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Abstract: In this paper, a novel electric vehicle powertrain system is proposed. In the system, a coaxial
magnetic gear (CMG), an electromagnetic clutch, a lock, and two electric machines (EMs) are adopted
to achieve the power-split by controlling the states of the clutch and the lock, which enables electric
vehicles (EVs) to work in four operation modes. The configuration, power flow paths and operation
modes are depicted in detail. A dynamic model is established to help determine the parameters and
build simulation models. The simple control strategy is adopted to achieve flexible power-splits.
How to determine the relevant parameters to meet the drive requirements in the powertrain system
is also elaborated. A dynamic simulation using MATLAB/Simulink is performed to take into account
the control strategy and New European Drive Cycle. Finally, the simulation results demonstrate,
in theory, the rationality of the determined parameters and the feasibility of the operation modes as
well as the control strategy.
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1. Introduction

Electric vehicles (EVs) have attracted increasing attention all over the world due to the serious
concerns of the energy crisis and air pollution [1–3]. Generally, EVs can be classified into three types,
namely, battery electric vehicles (BEVs), hybrid electric vehicles (HEVs), and fuel cell electric
vehicles (FCEVs) [4,5]. Compared with FCEVs, BEVs have the advantages of relatively low cost and
mature technology. Moreover, unlike HEVs, BEVs can achieve zero emissions. Therefore, vigorously
developing BEVs is considered the best solution to promote electric transportation at this time.
Especially in China, the central government has identified BEVs as one of the most promising directions
for the automotive industry.

Traditionally, a BEV has a relatively simple architecture which mainly consists of one electric
machine (EM), one transmission, and battery packs. The EM obtaining the energy from the battery
propels the BEV through the transmission. However, there still exist the following shortcomings in the
traditional BEVs: (1) Since the BEV is driven by the EM alone and it is also required to work in a wide
range of velocities [6], it is bound to increase the maximum power and speed of the EM when we
design or choose the EM, which will create difficulties in the design of the BEV; (2) it is rather obvious
that there is only one power flow path. As far as regenerative braking is concerned, the instantaneous
power from braking may cause potential damage to the batteries and reduce the battery life. In order to
solve the problem in the energy feedback, researchers have put forward hybrid energy storage systems,
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such as the flywheel hybrid energy storage system [7,8] and the ultra-capacitor hybrid energy storage
system [9,10]. Although the engagement of flywheels or ultra-capacitors will make the structure of
BEVs more complex, they are very effective.

In HEVs, in order to improve fuel economy and reduce emission, the powertrain system
with a power-split are widely adopted [11–13]. In addition, one famous powertrain system is the
Toyota Prius, which consists of two EMs and a single planetary gear. By controlling the speeds
and torques of the two EMs, the Toyota Prius system can achieve multi-path power flows to
make the internal-combustion engine (ICE) operate in a highly efficient way [14]. Based on the
Toyota Prius system, reference [15] has designed and analyzed a powertrain system with a coaxial
magnetic gear (CMG). The novelty of the system is that the coaxial magnetic gear replaces the planetary
gear in the Toyota Prius system, which can eliminate the nuisance of gears, such as noise, vibration,
maintenance, and so on. Put simply, the powertrain system using a planetary gear or CMG integrated
with two EMs is effective at achieving multi-path power flows in HEVs.

Inspired by the system supporting multi-path power flows in HEVs and flywheel energy storage
systems in EVs, this paper aims to propose a novel electric vehicle powertrain system in order to
solve the above mentioned problems in traditional BEVs. It is mainly composed of a CMG [16,17],
an electromagnetic clutch, a lock, and two EMs. In addition, the CMG integrates one of the EMs,
which makes the configuration more compact [18]. From a functional point of view, the system
possesses the following characteristics: (1) It can be propelled by the two EMs simultaneously, one is
the main drive motor, and the other is the auxiliary drive motor with high speed, so the required
driving power can be shared by the two EMs. For the main drive motor, the required operating speed
range becomes much narrower, and this is conducive to motor design; (2) The auxiliary drive motor
can also work as a flywheel storage device when necessary, which is capable of buffering the energy
from regenerative braking, so as to protect the battery; (3) The system integrates a CMG for power-split.
Compared with the mechanical gears, the CMG is a magnetic transmission device which can achieve
non-contact torque transmission and speed variation [19]. It has several advantages, such as reducing
noise and vibration, being maintenance free, having overload protection, etc. [20,21]; (4) By controlling
the states of the clutch and the lock, the CMG enables the powertrain system to work in four operation
modes and fulfill multi-path power flows. The main contribution of this paper is to propose a novel
powertrain system supporting multi-path power flows for BEVs to protect the battery when braking
with high instantaneous power and to determine the parameters of the proposed powertrain system.

The paper is organized as follows: In Section 2, the detailed configuration of the powertrain
system is depicted and the operation modes are elaborated. In Section 3, a dynamic model of the
powertrain system is established. Then, the parameters of the powertrain system are determined
in Section 4. Next, Section 5 is devoted to the verification of operation modes in Section 2 and the
rationality of the parameters in Section 4. Finally, conclusions are drawn in Section 6.

2. Powertrain Description

Figure 1a depicts the configuration of the proposed powertrain system. It mainly consists of
a coaxial magnetic gear (CMG), two EMs (M/G1 and M/G2), two power electronic inverters (PEI 1
and PEI 2), an electromagnetic clutch, a lock, and battery packs. The CMG is the key component in
the powertrain system, which plays the role of coupling multiple shafts to implement a power-split.
The CMG and the M/G2 constitute an integrated magnetic gear permanent magnet (IMG-PM) machine,
as shown in Figure 1b. The IMG-PM machine is characterized by the rotor of M/G2 and the outer
rotor of CMG sharing a rotor, and permanent magnets (PMs) are installed on both sides of the rotor.
The modulating ring rotor is rigidly connected to the final driveline, which transmits the force/torque
to the wheels via differential and shafts. The inner rotor is connected to the rotor of M/G1 through
an electromagnetic clutch and a shaft, and a lock is mounted on the shaft. The stator windings of
M/G1 and M/G2 are connected to the battery through PEI 1 and PEI 2, respectively.
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Figure 1c shows the topology of the CMG. It can be seen that the CMG is composed of three
rotational components, namely, inner rotor, outer rotor, and modulating ring rotor. There are some
PMs on both the inner rotor and outer rotor, and the pole-pair numbers (PPNs) of inner rotor and
outer rotor are pi and po, respectively. The modulating ring rotor consists of a certain number of
ferromagnetic pieces, the numbers of which are Nm. In order to ensure the normal operation of the
CMG, Nm is governed by the sum of pi and po [22,23].
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Figure 1. (a) Powertrain system configuration; (b) integrated magnetic gear permanent magnet
(IMG-PM) machine; (c) coaxial magnetic gear (CMG).

As shown in Figure 1c, the positive direction of the torque and the rotational speed is specified
in the counterclockwise direction. The values Ti, To, and Tm are the permanent magnetic torques
provided by the inner rotor, the outer rotor, and the modulating ring rotor, respectively. The values ωi,
ωo, and ωm correspond to the rotational speeds of the inner rotor, the outer rotor, and the modulating
ring rotor, respectively. The corresponding speed relationship is governed by [15]:

ωi + Grωo = (1 + Gr)ωm (1)

where Gr =
po
pi

is the so-called gear ratio. Figure 2 shows the collinear speed map [24], which is utilized
to analyze the change relationship of rotational speeds in Equation (1).
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With the CMG under steady-state conditions and without considering the power losses in CMG,
it yields [15]:

Tiωi + Toωo + Tmωm = 0 (2)

Ti + To + Tm = 0 (3)

It can be obtained from Equations (1) to (3) that the torque constraint relationships are as follows:

Ti = −
1

1 + Gr
Tm (4)

To = −
Gr

1 + Gr
Tm (5)

It can be found from Equations (4) and (5) that the direction of Ti and To are always the same,
while the direction of them is opposite to that of Tm. Moreover, the torques transmitted by CMG are
allocated strictly as per the proportion in Equations (4) and (5).

Figure 3 illustrates the power flow paths in the powertrain system. It can be observed that there are
diverse power flow paths in the powertrain system and the power in all paths can flow bidirectionally.
By switching the states of the M/Gs, controlling the lock and toggling the clutch, the powertrain
system can achieve the following operation modes:
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Mode 1 (M/G2 driving alone): It means that the powertrain system is driven only by M/G2.
When the lock is engaged (locks the inner rotor of CMG), the clutch is disengaged (disconnecting the
CMG from M/G1) and M/G1 remains de-energized; the M/G2 works as a motor to deliver its power
to the wheels through the CMG and final driveline. In this operation mode, the power flow path is
like this: battery→ PEI 2→M/G2→ outer rotor of CMG→modulating ring rotor of CMG→ final
driveline→ wheels.

Mode 2 (Regenerative braking after M/G2 driving alone): This operation mode refers to the time
after the M/G2 driving alone mode when the powertrain system needs to brake. At this time, M/G2 is
functioning as a generator and M/G2 accepts braking power through the final driveline and CMG.
The electric energy from regenerative braking can be either fully used to charge the battery or can be
fully used to drive M/G1 which means the electric energy is converted into mechanical energy stored
in the rotor of M/G1. In this case, M/G1 can be regarded as a flywheel storage device or can be partly
transmitted to battery and partly converted into the mechanical energy of M/G1 by PEI 1.

Mode 3 (M/G1 and M/G2 driving): In this mode, both M/G1 and M/G2 drive the
powertrain system. When the lock is released (the inner rotor of CMG can rotate freely) and the
clutch is engaged (connecting M/G1 to CMG), both M/G1 and M/G2 work as motors to deliver the
power to the wheels through the CMG and final driveline. In this case, the power from the battery can
be finally transformed into mechanical energy by the PEI 1, PEI 2, M/G1, M/G2, and CMG.
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Mode 4 (Regenerative braking after M/G1 and M/G2 driving): This mode refers to the time
after the M/G1 and M/G2 driving mode when the powertrain system needs to brake. It can be seen
from Figure 4a that the vehicle velocity (v) corresponds to that of the modulating ring rotor of CMG;
when v slows down, ωm also decreases. In Figure 4a, ω1 is the speed of M/G1. Because M/G1 and
the inner rotor of the CMG have the same rotational speed (ω1 = ωi), to achieve this operation mode,
first, keep the rotational speed of M/G2 (ωo) unchanged so that M/G1 operates as a generator to
reduce the speed of M/G1 (ω1) and the inner rotor of CMG to zero. When ω1 and ωi are equal to
zero, the clutch will be disengaged and the lock will be engaged. In this process, when ωi and ω1 are
reduced to zero, ωm is not equal to zero, as shown in Figure 4b. After that, if the powertrain system
continues to brake, the way to achieve regenerative braking is the same as Mode 2. It is necessary to
point out that: (A) throughout the whole process, M/G2 operates as a generator, while M/G1 works as
a generator before ω1 and ωi are equal to zero. After the lock is engaged and the clutch is disengaged,
M/G1 may be de-energized or may be functions as a motor; (B) in terms of the power flow paths,
before ω1 and ωi are equal to zero, all the regenerative braking energy is converted into electric energy
stored in the battery by M/G1 and M/G2, while after the lock is engaged and the clutch is disengaged,
the regenerative braking energy is only converted into electric energy by M/G2, and then, the electric
energy can be either fully used to charge the battery, or can be fully converted into mechanical energy
of M/G1 by PEI 1, or can be partly transmitted to battery and partly converted into mechanical energy
of M/G1 by PEI 1.
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In real operation, how to select the above operation modes mainly depends on the driving cycle
and the control strategy.

3. Dynamic Model

The vehicle road load (Fr) is mainly composed of the rolling resistance (Ff ), the aerodynamic drag
force (Fw), and climbing force (Fi). These forces can be expressed as follows [25]:

Fr = Ff + Fw + Fi (6)

Ff = f f Mg cos α (7)

Fw = 0.5ρCD Av2 (8)

Fi = Mg sin α (9)

where f f is the rolling resistance coefficient, M is the vehicle mass, g is the gravitational acceleration,
α is the road slope angle, ρ is the air density, CD is the aerodynamic drag coefficient, and A is the
vehicle frontal area.
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The vehicle motion equation can be expressed as:

Fd − Fr = δM
dv
dt

(10)

where Fd is the motive force acting on the wheels and δ is a mass correction factor to compensate for
the apparent increase in the vehicle’s mass due to the inertia of the onboard rotating mass.

In order to facilitate system modeling, Figure 5 gives a simplified diagram of the powertrain
system, in which the relevant parameters of each component are indicated. The required torque of half
shaft (Tw) is given by:

Tw = FdRw =

(
δM

dv
dt

+ f f Mg cos α + 0.5ρCD Av2 + Mg sin α

)
Rw (11)

where Rw is tire radius and the relationship between the rotational speed of the half shaft and the
vehicle velocity is:

ωw =
v

Rw
(12)
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For the modulating ring rotor of the CMG, its motion equation can be expressed as:

Tm −
Tw

i
=

(
Jv

i2
+ Jm

)
dωm

dt
(13)

where i is reduction ratio and i = ωm/ωw; Jv, and Jm are the moments of inertia of the differential and
the half shaft and the modulating ring rotor of CMG, respectively.

For the outer rotor of the CMG, its motion equation can be expressed as:

To + Tem2 = Jo
dωo

dt
(14)

where Jo is the moment of inertia of the outer rotor of the CMG and Tem2 is the electromagnetic torque
provided by the M/G2.

For the inner rotor of CMG and M/G1, their motion equations have a close relationship with
the states of the lock and the clutch. Since both lock and clutch have two states, there exist four cases
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in theory. However, taking into account the previous analysis of the four operation modes, the motion
equations only contain the following two cases:

Case 1: the lock is disengaged and the clutch is engaged, the motion equation can be expressed as:

Ti + Tem1 = (Ji + J1)
dωi
dt

(15)

where J1 and Ji are the moments of inertia of M/G1 and the inner rotor of CMG, respectively, and Tem1

is the electromagnetic torque provided by the M/G1. It should be noted that in this case, ωi is equal
to ω1.

Case 2: the lock is engaged and the clutch is disengaged, the motion equation can be expressed as:

Tem1 = J1
dω1

dt
(16)

It should be noted that in this case, ωi is equal to zero.

4. Parameters Determination

In this section, the parameters of the powertrain system are determined to meet the vehicle
performance requirements that we want to achieve, and the vehicle performance requirements are
listed in Table 1. The parameters which need to be determined mainly include the vehicle parameters
and the parameters of CMG, M/G1, and M/G2. The parameters of CMG, M/G1, and M/G2 must
match the vehicle parameters. Thus, first of all, we must determine the vehicle parameters and then
carry on the parameter matching. The vehicle basic parameters are listed in Table 2.

Table 1. Vehicle performance requirements.

Items Value

Maximum velocity, vmax 150 km/h
(vi = 10 km/h) Maximum climbable slope, i1_max 30%

(0~100 km/h) Acceleration time, T 13 s

Table 2. Vehicle basic parameters.

Items Value

Vehicle mass, M 1332 kg
Rolling resistance coefficient, f f 0.009

Frontal area, A 1.746 m2

Mass correction factor, δ 1
Tire radius, Rw 0.287 m

Aerodynamic drag coefficient, CD 0.3
Air density, ρ 1.2258 kg/m3

Gravitational acceleration, g 9.8 m/s2

Reduction ratio, i 3.93
Gear ratio of CMG, Gr 2.6

4.1. Vehicle Parameters

The vehicle parameters are inclusive of the maximum power (Ptotal) and the maximum driving
force (Fd_max). Both of them need to be determined according to the maximum velocity, the maximum
climbable slope, and the acceleration performance. In addition, Pmax1/Fd_max1, Pmax2/Fd_max2,
and Pmax3/Fd_max3 correspond to the maximum powers/driving forces based on the performance of
the maximum velocity, the maximum climbable slope, and the acceleration, respectively. In the light
of [26], the corresponding maximum powers and driving forces are calculated in detail as given below:
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4.1.1. Pmax1/Fd_max1

Only considering the vehicle driving at vmax on a road without slope angle, the required power
(Pmax1) and driving force (Fd_max1) are calculated by:

Pmax1 = (Ff + Fw)vmax =
(

f f Mg + 0.5ρCD Av2
max

)
vmax (17)

Fd_max1 = f f Mg + 0.5ρCD Av2
max (18)

Substituting the relevant data in Tables 1 and 2 into the above equations, it can be obtained that
Pmax1 = 28.1 kW and Fd_max1 = 674.8 N.

4.1.2. Pmax2/Fd_max2

Supposing that the vehicle is climbing a road with maximum climbable slope (i1_max) at a constant
speed (vi), the required power (Pmax2) and driving force (Fd_max2) in this case are calculated by:

αmax = arc tan(i1_max) (19)

Pmax2 = (Ff + Fw + Fi)vi =
(

f f Mg cos αmax + 0.5ρCD Av2
i + Mg sin αmax

)
vi (20)

Fd_max2 = f f Mg cos αmax + 0.5ρCD Av2
i + Mg sin αmax (21)

Substituting the relevant data into Equations (19) to (21), it can be obtained that Pmax2 = 10.7 kW and
Fd_max2 = 3865.9 N.

4.1.3. Pmax3/Fd_max3

Ignoring climbing force and assuming that it takes 13 s for the vehicle to accelerate uniformly from
0 to 100 km/h, the required power (Pmax3) and driving force (Fd_max3) in this case are calculated by:

Pmax3 = P(t)|t=T =
δMv2

t
T

+ f f Mgvt + 0.5ρCD Av3
t (22)

Fd_max3 =
δMvt

T
+ f f Mg + 0.5ρCD Av2

t (23)

Similarly, it can be obtained that Pmax3 = 89.2 kW and Fd_max3 = 3211.3 N.
The calculation results of the maximum powers and driving forces are summarized in Table 3.

Table 3. Calculation results of the maximum powers and driving forces.

Items Value Items Value

Pmax1 28.1 kW Fd_max1 674.8 N
Pmax2 10.7 kW Fd_max2 3865.9 N
Pmax3 89.2 kW Fd_max3 3211.3 N

In order to achieve the indices in Table 1, Ptotal and Fd_max must satisfy the following formulas:

Ptotal ≥ max(Pmax1, Pmax2, Pmax3) (24)

Fd_max ≥ max(Fd_max1, Fd_max2, Fd_max3) (25)

Finally, taking into account the margin of 3%, we can determine that Ptotal and Fd_max are 92 kW
and 3982 N, respectively. Meanwhile, it can be obtained that the required maximum torque of the half
shaft (Tw_max) is 1142.8 Nm.
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4.2. CMG Parameters

For CMG, the required maximum torques provided by the inner rotor, modulating ring rotor, and
outer rotor must match that of the half shaft, which is described by:

Tm_max ≥
Tw_max

i
(26)

Ti_max ≥
1

1 + Gr
Tm_max (27)

To_max ≥
Gr

1 + Gr
Tm_max (28)

where Ti_max, Tm_max, and To_max are the required maximum torques provided by the inner rotor,
modulating ring rotor, and outer rotor, respectively. Eventually, we can determine that Ti_max, Tm_max,
and To_max are 291 Nm, 81 Nm, and 211 Nm, respectively.

4.3. M/Gs Parameters

The parameters of M/G1 and M/G2 refer to the maximum/rated power, maximum/rated
torque, and maximum/rated rotational speed. They not only need to match with the performance
requirements, but also meet the control strategy, as shown in Table 4. The powertrain system adopts
the control strategy based on vehicle velocity: (1) when 0 ≤ v ≤ 80 km/h and dv/dt ≥ 0, it will adopt
Mode 1. It is worth noting that when vehicle velocity is up to 80 km/h, the rotational speed of M/G2
reaches the maximum; (2) when 80 < v ≤ 150 km/h and dv/dt ≥ 0, it will adopt Mode 3. In this case,
M/G2 operates at the maximum rotational speed and the adjustment of vehicle velocity depends on
the control of the speed of M/G1; (3) when 0 ≤ v ≤ 80 km/h and dv/dt < 0, it will adopt Mode 2;
(4) when 80 < v ≤ 150 km/h and dv/dt < 0, it will adopt Mode 4.

Table 4. Control strategy.

Vehicle Velocity M/G1 M/G2 Lock Clutch Operation Mode

0 ≤ v ≤ 80 km/h and dv/dt ≥ 0 × + 1 0 Mode 1
80 < v ≤ 150 km/h and dv/dt ≥ 0 + + 0 1 Mode 3
0 ≤ v ≤ 80 km/h and dv/dt < 0 + − 1 0 Mode 2

80 < v ≤ 150 km/h and dv/dt < 0 − − 0 1 Mode 4

Note: “×” denotes de-energized; “+” denotes that M/Gs operate in motor condition; “−” means that M/Gs operate
in generator condition; “1” denotes engaged; “0” denotes disengaged.

Therefore, the basic principle of M/G2 parameter determination should be observed as follows:
(1) the maximum rotational speed of M/G2 (n2_max) is obtained when vehicle velocity is up to 80 km/h;
(2) to guarantee the maximum climbable slope, the maximum torque of M/G2 (T2_max) should be
bigger than that of the outer rotor in the CMG; (3) as per the vehicle performance of acceleration, the
maximum power of M/G2 (P2_max) can be decided; (4) we set the overload factor of M/G2 (λ) to 3.
According to the basic principle, the parameters of M/G2 we calculated and chose are listed in Table 5.
It can be seen that the ratio of the maximum and the rated rotational speed is about 1.3; it indicates that
the operating speed range of M/G2 becomes much narrower by adopting two EMs, which is really
conducive to the motor design.

Table 5. Determined parameters of M/G2.

Items Value Items Value

Maximum power, P2_max 70 kW Rated power, P2_e 24 kW
Maximum rotational speed, n2_max 4100 r/min Rated rotational speed, n2_e 3200 r/min

Maximum torque, T2_max 211 Nm Rated torque, T2_e 73 Nm
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For M/G1, the following principle should be observed in parameter determination: (1) in order
to match the required maximum torque provided by the inner rotor of CMG, the maximum torque of
M/G1 (T1_max) should larger than that of the inner rotor in the CMG; (2) based on the control strategy,
the maximum rotational speed of M/G1 (n1_max) is decided by the maximum vehicle velocity; (3) we
decided that the overload factor of M/G1 be the same as that of M/G2; (4) we set the expansive
constant power area coefficient (β) to 2.5. The parameters of M/G1 we calculated and chose are shown
in Table 6.

Table 6. Determined parameters of M/G1.

Items Value Items Value

Maximum power, P1_max 32 kW Rated power, P1_e 11 kW
Maximum rotational speed, n1_max 9200 r/min Rated rotational speed, n1_e 3680 r/min

Maximum torque, T1_max 81 Nm Rated torque, T1_e 29 Nm

5. Simulation and Verification

To verify the operation modes, the powertrain system was modeled and simulated by using
MATLAB/Simulink. After that, to evaluate the rationality of the decided parameters, the simulation
was also performed based on the New European Driving Cycle (NEDC) by using MATLAB/Simulink.
The modeling parameters of the powertrain system are given in Table 7.

Table 7. Modeling parameters.

Vehicle Mass, M 1332 kg Air Density, ρ 1.2258 kg/m3

Rolling resistance coefficient, f f 0.009 Gravitational acceleration, g 9.8 m/s2

Frontal area, A 1.746 m2 Reduction ratio, i 3.93
Mass correction factor, δ 1 Gear ratio of CMG, Gr 2.6

Aerodynamic drag coefficient, CD 0.3 Tire radius, Rw 0.287 m

The moment of inertia of M/G1, J1 0.8 kg·m2 The moment of inertia of
wheels and haft shaft, Jv

3.3807 kg·m2

5.1. Verification of Operation Modes

5.1.1. Mode 1

Figure 6 shows the simulation results based on the established model. Figure 6a gives the required
vehicle velocity, where the vehicle is in a state of uniform acceleration and uniform speed, and the
maximum velocity is smaller than 80 km/h. Figure 6b exhibits the rotational speeds of M/G1 (n1),
M/G2 (n2), and modulating ring rotor (nm), where it can be found that the ratio of n2 and nm is about
1.4 at all times, and M/G1 is kept still. The ratio indicates that the speed of the inner rotor in the CMG
is zero and the lock is engaged. Figure 6c shows the powers of M/G1 (P1), M/G2 (P2), and modulating
ring rotor (Pm). It can be observed that P2 and Pm are positive and P1 is zero. Since P2 is positive,
M/G2 works as a motor; since Pm is positive, it means the modulating ring rotor transmits energy to
the wheels. Judging by n1 and P1, M/G1 doesn’t function in the whole process. It is necessary to point
out that due to the neglect of losses in the simulation model, P2 is equal to Pm.
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5.1.2. Mode 2

The simulation results based on Mode 2 are presented in Figure 7. Figure 7a shows the required
vehicle velocity. The vehicle is driving at a uniform speed from 0 to 6 s and in the state of uniform
deceleration from 6 to 12 s, moreover, the maximum velocity is smaller than 80 km/h. Figure 7b
exhibits the rotational speeds of M/G1, M/G2, and the modulating ring rotor, where it can be seen
that in the whole process, n2 and nm satisfy the constraint relation in Equation (1), while n1 is zero
from 0 to 6 s; after 6 s, M/G1 is accelerating. Judging by the powers in Figure 7c, 0~6 s: P2 and Pm are
positive and P1 is zero; 6~12 s: P2 and Pm are negative and P1 is positive. P2 is negative, which means
M/G2 works as a generator; Pm is negative, which means the modulating ring rotor recovers energy
from wheels; P1 is positive, which means M/G1 works as a motor. What is more, the value of power is
the same among P1, P2, and Pm, which indicates that the energy from braking is all stored in M/G1 in
the form of kinetic energy. Therefore, M/G1 plays the role of a flywheel EM.
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5.1.3. Mode 3

Figure 8 depicts the simulation results based on Mode 3. It can be observed from Figure 8a that the
vehicle velocity is greater than 80 km/h and the vehicle takes 6 s to accelerate from 110 to 120 km/h;
during 6~12 s, the vehicle keeps driving at the speed of 120 km/h. As shown in Figure 8b, it can be
found that every moment, n1, n2, and nm satisfy the constraint relationship in Equation (1). The speed
of M/G1 is not equal to zero any longer and M/G2 keeps operating at the speed of 4023.5 r/min.
Judging by the powers in Figure 8c, P1, P2, and Pm are positive and Pm is equal to the sum of P1 and P2,
which indicates that in this mode, M/G1 and M/G2 drive the vehicle together.
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5.1.4. Mode 4

The simulation results based on Mode 4 are presented in Figure 9. Figure 9a shows the required
vehicle velocity. Figure 9b exhibits the rotational speeds of M/G1, M/G2, and the modulating ring rotor.
Figure 9c gives the powers of M/G1, M/G2, and the modulating ring rotor. It can be observed from the
three Figures that from 0 to 2 s: the vehicle is driving at a uniform speed and the maximum velocity is
bigger than 80 km/h; n1, n2, and nm are kept constant; P1, P2, and Pm are positive and Pm is equal to the
sum of P1 and P2, which indicates that M/G1 and M/G2 drive the vehicle together. From 2 s to t0: the
vehicle velocity decreases linearly to 80 km/h; n1 is linearly reduced to zero, while M/G2 is operating
at the speed of 4023.5 r/min; P1, P2, and Pm are negative and Pm is also equal to the sum of P1 and
P2, which means that during this time, the energy recovered from braking is convert into electric
power stored in the battery through M/G1 and M/G2. From t0 to 22 s: the vehicle continues to slow
down; n2 and nm are reduced linearly, and at every moment, the ratio of n2 and nm are about 1.4.
However, M/G1 is in a state of acceleration; P2 and Pm are negative, P1 is positive, and the values of P1,
P2, and Pm are the same. As a matter of fact, during the time interval, the vehicle is working in Mode 2
and the energy from braking is all stored in M/G1 in the form of kinetic energy. Therefore, M/G1 can
be regarded as a flywheel storage device.
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In summary, by analyzing the four modes separately, the feasibility of the powertrain system has
been verified. In addition, the powertrain system can achieve regenerative braking. What is more,
in the process of regenerative braking, M/G1 can function as a flywheel storage device, which is
capable of buffering the energy from regenerative braking, so as to protect the battery.

5.2. Simulation Based on New European Driving Cycle

The simulation results based on NEDC by using MATLAB/Simulink are presented in Figure 10.
Figure 10a exhibits the NEDC. It is made up of four urban cycles and a suburb cycle, which is one of
the main typical conditions of the emission regulations in Europe and China. NEDC time is 1184 s and
the maximum velocity is 120 km/h. It can be obtained from the three Figures that due to v ≤ 80 km/h,
the vehicle operates either in Mode 1 or Mode 2 from 0 to t0, while after t0, the vehicle operates either in
Mode 3 or Mode 4. It can be observed from Figure 10b that the maximum speeds of M/G1 and M/G2
are smaller than that listed in Tables 5 and 6. It can be also seen from Figure 10c that the maximum
powers of M/G1 and M/G2 are smaller than that listed in Tables 5 and 6. Thus, the results prove the
rationality of the determined parameters in Tables 5 and 6. Meanwhile, since the simulation based on
NEDC was carried out in continuous operation modes, the simulation results demonstrate, in theory,
the feasibility of the operation modes and control strategy again.

1 

 

 

Figure 10. (a) New European Driving Cycle (NEDC); (b) Rotational speeds; (c) Powers (From top
to bottom).

6. Conclusions

In this paper, a novel electric vehicle powertrain system has been proposed, which enables the
electric vehicles to work in four operation modes and support multi-path power flows. A dynamic
model of the powertrain system has been presented. How to determine the relevant parameters in the
powertrain system has been elaborated, and the determined parameters indicate that the operating
speed range of M/G2 becomes much narrower by adopting two EMs, which means that it is conducive
to the design of M/G2. The simulation results obtained by MATLAB/Simulink have demonstrated that
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the operation modes and the control strategy are feasible in theory; the M/G1 can work as a flywheel
storage device when necessary, which is capable of buffering the energy from regenerative braking;
the determined parameters are reasonable.
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