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Abstract: Reproducibility of experimental conditions is a fundamental requirement for designing
energy efficient, self-sustainable wireless sensor networks (WSNs). At the same time, it represents
a significant challenge because of the variability and the unpredictability of many energy harvesting
sources, and because of the dynamic operating conditions of the devices to which energy is supplied.
Energy source emulation is considered a suitable solution to enable the exploration of the design
space of networked embedded systems. However, in order to guarantee the compatibility with
real-time performance of resource-constrained embedded platforms, particular attention has to be
paid to the complexity of the models. In this paper, we propose an approach aimed at tuning the
complexity of models of photovoltaic (PV) arrays implemented on a target embedded emulator,
featuring low cost and small form factor. Experimental results performed on different models of
PV array, show that the proposed solution is flexible and accurate enough to meet the real-time
constraints of typical sensor networks applications without impairing the precision in the emulation
of the energy sources.
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1. Introduction

Energy efficient design of embedded systems plays a pivotal role in the increasing diffusion of
pervasive devices for many different application scenarios, ranging from environmental monitoring to
smart grids, from building automation to surveillance. Indeed, energy consumption in battery-operated
devices directly impacts the system lifetime and it clearly represents a limitation in all cases where
interventions for batteries substitution should be avoided or kept to a minimum.

To overcome these obstacles, several research directions and strategies have been proposed.
Among them, the main contributions can be considered: (i) the design of novel electronic
devices with ultra low-power capabilities, resulting in hardware with increased performance
and/or decreased power consumption levels; (ii) the introduction of dynamic power management
techniques, which adapt the power drained by a system (and its performance) to different workloads
(e.g., by putting devices into low-power modes and saving energy); and (iii) the use of renewable energy
sources, which makes it possible to replenish batteries and/or directly supplying power. This last
option introduces a significant paradigm shift, namely from energy consumption minimization to
energy-rate (i.e., power) minimization [1].

Energy harvesters based on photovoltaic (PV) arrays with reduced form factor have been recently
proposed with the aim of increasing the energetic autonomy of embedded systems. In the context of
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wireless sensor networks (WSNs), such an autonomy is of utmost importance because of the limitations
imposed by resource-constrained platforms typically adopted [2–4]. As a matter of fact, a target of
energy-harvesting WSNs (EH-WSNs) is the so-called energy-neutral operation (ENO). The ENO of
a sensor network is a working point of the network obtained by matching harvested energy and
computational loads to achieve long-term energetic sustainability and, ultimately, a (theoretically)
unlimited lifetime [4–6].

The design of hardware–software embedded systems, protocols, and algorithms capable of
meeting the design goals of self-sustainable EH-WSNs still remains, however, a challenging task.
Energy harvesting sources are in fact inherently unpredictable and subject to complex dynamics.
Moreover, supplied loads are frequently subject themselves to frequently changing operating
conditions: load impedance and, subsequently, drawn energy, can vary because of dynamic
power management policies (e.g., a switch to a low power mode of the radio transceiver or of
the microcontroller unit during idle periods) or because of the normal activity of the application
(e.g., a particular event that triggers a given actuation command in a monitoring task). Finally,
workloads are unpredictable even in a controlled environment because of the effects of packet
overhearing and interference.

These issues make the design and test of EH-WSNs particularly problematic because of the
difficulty to obtain reproducible and realistic testing conditions. On one hand, exploration of the
design space can be carried out by means of simulation, which allows reproducibility at the cost of
approximating, to a different extent, real-world operating conditions. On the other hand, one can
resort to the implementation on testbeds, which permit the evaluation of design solutions in a realistic
environment with some limitations in terms of reproducibility and with non-negligible costs for large
scale deployments.

An alternative option to the two mentioned approaches is represented by emulation,
usually performed by means of ad-hoc hardware–software systems. Different energy source models
can, in principle, be plugged into an emulator thus enabling the reproduction of the dynamics of
a given energy harvesting source (e.g., a solar panel). Solutions proposed in the recent scientific
literature can be compared according to (i) the type of emulated energy sources; (ii) the accuracy of the
emulation process; (iii) the latency introduced by the system; (iv) the cost of the platform; and (v) the
flexibility of usage in networked deployments.

For instance, Chou et al. [7] introduced B#, a battery emulator working in the 1.0–4.5 V range
(with a maximum current of 800 mA), controlled by a desktop computer. The evolution of this
emulation board, named S#, encompassed the model of a solar panel. In S#, a microcontroller is in
charge of generating, at run-time, the appropriate voltage to be delivered to the load. Again, the whole
system is controlled by means of a desktop computer which takes in the input the current drawn by
the powered load and finds the corresponding voltage using a look-up table [8]. Other solutions have
been proposed to emulate solar panels [9–11], all assuming the use of powerful centralized computing
resources (e.g., a personal computer to perform control tasks), which clearly make them unsuitable
solutions for wireless networks of embedded devices.

With respect to solar energy harvesting, it is also worthwhile to mention a line of works targeting
power electronics applications (up to 3000 W) [12,13]. It is however worth noticing that these studies
refer to systems not compatible with the embedded platforms targeted by our work (characterized by
significantly lower power levels).

Bobovych et al. recently introduced a PV emulation platform supporting an output voltage range
of 0.02–9.8 V with currents from 430 µA to 1.89 A [14]. The system, termed SunaPlayer, is based
on a microcontroller and can be battery-operated. Several I–V curves, representing the nonlinear
relationship between current and voltage provided to the load, can be stored in the microcontroller
memory, from where they are retrieved at run-time in order to set the voltage level that pilots a final
circuit stage. Despite a reported accuracy of around 99%, the emulation chain introduces a notable
latency, estimated at around 10 s.
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Ekho [15,16] is a platform designed for emulating generic energy sources with low current and
voltage values (up to 0.5 mA and 8 V). A high precision acquisition instrument is required to record
points of the Several I–V curves, which are then reproduced at run-time thanks to a 32 MHz ATMEL
microcontroller (Atmel Corporation, San Jose, CA, USA). The authors reported an accuracy within
77.4 µA (for solar energy harvesting) with a latency around 7.4 ms. While such an error is adequate for
many applications, the delay introduced during the emulation risks affecting the capability of meeting
real-time requirements.

Lattanzi et al. [17] recently introduced a novel embedded hardware–software solution suitable for
emulating several energy sources usually taken into consideration in EH-WSNs design. The proposed
emulator is characterized by a small form factor, low power requirements, reduced latency (172 µs) and
limited cost, which result in a convenient solution for testing EH-WSNs even in large scale testbeds.

Since embedded emulators need to cope with strict resource constraints, this can potentially affect
their performance either in terms of reduced accuracy of the profile of the emulated source, or in the
delay introduced at run-time when the energy profile to be supplied needs to be dynamically updated.
Given the relevance of these metrics in the evaluation of emulators (especially in a EH-WSNs testing
framework), there is a need for a systematic and consistent evaluation of the inherent trade-off between
accuracy and latency of emulation.

In this paper, we aim at filling this gap by presenting an approach to explore the trade-off between
latency and error in embedded emulation systems. The platform proposed in [17] is taken as a reference
because of its suitability in EH-WSN contexts. In particular, we consider PV arrays emulation as a case
study given its large applicability. The design space is explored through the implementation of PV
models with different precision levels and computational requirements. The experiments, applied to
representative types of real-world PV panels, bolster the argument that the complexity of solar panels
models can be tuned to meet real-time constraints of embedded energy emulators without introducing
appreciable errors.

The remainder of the paper is organized as follows. In Section 2, we introduce the framework
adopted to model PV arrays; In Section 3, we describe the proposed approach for tuning model
complexities. In Section 4, we detail the experimental setup, report results and discuss them. Section 5
concludes the work.

2. Modeling a Photovoltaic Array

The power output produced by PV arrays is typically influenced by several factors. Irradiance
levels and solar rays incidence angle are, of course, two key factors in the determination of available
energy which, however, depends also on the cell temperature, on the semiconductor technology (e.g.,
mono-crystalline, poly-crystalline or amorphous silicon) and on the load impedance.

The relationships between current and voltage values are usually expressed by means of Several
I–V characteristic curves. Manufacturers are used to summarize these nonlinear relations by providing
in datasheets a given number of electrical parameters, the most typical being those associated to the
so-called remarkable points: (i) short circuit point (V = 0, I = Isc); (ii) open circuit point (V = Voc, I = 0);
(iii) maximum power point (V = Vmp, I = Imp). These parameters are evaluated under standard test
conditions (STC), namely at 1000 W/m2 irradiance and 25 ◦C array temperature.

Modeling PV arrays is clearly a key task in order to provide designers flexible and accurate
instruments for predicting the energy budget under different working conditions [18–28]. The most
typically adopted strategy is to represent a model by means of an equivalent circuit [29,30]. The lumped
component circuit representation implies the extraction of all parameters needed for a thorough
characterization of the PV array. Once the model has been fully characterized and all parameters
assigned, the output electrical power available can be derived, for instance, by means of numerical
methods [20–22].

In this article, we consider several models of PV arrays which have been proposed in the recent
scientific literature. These differ in the number and type of components of the equivalent circuit,
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which are used to model different features of a solar panel. Needless to say, a more accurate model
specification needs more details to be taken into account (i.e., more components in the equivalent
circuit). However, adding components negatively affects both the parameter extraction procedure and
the computational complexity of the model, measured in terms of simulation/emulation time.

2.1. Models Description

In the following, we describe the five models we chose to implement on the emulation board.
They are, to the best of our knowledge, representative of a wide range of state-of-the-art models
with different features in terms of flexibility, accuracy, and computational requirements for their
resolution [30].

• Two diodes model:

Figure 1 exemplifies a two diodes model with parallel and series resistance. It is currently
considered, in literature, a model capable of accurately reproducing a broad spectrum of operating
conditions [19,30]. It takes into consideration a series of aspects and features related to the production
of energy from solar radiation, namely the following:

(1) the classic PV effect, by means of current generator IPV and diode D1;
(2) the effect of the recombination current in the depletion region, which particularly affects accuracy

in the low-voltage region, by means of diode D2;
(3) losses due to contact resistance (between silicon and electrodes surfaces) and materials resistance

(silicon and electrodes metal), by means of series resistance Rs;
(4) sensitivity to temperature variation and the effect of leakage current in the PN junction, by means

of parallel resistance Rp.

Figure 1. The two diodes equivalent circuit of a photovoltaic (PV) array.

The current–voltage relation of this equivalent circuit is described in Equation (1).

I = IPV − I01[exp
(

q(V + IRs)

a1kT

)
− 1]− I02[exp

(
q(V + IRs)

a2kT

)
− 1]− V + IRs

Rp
(1)

where IPV represents the PV current generated by the light incident on the panel; I01 is the reverse
saturation (or leakage) current associated to diode D1; I02 is the reverse saturation (or leakage) current
associated to diode D2; a1 is the ideality factor of diode D1; a2 is the ideality factor of diode D2; k is
the Boltzmann constant (1.3806503 × 10−23 J·K−1); q is the electron charge (1.60217646 × 10−19 C);
T is the temperature of the PN-junction. Introducing the so-called thermal voltage of the array (Vt) as
Vt = kT/q [19], Equation (1) can be rewritten as:

I = IPV − I01[exp
(
(V + IRs)

Vta1

)
− 1]− I02[exp

(
(V + IRs)

Vta2

)
− 1]− V + IRs

Rp
(2)

The model entails, however, the characterization of a significant number of parameters : IPV , I01,
I02, a1, a2, Rs, Rp.
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• Single diode model:

In this model, shown in Figure 2a, the effect of the recombination current in the depletion region
is not taken into account. Indeed, diode D2 is dropped, resulting in the current–voltage relationship
described by Equation (3):

I = IPV − I0[exp
(

V + IRs

Vta

)
− 1]− V + IRs

Rp
(3)

This model entails the evaluation of five parameters for its complete characterization: IPV , I0, a,
Rs, Rp.

(a) Single diode model (b) Single diode model with
Rp neglected

(c) Single diode model with
Rs neglected

(d) Single diode model with
both Rs and Rp neglected

Figure 2. PV array models with decreasing complexity.

• Single diode model without parallel resistance:

Given the usually high values of Rp, some authors have proposed to neglect its effect
(i.e., to consider Rp = ∞) to simplify the model [31–36]. The equivalent circuit of the single diode
model without shunt resistance Rp is depicted in Figure 2b. Equation (4) describes the resulting
voltage–current relation:

I = IPV − I0[exp
(

V + IRs

Vta

)
− 1] (4)

This model entails the evaluation of four parameters IPV , I0, a, Rsto complete the characterization.

• Single diode model without series resistance:

In the single diode model, the values of Rs are typically low in most practical cases. Hence,
its effect has been neglected in some works [37–39]. The resulting equivalent circuit is shown in
Figure 2c, while the corresponding Several I–V relation is described by Equation (5).

I = IPV − I0[exp
(

V
Vta

)
− 1]− V

Rp
(5)

There are also four model parameters to be derived in this case, namely: IPV , I0, a, and Rp.

• Single diode model without series and parallel resistance:
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If neither the series resistance Rs, nor the parallel resistance Rp are considered (i.e., Rs = 0,
Rp = ∞ in the single diode model), the model represented in Figure 2d is obtained. This is a very
simplified model, whose behavior is described by Equation (6).

I = IPV − I0[exp(
V

Vta
)− 1] (6)

On one hand, this is an ideal representation of a solar panel and, as such, it can be exploited for
reasoning only on some basic, theoretical concepts related to PV arrays. On the other hand, it provides
a useful comparison term to be included in our study, because of the low number of parameters to be
obtained for its derivation (IPV , I0, a), and because of the simple structure of the Several I–V equation
which allows significant savings in term of execution time. In light of these considerations, it can be
taken as a lower bound for computational complexity.

In general, several approaches have been proposed for the derivation of model parameters.
A coarse grain classification is usually done among analytical methods and curve fitting/optimization
methods [30].

The former category of methods exploits information contained in components’ datasheets to
derive a set of equations which are to be solved for parameters extraction. Given the nature of these
equations (usually implicit, transcendental equations) and given that systems of equations relating
them are often undetermined (i.e., there are more unknowns than equations) some heuristics are
usually applied.

The latter type of solutions cast parameter extraction as a Several I–V curve fitting problem and
solves it by means of optimization algorithms. The choice of a proper objective function and of the
algorithm used to optimize it leads to various possible alternative methods.

While the focus of this article is on the model execution (in particular on the performance
requirements of emulating a given model of small scale solar panels on embedded platforms),
the interested reader can refer to a recent, comprehensive review of parameter extraction methods by
Chin et al. [30].

2.2. Numerical Resolution Method

Once all parameters needed to characterize the model of the PV array are derived,
emulation/simulation can be carried out. From the functional relationship among current and voltage
expressed by Equations (1) and (3)–(6) and given a value of the current I (or of the voltage V),
the corresponding value of voltage V (current I) can be derived from the nonlinear equations by means
of numerical methods. We followed [19] and used the Newton–Raphson algorithm [40], a standard
method to find roots of transcendental equations. In particular, if we formulate each of the Equations (1)
and (3)–(6) as f (V, I) = 0, the value of V can be obtained from a given I by finding the root of the
modeling equation. At each iteration, the value of V is updated as follows:

Vi+1 = Vi −
f (Vi, I)
∂ f (Vi ,I)

∂V

(7)

until the stopping criterion |Vi+1 −Vi| < ε is met (ε is an implementation-dependent tolerance value).
To better highlight the computational requirements of the numerical algorithm, we report in the

following both the nonlinear modeling function f (V, I) and its partial derivative ∂ f (Vi ,I)
∂V , for each

investigated model.

• Two diodes model:

f (V, I) = IPV − I01[exp
(

V + IRs

Vta1

)
− 1]− I02[exp

(V + IR)

Vta2

)
− 1]− V + IRs

Rp
− I (8)
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∂ f (Vi, I)
∂V

= − I01

Vta1
exp(

V + IRs

Vta1
)− I02

Vta2
exp(

V + IRs

Vta2
)− 1

Rp
(9)

From Equations (8) and (9), it follows that this model entails several arithmetic operations
(e.g., four exponentials) to be carried out at run-time by the emulator, which leads to a potential
computational bottleneck in real-time applications, as will be discussed in the section devoted to
experimental results.

• Single diode model:

f (V, I) = IPV − I0[exp
(

V + IRs

Vta

)
− 1]− V + IRs

Rp
− I (10)

∂ f (Vi, I)
∂V

= − I0

Vta
exp(

V + IRs

Vta
)− 1

Rp
(11)

In this case, the evaluation of Equations (10) and (11) requires a lower number of
arithmetic operations (e.g., two exponentials instead of four at each iteration of the numerical
algorithm) with regards to the two diodes model. This results in an expected improvement of
computational performance.

• Single diode model without parallel resistance:

f (V, I) = IPV − I0[exp
(

V + IRs

Vta

)
− 1]− I (12)

∂ f (Vi, I)
∂V

= − I0

Vta
exp(

V + IRs

Vta
) (13)

The execution time can be further lowered with respect to that of previous models because of
the absence of terms V+IRs

Rp
and 1

Rp
, which enables one to save three additions, a multiplication and

two divisions at each of the iterations.

• Single diode model without series resistance:

f (V, I) = IPV − I0[exp
(

V
Vta

)
− 1]− V

Rp
− I (14)

∂ f (Vi, I)
∂V

= − I0

Vta
exp(

V
Vta

)− 1
Rp

(15)

Neglecting the series resistance enables one to save at each iteration three additions and three
multiplications with regards to the single diode complete model. If we take, as a comparison term,
the single diode model without parallel resistance, instead, performances are slightly worse: for the
single diode model with Rp = ∞, we need, in fact, to compute two more additions and multiplications
with regards to the single diode model with Rs = 0 which, conversely, needs two more divisions
and subtractions.

• Single diode model without series and parallel resistance:

f (V, I) = IPV − I0[exp(
V

Vta
)− 1]− I (16)

∂ f (Vi, I)
∂V

= − I0

Vta
exp(

V
Vta

) (17)

This simplest model enables, in principle, a further speedup in the implementation of the
Newton–Raphson algorithm since it allows us to save two additions and two multiplications with
regards to the single diode model without shunt resistance.
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3. Tuning Models Complexity

To adequately tune the run-time complexity of the PV model (i.e., the resolution of the Several
I–V curve) we propose a methodology which can be summarized as follows:

• For each model to be analyzed:

– the error achieved to reconstruct the Several I–V curve of a particular PV device by means of
the model is measured;

– the time required at run-time to resolve the model (i.e., to derive the voltage values to be
applied by the emulation board from current values) is measured.

• The two empirically derived metrics are used to build a Pareto curve whose points correspond
to the performance of different models when applied to a specific PV array. Indeed, the Pareto
curve is a representation (commonly adopted in multi-objective optimization problems) of the
achievable trade-offs between the metrics under study.

• The Pareto front is analyzed to obtain the optimal configuration (i.e., the most suitable model for
that device).

For each of the five models described in Section 2, model parameters have been extracted, once and
for all, following the method proposed by Villalva et al. [19]. Given the characterized model, the related
Several I–V equation has been solved as described in Section 2.2 by means of the Newton–Raphson
method [40] to obtain the run-time emulation working point. In particular, since in the embedded
emulation platform, the current drained by the load is measured, the corresponding voltage values
have been derived by numerical resolution. It is worth noticing that, conversely, many works related
to PV array modeling usually assume the knowledge of voltage values to derive the corresponding
current values.

The accuracy has been evaluated with respect to the capability of reproducing the current–voltage
curve of real world devices. Four different commercially available PV arrays have been considered,
resulting in 20 distinct emulation configurations.

The computational effort needed to obtain a working point (i.e., to derive, from a measured current,
the voltage to be applied by the emulator) has been subsequently evaluated for each characterized
model and for each array.

The information achieved from the characterization of the accuracy and latency of the system,
allows us to draw some significant considerations. In particular, from the Pareto curve representing
the two metrics, the model with the best performance trade-off can be selected.

Indeed, results highlight the reduced error levels attained by low-complexity models when
applied to low-power, small form factor PV arrays. At the same time, low complexity models can be
exploited to reduce the computational requirements imposed at run-time by the numerical resolution
algorithm, thus making accurate, real-time emulation of energy harvesting sources on embedded
systems possible.

4. Results and Discussion

To demonstrate the validity of the proposed approach, each of the five models described in
Section 2 has been characterized and the related Several I–V equations have been solved by means of the
numerical algorihms described in Section 2.2 which have been implemented in Matlab R© (MathWorks,
Inc., Natick, MA, USA), for four different commercial PV arrays. The accuracy of each model has
then been evaluated with respect to the capability of reproducing the Several I–V curve, extracted
from the related datasheet, of the real world devices. It is worth noticing that this characterization is
independent of the implementation on the embedded platform, since it aims at an evaluation of the
error inherent to modelling assumptions.

Time needed to compute a single point of the Several I–V curve has been measured by running
numerical solution of the models implemented to the embedded emulator platform presented in [17].
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4.1. Experimental Set-Up

The four commercial PV arrays used in this work as case study are namely Solarex MSX60
(Solarex, Frederick, MD, USA) [41], Q.CELLS Q6ML-1600 (Q-Cells, Seoul, Korea) [42], Multicomp
MC-SP-0.8 (Premier Farnell, Leeds, UK) [43], and Kyocera KD135SX (Kyocera, Kyoto, Japan) [44].
The selected PV arrays cover a wide spectrum of contexts of use. In particular, the MSX60 PV array
is a 60 W high voltage module suitable for telecommunications systems, pumping and irrigation,
and for general battery charging, while the Q6ML-1600 is a 3.78 W low voltage high current PV array
capable of producing up to 7 A with a voltage of only 0.6 V. The Multicomp MC-SP-0.8 is a low size,
high efficiency 0.8 W PV array producing up to 0.23 A at a maximum voltage of 4.5 V suitable for
powering small embedded devices such as wireless sensor nodes, wearable and internet of things
devices. Finally, the Kyocera KD135SX is a 135 W high voltage and high current PV array suitable for
industrial and home installations.

The core of the embedded emulator platform, used to measure the time spent to compute
a single point of the Several I–V curve, consists of the ATSAM4E16E microcontroller provided
by Atmel Corporation (San Jose, CA, USA) which is based on a high-performance 32-bit ARM R©

Cortex R©-M4 RISC processor ARM Holdings, Cambridge, UK running at a maximum speed of 120 MHz
and features up to 128 Kbytes of RAM. From the analog point of view, the microcontroller is equipped
with two 16-bit ADC and one 12-bit DAC providing two separate channels.

4.2. Experimental Results

The experimental (I, V) points were extracted from the manufacturer’s datasheet of each panel
and compared with the simulated data obtained while varying the complexity of the PV model. Table 1
shows both the parameters extracted from the datasheet and obtained during model adjustment
which are used in the PV array simulations. Notice that for the two diodes, model ID1 and ID2 are set
to be equal in magnitude and they have been calculated at standard temperature conditions using
Equation (7) reported in the work of Villalva et al. [19]. The diffusion current a1, in accordance with
Shockley’s diffusion theory, has been set equal to unit, while the value of a2 has been chosen by means
of numerical fitting according to the methodology adopted in previous work [20,45]: the value has
been iteratively adjusted in order to find the best match between the model and the experimental
Several I–V curve.

Table 1. Parameters of the simulation models.

Parameter MC-SP.08 MSX60 Q6ML KD135SX

ISC (A) 0.23 3.8 7.61 8.37
VOC (V) 4.83 21.1 0.611 22.1
Imp (A) 0.21 3.5 7.11 7.63
Vmp (V) 3.85 17.1 0.51 17.7

ID1 = ID2 (A) 1.8 × 10−6 4.5 × 10−10 3.4 × 10−10 3.4 × 10−10

IPV (A) 0.23 3.81 7.61 8.4
a1 1.0 1.0 1.0 1.0
a2 3.5 1.5 2.5 4.5

Rp (Ω) 3320 166 13 56
Rs (Ω) 0.02 0.37 0.05 0.22

The adjusted models have then been solved to calculate the Several I–V curve starting from a set
of values of V, (the tolerance value ε has been set to 10−4). Figures 3–6 show the Several I–V curves
obtained by solving the set of models with decreasing complexity for the four reference PV arrays
compared with the experimental data extracted by the datasheet. Datasheet values are shown by means
of red circles while the modeled Several I–V curves are represented by the dotted lines. Notice that, for
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the sake of readability, the (I, V) pair values from the datasheets have been downsampled in the plot,
but they have been entirely used to derive the results described below.

The results related to the Solarex MSX60 PV module, presented in Figure 3, show that the
two diode and the single diode models (the blue and black dotted lines) follow the experimental
data in an almost perfect way while the single diode model without the parallel resistance (the gray
dotted line) introduces a non negligible approximation error in high current conditions. On the other
hand, removing the series resistance (the green dotted line) causes a great mismatch between the
model and the ground truth datasheets data. The last model simplification (the red dotted line) which
remove both the series and the parallel resistance results, as expected, in an even larger approximation
error. Similar considerations can be made for the Q.CELLS Q6ML-1600 and for the Kyocera KD135SX
PV modules (Figures 4 and 6) while particular attention must be given to the results obtained while
modeling the Multicomp MC-SP-0.8 PV module (Figure 5). In fact, in this case, no appreciable
mismatches can be highlighted between the models and the experimental data while reducing the
model complexity. The limited current and voltage produced by the MC-SP-0.8 PV module lead to
a very low impact on the resulting accuracy of the more complicated modeling strategies currently
adopted in literature. Thus, new trade-offs between complexity and accuracy can be evaluated while
modeling low power PV arrays suitable for powering embedded devices.
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Figure 5. Results of model tuning for Multicomp MC-SP-0.8 PV module.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  5  10  15  20  25

C
u
rr

en
t 

[A
]

Voltage [V]

experimemntal data

two diode

single diode

noRp

noRs

noRs & noRp

Figure 6. Results of model tuning for Kyocera KD135SX PV module.

Figures 7–10 show the normalized error calculated while reconstructing the Several I–V curves of
Figures 3–6. Notice that, to directly compare different PV array modules characterized by different
dynamic ranges, the measured errors have been normalized with respect to the Isc. As expected,
the higher the Isc provided by the PV array, the higher the approximation error measured while
reducing the model complexity. For instance, KD135SX and MSX60, which are high current modules,
show a maximum normalized error around 30% while removing the series, or both series and parallel
resistances from the model. On the other hand, for a medium-current PV array such as the Q6ML-1600,
the maximum normalized error never exceeds 16% and for the low-voltage/low-current MC-SP-0.8
PV array, the maximum measured error obtained while removing both the series and the parallel
resistances is extremely reduced and it remains always under a threshold of about 5%.

Figures 7–10 also provide an overview of the error distribution along the operating voltage range.
While in the low-voltage/high-current region, the measured error always remains under an appreciable
level, in the region going from the maximum power point to the open circuit voltage, the measured
error reaches the highest values for the simplest model. In the case of the low-voltage/low-current
MC-SP-0.8 PV array, the error distribution along the voltage (Figure 9) does not show considerable
growth focused on the region following the maximum power point, both in the case of more complex
models and in the case of simpler ones.

Table 2 summarize the models’ performance by reporting the mean normalized error (MNE),
which is the average normalized error calculated along the whole voltage range of the Several I–V
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curve, obtained while simulating the PV array with the models described in Section 2.1. An average
execution time for each model has also been reported. The execution time has been calculated by
porting and executing the numerical solutions of each model, described in Section 2.2, to the target
embedded emulator presented in [17]. The reported execution time is an average value measured while
the emulator was calculating the corresponding values of V for 100 different values of I. As expected,
the measured execution times reflect the observations reported in Section 2.2 highlighting the strong
contribution of the solution of the four exponentials of the complete models. In fact, in this case,
the execution time almost doubles those obtained with the other models, which need to compute only
two exponentials to be solved.
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Figure 7. Normalized error obtained while reconstructing the Several I–V curve for Solarex MSX60 PV
module with different model complexity.
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Figure 9. Normalized error obtained while reconstructing the Several I–V curve for Multicomp
MC-SP-0.8 PV module with different model complexity.
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Figure 10. Normalized error obtained while reconstructing the Several I–V curve for Kyocera KD135SX
PV module with different model complexity.

Table 2. Mean normalized error (MNE) and execution times obtained while tuning the model
complexity for different PV Arrays.

Model
MC-SP.08 MSX60 Q6ML KD135SX

Execution Time (µs)
MNE (%)

Complete 1.24 1.30 3.10 3.15 328.5
Single diode 1.29 1.35 3.10 3.15 180.3

No Rp 1.25 1.47 3.11 3.65 155.5
No Rs 1.29 11.49 4.55 10.57 170.5

No Rp & No Rs 1.30 13.72 4.93 13.85 145.1

Figure 11 shows the Pareto curve of the execution time vs. the MNE, obtained for each PV array.
The orthogonal red dotted lines define a region in which the PV array can be emulated using the
embedded hardware without impairing the emulation performance. In fact, in this region, the MNE is
always lower than 5% (a threshold set to ensure reasonably accurate emulation) and the execution time
never exceeds the hardware emulator latency, which has been estimated to be about 172 µs on average
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(see [17]). Thus, each point pair (model configuration, PV array) which falls inside the region can be
suitably emulated by the embedded device. For instance, the KD135SX PV array can only be emulated
in the configuration with a single diode without parallel resistance while all other configurations fall
outside of the region. On the other hand, a low-current and low-voltage PV array such as the MC-SP.08,
which is a module traditionally used to power wireless sensor nodes, shows a Pareto curve which is
almost a horizontal line so that all three of the simplest model configurations can be used to emulate
the PV array.
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Figure 11. Execution times vs. MNE for each PV array.

5. Conclusions

The design of energy efficient networked embedded systems is severely hampered by the lack of
flexible frameworks for experimentally testing new solutions. This task is usually achieved either by
simulation or by direct implementation on testbeds. While simulation provides the opportunity to
explore in a reproducible fashion large portions of the design space, it inherently approximates many
aspects of real-world operating conditions. Conversely, testbeds represent a convenient alternative to
carry out realistic experiments, at the price of high costs and reduced flexibility and reproducibility.

This scenario is further complicated if energy harvesting and workload variability are taken into
consideration. Indeed, the dynamics of energy harvesting sources are particularly difficult to predict
and, at the same time, load impedances could frequently change, for instance according to different
dynamic power management states applied to the devices. Emulation is considered a valuable option
which enables reliable reproduction of many different energy sources (e.g., harvesting devices) within
a repeatable and controlled set up. However, in order to cope with real-time requirements when
dealing with resource-constrained embedded devices, the complexity of the models implemented on
the emulation board should be carefully evaluated.

In this paper, we presented a novel methodology aimed at tuning the complexity of PV array
models executed by embedded emulators. The proposed approach allows one to explore the trade
off between the accuracy and latency of the emulation process, thus providing a flexible resource for
system design of real-time compatible, low-cost embedded emulation boards. Experimental results
on a representative set of commercially available PV arrays demonstrate the effectiveness of the
introduced technique. A remarkable conclusion obtained is that low-power PV arrays with small
form factor and low voltage–current levels can be emulated on embedded platforms to meet real-time
constraints without introducing significant errors.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN wireless sensor network
EH-WSN energy harvester wireless sensor network
ENO energy neutral operation
PV photovoltaic
STC standard test conditions
ADC analog to digital converter
DAC digital to analog converter
MNE mean normalized error
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