. To retain reliability, primary local
control is based on an adaptive droop method. Considering the source characteristics and operating
mode, local controllers regulate bus voltage or perform MPPT. Because bus voltage is shared, each
local controller can realize seamless mode transitions. To operate the microgrid efficiently, a central
controller optimizes the EMS using a dynamic programming algorithm to optimize the battery usage
schedule. The resulting commands are implemented by a droop curve compensator in the SC’s outer
controller. In this manner, in which the droop-based local controllers are coordinated with the central
controller, the system reliability and efficiency are greatly enhanced. The objectives of the proposed
control design are listed as follows.

• Reliable and Autonomous Control

To avoid a single point of failure due to device or communication malfunction, the converters
are controlled in a decentralized manner using a droop-based method. In addition, the operating
modes of converters transition autonomously during unpredictable situations to improve the power
system’s resilience.

• DC Bus Voltage Regulation

Regulation of the dc bus voltage (e.g., at 380 V), is one of the power quality criteria required of a
dc microgrid. To overcome the poor voltage regulation of the typical droop method, the GC adjusts dc
voltage offset.

• Energy Optimization

Energy optimization is performed to maximize the benefits of RESs and the ESS. An EMS module
in the central controller obtains energy scheduling for optimization solutions and communicates the
derived scheduling to the SC.

Based on the operation requirements above, Table 1 classifies the operating modes of the
converters, including failure cases. In this classification, states of the entire system are characterized
by combining the states of each converter. For example, State 121 represents the operating condition
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in which GC regulates Vdc under grid-connected conditions, SC regulates PESS for the EMS, and RC
performs MPPT.

The shaded cells in Table 1 can be implemented using the adaptive droop-based method.
The droop curves of each converter are shown in Figure 2, in which Figure 2a–c show the GC,
SC, and RC curves, respectively. The GC curve shifts vertically to compensate for the dc voltage
deviation. The SC curve can be expanded within the shaded region to achieve the required power
control and SOC compensation. The RC performs an autonomous mode transition between MPPT
and off-MPPT without any curve manipulation. According to the grid condition, the GC performs
a seamless transition from the grid-connected mode to the off-grid mode, in which case, from the
perspective of the dc bus, only the SC and RC regulate the dc bus voltage in droop control, while the
GC appears as a load.
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Table 1. Operating modes of converters.

State Grid-Interfaced Converter (GC) Storage Converter (SC) RES Converter (RC)
1 Grid-connected: Vdc Idle: Vdc MPPT: PPV
2 Off-grid: Vac EMS: PESS Off-MPPT: Vdc
3 Fail Fail Fail

2.3. Operation Description

Figure 2 shows the V–I curves of the converters, where iG, vG, iS, vS, iR, and vR represent the
currents and voltages of the GC, SC, and RC, respectively. From these curves, in the ideal case,
the steady-state operating points of the dc bus under the droop control are determined by

vdc = vG = vS = vR (1)

iL = iG + iS + iR (2)

in which vdc is the dc bus voltage, and iL is the total dc load current. In this subsection, several
examples of system operation will be described to highlight the features of the proposed control
scheme. This series of examples shows operational transitions, in which IG, IS, and IR are the
steady-state currents of the GC, SC, and RC, respectively, and vdc is the steady-state dc bus voltage.
In the following examples, shown in Figure 3, the steady-state value vdc1 moves to vdc2 after the
relevant transitions, and the other values shift accordingly. Assuming constant load consumption,
the following relationship is satisfied.

IL = IG1 + IS1 + IR1 = IG2 + IS2 + IR2 (3)

• DC Bus Voltage Compensation at State 111
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According to Table 1, this state represents the condition in which the GC and SC regulate the dc
bus voltage and the RC performs MPPT of the PV RES. Because the dc bus voltage vdc1 is less than the
nominal voltage of 380 V, an additional outer loop of the GC compensates for the voltage deviation,
as shown in Figure 3a. Consequently, the GC curve shifts upward until the steady-state voltage vdc2 is
regulated to 380 V. The operating points of the other converters also change: the RC remains in MPPT,
and the SC’s output power returns to zero in steady-state.

• EMS at State 121

State 121 is identical to State 111, except that the SC operates in the EMS mode. The objective of
the SC’s local controller is to regulate the output power to the reference given by the central controller.
Before the transition, the reference from the central module is IS1. When the reference increases to IS2,
the SC curve shifts upward until the output current reaches the reference as shown in Figure 3b.

• Reliability under Failure from State 311 to State 332

At State 311, the GC is not involved in the droop control of the dc bus. At least one of two
sources, the SC and/or RC, should operate in the dc bus voltage regulation mode. After a transition
in which the SC fails, the RC may regulate the dc bus’s voltage level. If total load power is less than
the maximum PV power, the dc bus voltage is regulated by the RC as shown in Figure 3c. Even if
the irradiation changes, the RC tracks the new maximum power point while maintaining the dc bus
voltage as in Figure 3d.
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3. Control Design: Central Controller

As shown in Figure 1, the central controller shares the communication bus with the local
controllers. Table 2 shows the information that the central controller processes for each local controller.
In this section, the EMS feature of the central controller is highlighted. Inputs from the local controllers
for this energy scheduling optimization stage include the source and load power information and
the SOC of the battery; additional inputs include meteorological and pricing information from a
higher-level operator, such as a distribution system operator as shown in Figure 4. The EMS scheme is
implemented using a dynamic programming method. After an optimal solution is derived by the EMS
module, the central controller dispatches the EMS power reference and operation mode to the SC.

Table 2. Communication of the central controller. SOC: state of charge.

Target Transmit Receive

GC Protection Measurements, Vdc restoration
SC Protection, EMS, Mode selection Measurements, SOC, Vocv
RC Protection Measurements
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3.1. EMS Optimization

Determining the optimal energy dispatch solution for the battery’s charge and discharge profile is
accomplished by a shortest-path problem in which the path length represents the operator-defined cost.
Using the previous and estimated RES generation profile and the load consumption profile, an optimal
energy scheduling solution is derived to minimize the objective function under a set of constraints
associated with the problem.

The EMS optimization is solved by a dynamic programming method. With hourly profiles of the
RES and load power, the cost of the objective function is calculated for every hour t. Scheduling 1 day
ahead, the path with the lowest cost from 1 h to 24 h is determined.

(1) Objective Function

The objective function is defined as in (4), where T is the total time of a day. J1[t] is the grid
electricity consumption, which is computed by multiplying the grid power Pgrid and the unit electricity
cost Cgrid. Pgrid is the net energy consumed by the utility during 1 h. Electricity cost is based on
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time-of-use pricing, which is set for a specific time period in advance of the calculation. J2[t] is the
equivalent cost of battery usage at time t, where α is a weighting factor and Ah[t] is the state variable.
The weighting factor is calculated to reflect the battery’s cost and life cycle. J2[t] is proportional to
energy transferred to and from the battery, which includes both charging and discharging energy;
therefore, this term can restrict indiscriminate battery usage.

J =
T
∑

t=1
(J1[t] + J2[t])

where
J1[t] = Pgrid[t] · Cgrid[t]
J2[t] = α · ∆Ah[t]

(4)

(2) State Variable

The state variable is defined as the energy flow of the ESS, as determined by the integration of the
battery current over time, following (5).

Ah[t] =
t

∑
k=t−1

ibat[k] (5)

(3) Input

Estimated PV generation PPV, load consumption Pload, and electricity pricing information Cgrid
are given from the distribution system operator.

(4) Constraint 1

Power processed by the GC is calculated as:

PG[t] = Pload[t]− PS[t]− PR[t] (6)

where PG[t], PS[t], and PR[t] are the power delivered to the dc bus by GC, SC, and RC, respectively;
Pload[t] is given as an input. Using ηG, ηS, and ηR as the conversion efficiencies of the GC, SC, and RC,
respectively, PS[t] is computed as

PS[t] =

{
1
ηS
· ibat[t] · vbat[t], (charge : ibat[t] ≤ 0)

ηS · ibat[t] · vbat[t], (discharge : ibat[t] > 0)
(7)

where ibat and vbat are the current and voltage of the battery terminal, and the conversion efficiency is
applied according to the direction of power flow. PR[t] is obtained as:

PR[t] = ηR · PPV [t] (8)

and the inflow grid power Pgrid is:

Pgrid[t] =

{
1
ηG
· PG[t], (import : PG[t] ≥ 0)

ηG · PG[t], (export : PG[t] < 0)
(9)

Estimated PV generation PPV, load consumption Pload, and electricity pricing information Cgrid
are given from the distribution system operator.

(5) Constraint 2
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To maintain a constant SOC level of the battery at the beginning and the end of EMS cycle, the net
stored energy during a day is maintained at zero:

Ah[t = T] = Ah[t = 0] = 0 (10)

3.2. Energy Scheduling Results

Figure 5 shows the simulated results of the EMS formulated above where PS, PR, and Pload are one
day’s SC, RC, and load consumption power profiles, respectively. Figure 5a,b show the optimization
results of the proposed EMS with fixed pricing. It is seen that the SC tends to charge the battery during
the day when the PV generation is larger than the peak load. Figure 5c,d show the optimized profiles
with variable pricing. Because the price during the night is lower than during the day, the SC charges
the battery during the night and during the peak generation time, and discharges the stored energy
during the peak load at early morning and late evening. In both cases, the net stored energy at the
beginning and the end of the day is zero to satisfy the constraint. Figure 5e shows the optimization
result of scheduling 6 days ahead. The calculated results are dispatched to the local controller. Even in
the case of a communication failure, the dc bus voltage can be maintained by adopting the adaptive
droop method; thus, the proposed method does not require high-bandwidth communication.
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4. Control Design: Local Controllers

4.1. GC Local Controller

Figure 6 shows a block diagram of the GC’s local controller. The measurement variables are
idc, vdc, iac, and vac, which are the currents and voltages at the dc and ac terminals, respectively.
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As described in Table 1, the GC is controlled in two different modes: the grid-connected mode and
the off-grid mode. For both modes, the single-phase d-q current-loop is used to effect seamless mode
transition. The current references, iq,ref and id,ref, are selected according to the operation mode. In the
grid-connected mode, the voltage-loop is composed of two sub-blocks. The voltage reference, vref[k], is
computed using two additional terms:

vre f [k] = Vdc,re f − vd,re f [k] + vo,re f [k] (11)

where Vdc,ref is the nominal dc bus voltage (i.e., 380 V), and vd,ref[k] is the droop voltage given as

vd,re f [k] = Kd · LPF(idc[k]) (12)

where Kd is the droop gain, and LPF(·) is a low-pass filtering function. vo,ref[k] is the offset for the dc
bus voltage restoration, which is given as

vo,re f (z) = Ho(z)εo(z)
where εo(z) = Vdc,re f − N(z)vdc(z)

(13)

Ho(z) is a low-band-width PI-controller for the offset loop, and N(z) is a 120 Hz notch filter
to eliminate the 120 Hz ripple in the vdc. The error between the nominal reference and vdc[k]
is compensated by a slow PI controller to restore the deviation induced by the droop control.
The relationship of the terms in (11) is shown in Figure 7. At a certain operating point, vd,ref[k]
is determined by the droop gain and the output current, and then the error, εo[k], is computed to restore
the voltage to the nominal level (i.e., 380 V). The voltage restoration information vo,ref[k] is transmitted
to the central controller. vd,ref[k] and vo,ref[k] in (11) are processed through two limiters, both of which
are designed to consider the droop gain and the maximum current rating of the converter, as in:

vmax
d,re f = Vdc,re f + Kd Imax

vmin
d,re f = Vdc,re f − Kd Imax

(14)
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4.2. SC Local Controller

The block diagram of the SC’s local controller is shown in Figure 8. Although the converter is
controlled by a two-loop controller, the detailed diagrams of the current- and voltage-loops are not
depicted. The voltage reference is given as:

vre f [k] =

{
Vdc,re f − vd,re f [k] + vSOC,re f [k], (Mode = 1)
Vdc,re f − vd,re f [k] + vSOC,re f [k] + vEMS,re f [k], (Mode = 2)

, (15)

where vd,ref is the droop voltage, and vSOC,ref is the droop offset to reflect the SOC of battery, computed as:

vSOC,re f [k] = (SOC[k]− 0.5) · KSOC (16)

where KSOC is a weighting factor. vSOC,ref[k] is zero when SOC[k] is 0.5. When SOC[k] is less than
0.5, vSOC,ref[k] becomes positive, and the converter will tend to lower the output of the battery. When
SOC[k] is greater than 0.5, vSOC,ref[k] becomes negative, and the converter will tend to increase the
output of the battery. When the mode of the controller is switched to Mode 2 by the signal from the
central controller, the additional term vEMS,ref[k] becomes effective, which is given as:

vEMS,re f (z) = HEMS(z)εEMS(z)
where εEMS(z) = Z{iEMS[k]− iL[k]}

(17)

where iL[k] is the inductor current, and iEMS[k] is the current reference delivered from the central controller.
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4.3. RC Local Controller

The RC’s local controller performs MPPT under normal conditions, and performs droop control
of the dc voltage if off-MPPT is unavoidable. In Figure 9, the voltage-loops for both modes are
operating continuously, and the current-loop references are generated. As seen in the V–I curve in
Figure 2c, the reference with the lower value is selected, which is expressed by min block in the
diagram. The voltage-loop compensators for the two modes are designed based on two different
models in which the control objectives are the regulation of vdc and vPV, respectively.
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5. Experimental Results

To validate the proposed control strategy, a hybrid ac/dc microgrid was constructed in the
laboratory as shown in Figure 10. Table 3 shows the specifications for this experimental setup, following
the electric diagram shown in Figure 1. The ac and PV sources were replaced by a 1 kVA grid simulator
and 1.8 kW PV simulator, respectively. The central controller was designed using Matlab/Simulink
(MathWorks, Natick, MA, USA), and microcontrollers were used for the local controllers. The power
dispatch command is transferred through controller area network (CAN) communication at 100 bps.
In the following figures, vdc is the dc bus voltage, iload is the load current, and iG, iR, and iS are the
output currents of GC, RC, and SC, respectively.
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Table 3. Specifications of experiment set-up.

Component Rating

AC source Grid simulator 1 kVA
PV source OCV 150 V/SCC 14 A/MPP 1800 W

Battery 4.2–2.7 V/31 Ah/Li-polymer cell/56S1P

Grid converter 1 kW/18 kHz
Storage converter 2 kW/50 kHz

RES converter 2 kW/50 kHz

DC load Electric load/1 kW
AC load Resistive load/108 Ω

Central controller Matlab/Simulink

Local controller Texas Instruments TMS320F28335 (Dallas, TX, USA)

5.1. Single-Mode Operation

Figure 11a,b shows experimental results of load step change on State 111 with its operational
description in Figure 3b. GC, SC, and RC are in the grid-connected mode, idle mode, and MPPT mode,
respectively. During the load step changes from 400 W to 1 kW and from 1 kW to 600 W, with the
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RC output power remaining constant by performing MPPT. After each transition, the dc bus voltage
fluctuates and then restores to the nominal voltage, 380 V. The dc bus voltage restoration is achieved
by the slow PI controller in the GC’s local controller. It is seen that the SC’s output power remains
zero, except for the transient period required to buffer the GC’s slow voltage regulation characteristic.

Figure 12 shows the experimental results of load step changes in State 211, in which the GC, SC,
and RC are operated in the off-grid, idle, and MPPT modes, respectively. The dc load is changed from
0.4 kW to 1 kW, and from 1 kW to 0.6 kW, and the ac load is maintained at 450 W. In the absence
of the grid power, the GC regulates the ac bus to the nominal voltage 220 Vrms, feeding the ac load.
During the transitions, the dc bus voltage is regulated within 374–378 V because the dc bus voltage is
not restored by the GC. The RC consistently performs MPPT, while the power balance condition is
satisfied by the SC. Figure 12c,d show the detailed waveforms of the transition.Energies 2017, 10, 373 12 of 16 
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5.2. EMS Dispatch

Figure 13 depicts the reference dispatch of the EMS module in the central controller in fixed load
consumption and PV generation. The system is operated in State 121, described in Figure 3c, in which
the GC, SC, and RC are in the grid-connected, EMS, and MPPT modes, respectively. The central controller
dispatches the power reference to SC, 300 W of charge, 300 W of discharge, and 0 W of output power.
While the RC is in the MPPT mode, the SC regulates its output power to the given references.Energies 2017, 10, 373 13 of 16 
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accordingly, the state of the system is changed from State 111 to State 121. Before the transition, the 
SC participates in the droop control, with 0 W of steady-state output power. After the transition, the 
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5.3. Mode Transitions

Figure 14 shows the experimentally determined waveforms for the mode transitions in the
proposed control scheme. The GC’s state transitions according to the grid condition are shown, where
vutil and iutil are the voltage and current of the utility grid power, respectively. When the grid voltage
is interrupted, the GC’s mode is changed from the grid-connected mode to the off-grid mode. The GC
feeds the ac loads with a sinusoidal ac voltage of 220 Vrms. After a few seconds, the grid voltage is
restored, and the GC returns to the grid-connected mode.
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In Figure 15, the SC’s operating mode switches from the idle mode to the EMS mode, and,
accordingly, the state of the system is changed from State 111 to State 121. Before the transition, the SC
participates in the droop control, with 0 W of steady-state output power. After the transition, the SC
actively controls the output power of the ESS and charges the battery at the power reference, 500 W of
charge, delivered from the central controller.
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In Figure 16, the waveforms of the converters’ output currents and the dc voltage are depicted
in the cases of failure of a unit. Figure 16a describes a GC failure event, and it is shown that the bus
condition is maintained by the SC and RC. Whereas before the fault, the excessive power of the RC
is exported to the grid through the GC, after the fault, the power charges the battery through the SC.
The steady-state value of the dc voltage is increased because the dc voltage is not restored when the
GC fails. In Figure 16b, whereas before the RC fault, the RC performs MPPT to supply a large portion
of the total load, after the fault, the output power of the RC decreases to zero, and consequently, the GC
and SC autonomously feed the loads without disrupting the operation of the system.
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These experimental results verify that the proposed control strategy satisfies the control objectives
discussed previously. The system maintains its bus quality under various fault conditions. The dc
voltage is maintained within a limited range with the voltage restoration implemented through the GC.
Moreover, efficient energy utilization is achieved through the low-speed communication. Furthermore,
other control features, including the RC’s autonomous transition between MPPT and off-MPPT and
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the SC’s charge/discharge current limitation, are performed, although these results are not delivered
in this paper.

6. Conclusions

This paper proposes a coordinated distributed control strategy for a hybrid ac/dc microgrid,
considering several source characteristics. To achieve reliable operation and efficient management
of energy, a two-level control structure is developed. Local controllers for the various sources are
designed based on the droop method to optimally utilize the sources with high reliability. In the
proposed scheme, the local controllers are linked to a central controller through a low-bandwidth
communication device. The central controller executes EMS to optimally utilize the energy produced
in the system. The proposed distributed control strategy is experimentally verified to demonstrate
enhanced reliability and efficient operation.
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