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Abstract: Hybridizing evolutionary algorithms with a support vector regression (SVR) model to 
conduct the electric load forecasting has demonstrated the superiorities in forecasting accuracy 
improvements. The recently proposed bat algorithm (BA), compared with classical GA and PSO 
algorithm, has greater potential in forecasting accuracy improvements. However, the original BA 
still suffers from the embedded drawbacks, including trapping in local optima and premature 
convergence. Hence, to continue exploring possible improvements of the original BA and to receive 
more appropriate parameters of an SVR model, this paper applies quantum computing mechanism 
to empower each bat to possess quantum behavior, then, employs the chaotic mapping function to 
execute the global chaotic disturbance process, to enlarge bat’s search space and to make the bat 
jump out from the local optima when population is over accumulation. This paper presents a novel 
load forecasting approach, namely SVRCQBA model, by hybridizing the SVR model with the 
quantum computing mechanism, chaotic mapping function, and BA, to receive higher forecasting 
accuracy. The numerical results demonstrate that the proposed SVRCQBA model is superior to 
other alternative models in terms of forecasting accuracy. 

Keywords: support vector regression; chaos theory; quantum behavior; bat algorithm (BA); load 
forecasting 

 

1. Introduction 

Electric load forecasting plays an essential role in making optimal action plans for decision 
makers, such as load unit commitment, energy transfer scheduling, contingency planning load 
shedding, energy generation, load dispatch, power system operation security, hydrothermal 
coordination, and so on [1]. Indicated by Bunn and Farmer [2], an 1% increase in electric load 
forecasting error may lead to a £10 million additional expenditure in operations. Thus, it is important 
to look for high accurate forecasting models or to develop novel approaches to receive satisfied load 
forecasting accuracy, which can help decision makers optimize adjust the electricity price/supply and 
load plan based on the forecasted results, i.e., improve the electricity system operations more 
efficient, and reduce system operating risks successfully. Unfortunately, affected by several 
exogenous factors, such as policy, economic production, industrial activities, weather conditions, 
population, holidays, etc. [3], the electric load data demonstrate seasonality, non-linearity, volatility, 
randomness and chaos in nature, which increase the difficulty for electric demand forecasting [4]. 

In the past few decades, lots of electric load forecasting models have been developed to improve 
load forecasting accuracy. These forecasting methods include two classical types: traditional 
statistical models and artificial intelligent models. The traditional statistical models are easily to be 
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applied, which include the ARIMA model [5], Kalman filtering/linear quadratic estimation model [6], 
exponential smoothing model [7], regression model [8], Bayesian estimation model [9], and other 
time series technologies [10]. However, most of the traditional statistical models are theoretically to 
deal with the linear relationships among electric loads and other factors; these methods are difficult 
to well handle the characteristics of non-linearity, volatility, and randomness among historical 
electric loads and exogenous factors. Thus, they cannot easily receive satisfied electric load 
forecasting accuracy. 

Due to the strong nonlinear fitting ability, various artificial intelligence (AI) based methods have 
been applied to forecast electric load, to improve the accuracy of load forecasting models since 1980s, 
such as artificial neural networks (ANNs) [11], expert system-based model [12], and fuzzy inference 
methodology [13]. To further improve the forecasting performance, these AI methods have been 
hybridized or combined with each other to obtain new novel forecasting approaches or frameworks, 
for example, RBF neural network combined with adaptive network-based fuzzy inference system 
[14], multi-layer perceptron artificial neural network hybridized with knowledge-based feedback 
tuning fuzzy system (MLPANN) [15], the Bayesian neural network with the hybrid Monte Carlo 
algorithm [16], fuzzy behavior neural network (WFNN) [17], hybrid artificial bee colony algorithm 
hybridized with extreme learning machine [18], the random fuzzy variables with ANNs [19], and so 
on. However, these AI-based approaches still suffer from some embedded drawbacks. The defects of 
these models include difficulty to set the structural parameters of network [20], time consuming to 
extract functional approximation, and easily to trapped in local optimal value. More systematic 
analysis about AI-based models used in load forecasting are shown in references [21]. 

Support vector machine (SVM) is based on the statistical learning theory and kernel computing 
techniques, the so-called kernel based neural networks, to effectively deal with small sample size 
problem, non-linear problem, and high dimensional pattern identification problems. Moreover, it 
could also be applied to well solve other machine learning problems, such as function approximation, 
probability density estimation, and so on [22,23]. Rather than by implementing the empirical risk 
minimization (ERM) principle to minimize the training error, which causes the overfitting problem 
in the ANNs modeling process, SVM employs the structural risk minimization (SRM) principle to 
minimize an upper bound on the generalization error, and allow learning any training set without 
error. Thus, SVMs could theoretically guarantee to achieve the global optimum than ANNs models. 
In addition, while dealing with the nonlinear problem, SVM firstly maps the data into a higher 
dimensional space, then, it employs the kernel function to replace the complicate inner product in the 
high dimensional space. In the other words, it can easily avoid too complex computations with high 
dimensions, i.e., the so-called dimension disaster problem. This enables SVMs to be a feasible choice 
for solving a variety of problems in lots of fields which are non-linear in nature. For more detailed 
mechanisms introduction of SVMs, it is referred to Vaplink [22,23] and Scholkopf and Sloma [24], 
among others. Along with the introduction of Vapnik’s ߝ-insensitive loss function, SVM also has 
been extended to solve nonlinear regression estimation problems, which are so-called support vector 
regression (SVR) [25]. Compared with AI methods, SVR model has the embedded characteristics of 
small sample learning and generalization ability, which can avoid learning, local minimal point and 
dimension disaster problem effectively. SVR have been successfully employed to solve forecasting 
problems in many fields, such as solar irradiation forecasting [26], rainfall/flood hydrological 
forecasting [27–29], industrial wastewater quality forecasting [30], and so on. Meanwhile, SVR model 
had also been successfully applied to forecast electric load [31,32]. To improve the forecasting 
accuracy, Hong and his colleagues propose a series of SVR-based forecasting models via hybridizing 
with different evolutionary algorithms [33–36]. Based on Hong’s series research results, well 
determining parameters of an SVR model is critical to improve the forecasting performance. 
Henceforth, Hong and his successors have employed chaotic mapping functions (including logistic 
function and cat mapping function) to enrich diversity of population over the whole space, and also 
have applied cloud theory to execute the three parameters selection carefully to receive significant 
improvements in terms of forecasting accuracy.  
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Bat algorithm [37] is a new swarm intelligent optimization proposed by Yang in 2010. It is 
originated from the simulation of bat’s prey detection and obstacle avoidance by sonar. This 
algorithm is a simulation technology based on iteration. The population is initialized randomly, then 
the optimal resolution is searched through iteration, finally the local new resolutions are found 
around the optimal resolution by random flying, hence, the local search is strengthened. Compared 
with other algorithms, BA has the advantages of parallelism, quick convergence, distribution and less 
parameter adjusted. It has been proved that BA is superior to PSO in terms of convergent rate and 
stability [38]. Nowadays, BA is widely applied in natural science, such as PFSP dispatch problem 
[39], K-means clustering optimization [40], engineering optimization [41], and multi-objective 
optimization [42], etc. Comparing with other evolutionary algorithms, such as, PSO and GA, BA has 
greater improving potential. However, similar to those optimization algorithms which are based on 
population iterative searching mechanism, standard BA also suffers from slow convergent rate in the 
later searching period, weak local search ability and premature convergence tendency [41].  

On the other hand, quantum computing technique is an important research hotspot in the field 
of intelligent computing. The principle of qubit and superposition of states in quantum computing is 
used. The units are represented by qubit coding, and the revolution is updated by quantum gate, 
which expands its ergodic ability in solution space. Recently, it has received some hot attention that 
quantum computing concepts could be theoretically hybridized with those evolutionary algorithms 
to improve their searching performances. Huang [43] proposes an SVR-based forecasting model by 
hybridizing the quantum computing concepts and the cat mapping function with the PSO algorithm 
into an SVR model, namely SVRCQPSO forecasting model, and receives satisfied forecasting accurate 
levels. Lee and Lin [44,45] also hybridize the quantum computing concepts and cat mapping function 
with tabu search algorithm and genetic algorithm to propose SVRCQTS and SVRCQGA models, 
respectively, and also receive higher forecasting accuracy. Li et al. [46] also applied quantum non-
gate to realize quantum mutation to avoid premature convergence. Their experiments on classical 
complicated functions also reveal that the improved algorithm could effectively avoid local optimal 
solutions. However, due to the population diversity decline along with iterative time increasing, the 
BA and QBA still suffers from the very problem that trapping into local optima and premature 
convergence. 

Considering the core drawback of the BA and QBA, i.e., trapping into local optima, causing 
unsatisfied forecasting accuracy, this paper would continue to explore the feasibility of hybridizing 
quantum computing concepts with BA, to overcome the premature problem of BA, eventually, to 
determine more suitable parameter combination of an SVR model. Therefore, this paper employs 
quantum computing concepts to empower each bat to expand the search space during the searching 
processes of BA; in the meanwhile, also applies the chaotic mapping function to execute global 
perturbation operation to help the bats jump from the local optima when the diversity of the 
population is poor; then, receive more suitable parameter combination of an SVR model. Finally, a 
new load forecasting model, via hybridizing cat mapping function, quantum computing concepts 
and BA with an SVR model, namely SVRCQBA model, is proposed. Furthermore, the forecasting 
results of SVRCQBA model are used to compare with that of other alternatives proposed by Huang 
[43] and Lee and Lin [44,45] to test its superiority in terms of forecasting accuracy. The main 
innovative contribution of this paper is continuing to hybridize the SVR model with the quantum 
computing mechanism, chaotic mapping theory and evolutionary algorithms, to well explore the 
load forecasting model with higher accurate levels. 

The remainder of this article is organized as follows. The basic formulation of an SVR model, the 
proposed CQBA and the implementation details of the proposed SVRCQBA model are illustrated in 
Section 2. Section 3 presents a numerical example and achieves the compared analysis among the 
proposed model and published alternative models. Finally, Section 4 concludes this paper. 
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2. Methodology of SVRCQBA Model 

2.1. Support Vector Regression (SVR) Model 

The brief ideas of SVR are demonstrated. A non-linear mapping function, ߮(ݔ), is defined to 
map the input data set, ሼ(࢏ܠ, ௜)ሽ௜ୀଵேݕ , into a high dimensional feature space. Then, there theoretically 
exists a linear function, f, to formulate the non-linear relationships between input data and output 
data. The linear function, f, is the so-called the SVR function, and is shown as Equation (1), ݂(ܠ) = (ܠ)߮܂ܟ + ܾ (1) 

where ݂(ܠ) represents the forecasting values; ߮(ܠ) is the feature mapping function, non-linearly 
mapping the input space, x, into the feature space; the coefficients, w and b, are determined by 
minimizing the empirical risk, as shown in Equation (2), 

ܴ௘௠௣(݂) = 1ܰ෍ܮఌ(ݕ௜,ே
௜ୀଵ (࢏ܠ)߮ࢀܟ + ܾ) (2) 

where ܮఌ(ܡ, ,ܡఌ൫ܮ ,insensitive loss function as shown in Equation (3)-ߝ is the ((ܠ)݂ ൯(ܠ)݂ = ቄ|݂(ܠ) − |ܡ − ߝ ݂݅ (ܠ)݂| − |ܡ ≥ 0ߝ ݁ݏ݅ݓݎℎ݁ݐ݋  (3) 

In addition, ܮఌ(ܡ,  is used to look for an optimum hyper plane in the feature space, to ((ܠ)݂
maximize the distance separating the training data into two subsets. Thus, the SVR focuses on looking 
for the optimum hyper plane, and minimizing the training errors between the training data and the ߝ-insensitive loss function. 

Therefore, the SVR modeling problem could be illustrated as minimizing the overall errors, 
shown in Equation (4),  

Min௪,௕,క∗,క	 ܴఌ(ݓ, ,∗ߦ (ߦ = ܟࢀܟ12 + ∗௜ߦ)෍ܥ + ௜)ேߦ
௜ୀଵ  (4) 

with the constraints, ࢏ܡ − (࢏ܠ)߮ࢀܟ − ܾ ≤ ߝ + ࢏ܡ−,∗௜ߦ − (࢏ܠ)߮ࢀܟ − ܾ ≤ ߝ + ∗௜ߦ,௜ߦ ≥ ௜ߦ0 ≥ 0݅ = 1, 2, … , ܰ   

The first term of Equation (4), representing the concept that maximizes the distance within two 
separated training data, is used to penalize large weights, in the meanwhile, to maintain the flatness 
of ݂(ܠ). The second term penalizes training errors via the ߝ-insensitive loss function. C is a parameter 
to trade off of ݂(ܠ) and y. Training errors under ߝ are denoted as ߦ௜∗, whereas training errors above ߝ are denoted as ߦ௜. 

After solving the quadratic optimization problem with inequality constraints, the parameter 
vector w in Equation (1) is computed as Equation (5), 

ܟ =෍(ߙ௜∗ − ே(࢏ܠ)߮(௜ߙ
௜ୀଵ  (5) 

where ߙ௜∗ ௜ߙ ,  are computed and named as Lagrangian multipliers. Finally, the SVR regression 
function is obtained as Equation (6) in the dual space, 

(ܠ)݂ =෍(ߙ௜∗ − ,࢏ܠ)ܭ(௜ߙ ே(ܠ
௜ୀଵ + ܾ (6) 
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where ܭ൫࢏ܠ,  ൯ is the so-called kernel function, and its value could be calculated via the inner࢐ܠ
product of two vectors, ࢏ܠ  and ࢐ܠ , in the feature space, ߮(࢏ܠ)  and (࢐ܠ)߮	 , respectively, i.e., ܭ൫࢏ܠ, ൯࢐ܠ = (࢏ܠ)߮ ∙  Any function that satisfies Mercer’s condition [25] could be used as the .(࢐ܠ)߮
kernel function. 

The most famous kernel functions are the Gaussian RBF with a width of ߪ, and the polynomial 
kernel with an order of d and constants a1 and a2, as shown in Equations (7) and (8), respectively. If 
the value of ߪ is large enough, the RBF kernel function would approximate to the linear kernel (i.e., 
polynomial with an order of 1). In addition, the Gaussian RBF kernel function is not only easier to 
implement, but also capable to non-linearly map the data into the higher dimensional space, thus, it 
is suitable to deal with non-linear problems. Therefore, the Gaussian RBF kernel function (Equation 
(7)) is used in this paper. 

,࢏ܠ൫ܭ ൯࢐ܠ = ݁ିฮ࢐ܠି࢏ܠฮమଶఙమ  (7) 

,࢏ܠ൫ܭ ൯࢐ܠ = ൫ܽଵ࢐ܠ࢏ܠ + ܽଶ൯ௗ (8) 

The selection of the three parameters, σ, C, and ε of an SVR model influence the accuracy of 
forecasting. For parameter, ε, it represents the parameter of the ߝ-insensitive loss function. It controls 
the width of insensitive area (i.e., low noise of the data set) from data set, thus, it determines the 
amount of support vectors. If ε is too large, the amount of support vectors would be few, thus, the 
forecasting model would become relative simple and with low accuracy; on the contrary, if ε is very 
small, the regression accuracy could be enhanced, however, the forecasting model would become 
relatively complicate and with low general adoptions.  

For parameter, C, it represents the penalty for those data outside the ε-tube. It determines the 
complexity and stability of the forecasting model. If C is very small, the penalty is mall, i.e., the 
training errors are large; on the contrary, if C is too large, the learning accuracy would also be 
enhanced, however, the forecasting model would be with low general adoptions. In addition, the 
values of C would also affect the fatness of the forecasting model, i.e., the arrangements of outliers. 
For a suitable C, it could deal with the disturbance of these outliers, and hence, it could guarantee the 
stability of the forecasting model. Therefore, the suitable parameter determination of C and ε, it could 
receive more accurate and more stable forecasting model.  

For parameter, σ, it not only represents the basic capability of the Gaussian RBF kernel function 
to deal with nonlinear relationships among data, but also reflects the correlations among support 
vectors. For example, if σ is very small, the correlation among those support vectors is weak, then, 
the process of machine learning is relatively complex, i.e., it cannot guarantee to receive general 
adoptions; on the contrary, if σ is too large, the correlation among those support vectors is too strong 
to receive sufficient accuracy. Therefore, in the modeling processes, if σ is approximating smaller, it 
is suggested set a larger value of C. 

Based on the above analysis of these three parameters, the complexity and general adoptions of 
an SVR model are determined by these three parameters and their interactions. Therefore, too look 
for a novel algorithm to optimize the parameter combination is an important issue to improve the 
forecasting accuracy of an SVR model. 

2.2. Chaotic Quantum Bat Algorithm (CQBA) 

2.2.1. Bat Algorithm (BA) 

Bats detect preys and avoid obstacles with sonar. According to echolocation in acoustic theory, 
bats judge preys’ size through adjusting phonation frequency. By the variation of echolocation, bats 
would detect the distance, direction, velocity, size, etc. of objects, which guarantees bats’ accurate 
flying and hunting [47]. While searching for preys, they change the volume, A(i), and emission 
velocity, R(i), of impulse automatically. During the prey-searching period, the ultrasonic volume that 
they send out is high, while the emission velocity is relatively low. Once the prey is locked, the 
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impulse volume turns down and emission velocity increases with the distance between bat and prey 
being shortened. 

The bat algorithm is a meta heuristic algorithm for intelligent search. The theory is as followings, 
(1) Bat’s position and velocity are initialized, and are treated as the solution in problem space; (2) The 
optimal fitness function value of the problem is calculated; (3) The volume and velocity of bat units 
are adjusted, and are transformed towards optimal unit; (4) The optimal solution is finally received. 
The bat algorithm involves global search and local search. 

In global search, suppose that the search space is with d dimensions, at the time, t, the ith bat has 
its position, ݔ௜௧, and velocity, ݒ௜௧. At the time, t + 1, its position, ݔ௜௧ାଵ, and velocity, ݒ௜௧ାଵ, are updated 
as Equations (9) and (10), respectively, ݔ௜௧ାଵ = ௜௧ݔ +  ௜௧ାଵ (9)ݒ

௜௧ାଵݒ = ௜௧ݒ + ௜௧ݔ) − ௜ܨ(∗ݔ (10) 

where ݔ∗  is the current global optimal solution; ܨ௜	  is the sonic wave frequency, as shown in 
Equation (11), ܨ௜ = ୫୧୬ܨ + ୫ୟ୶ܨ) −  (11) ߚ(୫୧୬ܨ

where ߚ ∈ ሾ0,1ሿ is a random number; ܨ୫ୟ୶ and ܨ୫୧୬ are respectively the sonic wave max frequency 
and min frequency of the ith bat at this moment. In the process of practice, according to the scope 
that this problem needs to search, the initialization of each bat is assigned one random frequency 
following uniform distribution in ሾܨ୫୧୬,   .୫ୟ୶ሿܨ

In local search, once a solution is selected in the current global optimal solution, each bat would 
produce new alternative solution in the mode of random walk according to Equation (12), ݔ୬ୣ୵(݅) = ୭୪ୢݔ +  ௧ (12)ܣߣ

where ݔ୭୪ୢ is a solution randomly chosen in current optimal disaggregation; ܣ௧ is the average of 
volume in current bat population; ߣ is a D dimensional vector in [−1, 1]. 

The bat’s velocity and position update steps are similar to that in standard PSO. In PSO, ܨ௜ 
actually dominates the moving range and space of the particle swarm. To a certain degree, BA could 
be treated as the balance and combination between standard PSO and augmented local search. The 
balance is dominated by impulse volume, A(i), and impulse emission rate, R(i). When the bat locks 
the prey, the volume, A(i), is reduced and the emission rate, R(i), is increased. The impulse volume, 
A(i), and impulse emission rate, R(i), are updated as Equations (13) and (14), respectively, ܣ௧ାଵ(݅) = (݅)௧(݅) (13) ܴ௧ାଵܣߛ = ܴ଴(݅)ൣ1 − ݁ିఋ௧൧ (14) 

where, 0 < γ < ߜ ,1 > 0, are both constants. It is obviously that as ݐ → ∞ , then, ܣ௧(݅) → 0  and ܴ௧(݅) = ܴ଴(݅). In the practice process, ߛ = ߜ = 0.95. 

2.2.2. Quantum Computing for BA 

a. Quantum Bat Population Initialization 

In quantum bat algorithm, the probability amplitude of qubit is applied as the code of bat in 
current position. Considering the randomness of code in population initialization, the coding 
program of the bat ܤ௜ in this paper is given as Equation (15),  ܤ௜ = ቈcos ଵ௜ߠ cos ଶ௜ߠ ⋯ cos ௝௜ߠ ⋯ cos ௗ௜sinߠ ଵ௜ߠ sin ଶ௜ߠ ⋯ sin ௝௜ߠ ⋯ sin ௗ௜ߠ ቉ (15) 

where, ߠ௝௜ = ߨ2 × ݅ ;is the random number in (0,1) (∙)݀݊ܽݎ ,(∙)݀݊ܽݎ = 1, 2, … , ܰ; j = 1, 2,…, d; d is the 
space dimensionality. 
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Thus, it can be seen that each bat occupies 2 positions in the ergodic space. The probability 
amplitudes of each corresponding to the quantum state of |0ۧ and |1ۧ are defined as Equations (16) 
and (17), respectively. For convenience, ܤ௖௜ is called cosinusoidal position, ܤ௦௜ is called sinusoidal 
position. ܤ௖௜ = ൫cos ଵ௜ߠ , cos ଶ௜ߠ , … , cos ௝௜ߠ , … , cos ௗ௜ߠ ൯ (16) ܤ௦௜ = ൫sin ଵ௜ߠ , sin ଶ௜ߠ , … , sin ௝௜ߠ , … , sin ௗ௜ߠ ൯ (17) 

b. Quantum Bat Global Search and Local Search 

In QBA, the move of bat’s position is actualized by quantum revolving gate. Thus, in standard 
BA, the update of bat’s moving velocity transforms into the update of quantum revolving gate, the 
update of bat’s position transforms into the update of bat’s qubit probability amplitude. The optimal 
positions of the current population are set as Equations (18) (for quantum state of |0ۧ) and (19) (for 
quantum state of |1ۧ), respectively,  ܤ௖௚ = ൫cos ଵ௚ߠ , cos ଶ௚ߠ , … , cos ௗ௚൯ߠ ௦௚ܤ (18) = ൫sin ଵ௚ߠ , sin ଶ௚ߠ , … , sin ௗ௚൯ߠ (19) 

Based on the assumption above, the update rule of bats’ state is as followings. 
In global search, the update rule of the qubit probability amplitude increment of bat ܤ௜ is as 

Equation (20), ∆ߠ௝௜(ݐ + 1) = (ݐ)௝௜ߠ∆ + ௚ߠ∆௜ܨ (20) 

where 	∆ߠ௚ is defined as Equation (21), 

௚ߠ∆ = ൞2ߨ + ௝௚ߠ − ,௝௜ߠ ௝௚ߠ − ௝௜ߠ < −πߠ௝௚ − ,௝௜ߠ ߨ− ≤ ௝௚ߠ − ௝௜ߠ ≤ πߠ௝௚ − ௝௜ߠ − ,ߨ2 ௝௚ߠ − ௝௜ߠ > π 	 (21) 

In local search, the update rule of the qubit probability amplitude corresponding to the current 
optimal phase increment of bat ܤ௜ is defined as Equation (22), ∆ߠ௝௜(ݐ + 1) = ݁ି ఠ∙௚௘௡௚௘௡_௠௔௫∙௔௩௘௥௔௚௘(஺)∙ఘ (22) 

where, ω is constant; gen is the current iteration number; gen_max is the maximal iteration number; 
average(A) is the average of current amplitude of each bat; ߩ is the random integer in [−1, 1]. 

c. Quantum bat location updating 

Based on quantum revolving gate, the quantum probability amplitude is updated as Equation (23), 

቎cos ቀߠ௝௜(ݐ + 1)ቁsin ቀߠ௝௜(ݐ + 1)ቁ቏ = ቎cos ቀ∆ݐ)݆݅ߠ + 1)ቁ − sin ቀ∆ݐ)݆݅ߠ + 1)ቁsin ቀ∆ݐ)݆݅ߠ + 1)ቁ cos ቀ∆ݐ)݆݅ߠ + 1)ቁ ቏ × ቎cos ቀߠ௝௜(ݐ)ቁsin ቀߠ௝௜(ݐ)ቁ቏ 
= ቎cos ቀ(ݐ)݆݅ߠ + ݐ)݆݅ߠ∆ + 1)ቁsin ቀ(ݐ)݆݅ߠ + ݐ)݆݅ߠ∆ + 1)ቁ቏ 

(23) 

The two new updated positions (for the quantum state of |0ۧ and |1ۧ) of bat ܤ௜ are shown as 
Equations (24) and (25), respectively, 

௖ܲ௜(ݐ + 1) = ൫ܿߠ)ݏ݋ଵ௜(ݐ) ݐ)ଵ௜ߠ∆+ + 1)), … , ௗ௜ߠ)ݏ݋ܿ (ݐ) + ௗ௜ߠ∆ ݐ) + 1))൯	 (24) 

௦ܲ௜(ݐ + 1) = ൫sin(ߠଵ௜(ݐ) ݐ)ଵ௜ߠ∆+ + 1)), … , sin(ߠௗ௜ (ݐ) + ௗ௜ߠ∆ ݐ) + 1))൯	 (25) 
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It demonstrates that quantum revolving gate actualizes the simultaneous movements of bat’s 
two positions by updating qubit phase which depicts the bat’s position. Thus, under the condition of 
unchanging total population size, the qubit encoding can enhance ergodicity, which helps improving 
the efficiency of the algorithm. 

2.2.3. Chaotic Quantum Global Perturbation 

As a bionic evolutionary algorithm, with the increasing number of iterations, the diversity of the 
population will decline, which leads to premature convergence during optimization processes. As 
mentioned, the chaotic variable can be used to maintain diversity of the population to avoid 
premature convergence. Many scholars have published papers using improved chaotic algorithm 
[48,49]. Authors also have used cat map to the improve GA and PSO algorithm [50,51], the results of 
numerical experiments show that the searching ability of new GA and PSO improved by chaos is 
enhanced. Hence, in this paper, the cat mapping function is employed to be the global chaotic 
perturbation strategy (GCPS), i.e., the so-called CQBA, based on the QBA to adopt GCPS while 
suffering from premature convergence problem in the iterative searching processes. 

The two-dimensional cat mapping function is shown as Equation (26), ൜ ௧ାଵݕ = ௧ݕ)ܿܽݎ݂ + ௧ାଵݖ(௧ݖ = ௧ݕ)ܿܽݎ݂ + (௧ݖ2 (26) 

where frac function is employed for the fractional parts of a real number y by subtracting an 
appropriate integer. 

The global chaotic perturbation strategy (GCPS) is illustrated as followings. 

(1) Generate ࡺ૛  chaotic disturbance bats. For each ݐܽܤ௜ (i = 1, 2, …, N), apply Equation (26) to 
generate d random numbers, ݖ௝ (j = 1, 2, …, d). Then, the Equations (27) and (28) are used to 
map these numbers, ݖ௝, into ݕ௝ (with valued from −1 to 1). Set ݕ௝ as the qubit (with quantum 
state, |0ۧ) amplitude, cos ௝ݖ .௜ݐܽܤ ௝௜, ofߠ − 01 − 0 = ௝ݕ − (−1)1 − (−1) (27) cos ௝௜ߠ = ݆ݕ = ݆ݖ2 − 1 (28) 

(2) Determine the ࡺ૛ bats with better fitness. Calculate fitness value of each bat from current QBA, 
and arrange these bats to be a sequence in the order of fitness values. Then, select the bats with 
the ேଶth ranking ahead in the fitness values. 

(3) Form the new CQBA population. Mix the ேଶ chaotic perturbation bats with the ேଶ bats which 
are with better fitness selected from current QBA, and form a new population that contains new 
N bats, and named it as CQBA population. 

(4) Complete global chaotic perturbation. After obtaining the new CQBA population, take the new 
CQBA population as the new population of QBA, and continue to execute the QBA process. 

2.2.4. Implementation Steps of CQBA 

The procedure of the hybrid CQBA with an SVR model is detailed as followings and the 
associate flowchart is provided as Figure 1. 

Step 1 Parameter Setting. Initialize the population size, N; maximal iteration, gen_max; expected 
criteria, ߴ; pulse emission rate, R(i); maximum and minimum of emission frequencies, ܨ୫ୟ୶ 
and ܨ୫୧୬, respectively.  

Step 2 Population Initialization of Quantum Bats. According to quantum bat population 
initialization strategy, initialize quantum bat population randomly. 

Step 3 Evaluate Fitness. Evaluate the objective fitness by employing the coding information of 
quantum bats. Each probability amplitude of qubit is corresponding to an optimization 
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variable in solution space. Assumed that the jth qubit of the bat ܤ௜ is	ቈߟ௝௜ߞ௝௜ ቉, the element’s value 

of the qubit is between the interval, [−1, 1]; the solution space variable corresponding to that is ቈ( ௝ܺ௜)௖(ܺ௝௜)௦቉, set the element’s value be between the interval, [aj, bj]. Then, the solution could be 

calculated by the equal proportion relationship (i.e., Equations (29) and (30)), (ܺ௝௜)௖ − ௝ܽ௝ܾ − ௝ܽ = ௝௜ߟ − (−1)1 − (−1) (29) 

(ܺ௝௜)௦ − ௝ܽ௝ܾ − ௝ܽ = ௝௜ߞ − (−1)1 − (−1) (30) 

Eventually, the solution ቈ( ௝ܺ௜)௖(ܺ௝௜)௦቉ is obtained as shown in Equations (31) and (32). 

(ܺ௝௜)௖ = 12 ൣ ௝ܾ൫1 + ௝௜ߟ ൯ + ௝ܽ(1 − ௝௜ߟ )൧ (31) 

(ܺ௝௜)௦ = 12 ൣ ௝ܾ൫1 + ௝௜൯ߞ + ௝ܽ(1 − ௝௜)൧ߞ (32) 

Each bat corresponds to 2 solutions of the optimal problem, the probability amplitude ߟ௝௜  
of the quantum state of |0ۧ corresponds to (ܺ௝௜)௖; the probability amplitude ߞ௝௜ of the quantum 
state of |1ۧ corresponds to (ܺ௝௜)௦, where i = 1, 2, …, N; j = 1, 2, …, d. 

After the transformation of solution space, the parameter combination (ߪ, C, ߝ) for each bat 
is obtained. The forecasting values could also be received, then, the forecasting error is calculated 
as the fitness value for each bat by the mean absolute percentage error (MAPE), as shown in 
Equation (33). 

MAPE = 1ܰ෍ቤ ௜݂(ݔ) − መ݂௜(ݔ)௜݂(ݔ) ቤ × 100%ே
௜ୀଵ  (33) 

where N is the total number of data; ௜݂(ݔ)  is the actual load value at point i; መ݂௜(ݔ)  is the 
forecasted load value at point i. 

Step 4 Quantum Global Search. According to quantum bat global search strategy, employ Equations 
(20) and (23) to implement the global search process of quantum bats, update the optimal 
location and fitness of the population.  

Step 5 Quantum Local Search. This step considers two situations to implement quantum local search.  
Step 5.1 If ࢊ࢔ࢇ࢘(∙) > (࢏)ࡾ , use Equations (22) and (23), around the optimal bat of the current 

population, to implement quantum local search, and obtain the new position; else, go to Step 6. 
Step 5.2 If ࢊ࢔ࢇ࢘(∙) <  and the new position is superior to the original position, then, update (࢏)࡭

the bat’s position, and employ Equations (13) and (14) to update A(i) and R(i), respectively, go 
to Step 5.3; else, go to Step 6. 

Step 5.3 Update the optimal location and fitness of the population. Go to Step 6. 
Step 6 Premature Convergence Test. To improve the global disturbance efficiency, set the expected 

criteria ߴ, when the population aggregation degree is higher, the global chaotic disturbance 
for population should be executed once. The mean square error (MSE), as shown in Equation 
(34), is used to evaluate the premature convergence status, 

MSE = 1ܰ෍ቆ ௜݂(ݔ) − ௔݂௩௚(ݔ)݂(ݔ) ቇଶே
௜ୀଵ  (34) 

where, N is the number of forecasting samples, ௜݂(ݔ) is the actual value of the ith period; ௔݂௩௚(ݔ) is average objective value of the current status; ݂(ݔ) can be obtained by Equation (35), 
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(ݔ)݂ = max ቄ1,max∀௜∈ே൛ห ௜݂(ݔ) − ௔݂௩௚(ݔ)หൟቅ (35) 

If the value of MSE is less than ߜ, the individual aggregation degree of population is higher, 
it can be seen that premature convergence appears, go to Step 7, else go to Step 8. 

Step 7 Chaotic Global Perturbation. Based on cat mapping, i.e., the GCPS as illustrated Section 2.2.1, 
generate ேଶ chaotic perturbation bats, sort bats obtained from QBA according to fitness values, 
and select the ேଶth bats with better fitness. Then, form the new population which includes the ேଶ chaotic perturbation bats and the ேଶ bats with better fitness selected from current QBA. After 
forming the new population, the QBA is implemented continually.  

Step 8 Stop Criteria. If the number of search steps is greater than a given maximum search step, 
gen_max, then, the coded information of the best bat among the current population is 
determined as parameters (ߪ, C, ߝ) of an SVR model; otherwise, go back to Step 4 and continue 
searching the next generation.  

Step 1            Parameter Setting

Step 2     Population Initialization of   
                         Quantum Bats

Step 3             Evaluate Fitness

Step 4       Quantum Global Search

Step 5        Quantum Local Search

Step5-1 Implement Quantum Local Search

 If rand(·)>R(i)

Step5-2     Update the Bat's Position

 If rand(·)<A(i)＆＆

New Position Is Superior to the Original 
Position

Step5-2      Update A(i) and R(i)

Step5-3 Update the optimal location and 
              fitness of the population

Step 7      Generate 0.5N Chaotic 
                     Perturbation Bats

Step 6 Premature Convergence Test

Step 7  Sort Bats Obtained from QBA 
             According to Fitness Values

Step 7  Select the 0.5N Bats with Better 
                           Fitness

Step 7     Form the New Population

Step 8  
Does the Current Population 

Satisfy the Stop Criteria ? 

Stop Searching  and Output the Optimal 
Solution 

Yes

Yes

Yes

No

No

No

Yes

No

 
Figure 1. Chaotic quantum bat algorithm flowchart. 



Energies 2017, 10, 2180 11 of 17 

 

3. Experimental Examples 

3.1. Data Set of Numerical Examples 

To compare the performances of the proposed SVRCQBA model and other hybrid chaotic 
quantum SVR-based models, this paper uses the hourly load data provided in 2014 Global Energy 
Forecasting Competition [52]. The load data totally contains 744-h load values, i.e., from 00:00 1 
December 2011 to 00:00 1 January 2012. To be based on the same comparison conditions, the data set 
is divided based on the same means as shown in the previous papers [43–45]. Therefore, the load data 
are also divided into three sub-sets, the training set with 552-h load values (i.e., from 01:00 1 
December 2011 to 00:00 24 December 2011), the validation set with 96-h load values (i.e., from 01:00 
24 December 2011 to 00:00 28 December 2011), and the testing set al.so with 96-h load values (i.e., 
from 01:00 28 December 2011 to 00:00 1 January 2012). 

The rolling-based procedure, proposed by Hong [32], is employed to help CQBA searching 
suitable parameter’s value of an SVR model in the training process. In the course of specific training, 
the training set is further divided into two subsets, namely the fed-in and the fed-out, respectively. 
Firstly, for each pair of parameters (σ, C, ε) determined by CQBA, the preceding n load values are 
used as the fed-in vector; then, one-step-ahead forecasted load is computed by the SVR model, i.e., 
the (n + 1)th forecasted load. Secondly, the next n load data, i.e., from 2nd to (n + 1)th load values, are 
set as the new fed-in vector and similarly the second one-step-ahead forecasted load is received, 
namely the (n + 2)th forecasted load. Repeat this procedure until the 552nd forecasted load is 
computed. The training error can be simultaneously calculated in each iteration, and the validation 
error would be also calculated. 

The adjusted parameter combination only with the smallest validation and testing errors will be 
selected as the most appropriate parameter combination. Special emphasis is that the testing data set 
is never used in parameter search and model training, it is only employed for examining the 
forecasting accurate level. Eventually, the 96 h load data are forecasted by the SVRCQBA model. 

3.2. The SVRCQBA Load Forecasting Model 

3.2.1. Parameters Setting in CQBA Algorithm 

Experiences have indicated that the parameter setting of a model would affect significantly the 
forecasting accuracy. The parameters of CQBA for the experimental example are set as follows: The 
population size, N, is set to be 200; the maximal iteration, gen_max, is set as 1000; expected criteria, ߜ, 
is set to 0.01; the minimal and maximal values of the pulse frequencies, ܨ୫୧୬ and ܨ୫ୟ୶ are set as −1 
and 1, respectively.  

In the process of parameter optimization, for the SVR model, the feasible regions of three 
parameters are set practically, ߪ ∈	 [0, 10], ε ∈	 [0, 100], and C ∈	 [0, 3 × 103]. Considering that the 
influence of iterative time would affect performances of models, and, to ensure the reliability of 
forecasting results, the optimization time of each algorithm is set at the same as far as possible. 

3.2.2. Forecasting Accuracy Evaluation Index 

This article selects the MAPE mentioned above (Equation (33)), the root mean square error 
(RMSE), and the mean absolute error (MAE) as performance criteria to test the forecasting 
performance of each model. The RMSE and MAE are calculated by Equations (36) and (37), 
respectively, 

RMSE = ඨ∑ ቀ ௜݂(ݔ) − መ݂௜(ݔ)ቁଶே௜ୀଵ ܰ  (36) 

MAE = 1ܰ෍ห ௜݂(ݔ) − መ݂௜(ݔ)หே
௜ୀଵ (37) 
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where N is the total number of data; ௜݂(ݔ) is the actual load value at point i; መ݂௜(ݔ) is the forecasted 
load value at point i. 

3.2.3. Forecasting Performance Improvement Tests 

To ensure the forecasting performance improvement of the proposed model is significant, it is 
essential to conduct some statistical test. Based on Diebold and Mariano’s [53] and Derrac et al. [54] 
suggestions, Wilcoxon signed-rank test [55] is conducted in this paper. The Wilcoxon signed-rank 
test is used to detect the significance of a difference in the central tendency of two data series when 
the size is equal. Let ݀௜ be the difference between the forecasting errors from any two compared 
forecasting models on ith forecasting value. The differences would be ranked based on their absolute 
values; if the differences are tied, the use of average ranks for dealing with ties is recommended, for 
example, if two differences are tied in the assignation of ranks 1 and 2, assign rank 1.5 to both 
differences. Let ܴା be the sum of ranks that the first model outperforms the second, on the contrary, ܴି the sum of ranks that the second model outperforms the first. If ranks of ݀௜ = 0, then, exclude the 
compared and reduce sample size. The statistic W is represented as Equation (38), ܹ = minሼܴା, ܴିሽ (38)

If W is smaller than or equal to the value of Wilcoxon distribution under n degrees of freedom, 
then, the null hypothesis of performance equality from two compared forecasting models is rejected; 
this implies that the proposed forecasting model outperforms the other alternative. Furthermore, 
along with the comparing size increasing, the sampling distribution of W converges to a normal 
distribution, thus, the associate p-value could also be calculated. 

3.2.4. Forecasting Results and Analysis  

Considering the GEFCOM 2014 load data set is also used for analysis in references [43–45], 
therefore, those proposed models are also employed to compare with the proposed model. These 
alternative models include, SVRBA, SVRQBA, SVRCQBA, SVRQPSO (SVR with chaotic particle 
swarm optimization algorithm) [43], SVRCQPSO (SVR with chaotic quantum particle swarm 
optimization algorithm) [43], SVRQTS (SVR with quantum tabu search algorithm) [44], SVRCQTS 
(SVR with chaotic quantum tabu search algorithm) [44], SVRQGA (SVR with quantum genetic 
algorithm) [45], SVRCQGA (SVR with chaotic quantum genetic algorithm) [45]. 

The parameter combinations of SVR are eventually determined by the BA, QBA, CQBA, QTS, 
CQTS, QPSO, CQPSO, QGA, and CQGA, respectively. The details of the most appropriate 
parameters of all employed compared models for GEFCOM 2014 data set are shown in Table 1. It is 
clearly to learn about that the proposed SVRCQBA model receives the smallest forecasting accuracy, 
and computation time savings.  

Table 1. Parameters combination of SVR determined by CQBA and other algorithms. 

Optimization Algorithms 
Parameters

MAPE of Testing (%) Computation Time (Seconds) ࣌ C ࢿ
SVRQPSO [43] 9.000 42.000 0.180 1.960 635.73 

SVRCQPSO [43] 19.000 35.000 0.820 1.290 986.46 
SVRQTS [44] 25.000 67.000 0.090 1.890 489.67 

SVRCQTS [44] 12.000 26.000 0.320 1.320 858.34 
SVRQGA [45] 5.000 79.000 0.380 1.750 942.82 

SVRCQGA [45] 6.000 54.000 0.620 1.170 1327.24 
SVRBA 8.000 37.000 0.750 3.160 326.87 

SVRQBA 13.000 61.000 0.560 1.744 549.68 
SVRCQBA, 11.000 76.000 0.670 1.098 889.36 

Based on the parameters combination of each compared SVR-based model, use the training data 
set to conduct the training work, and receive the well trained SVR model. These trained models are 
further employed to forecast the load. The forecasting comparison curves of nine models mentioned 
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above and actual values are shown as in Figure 2. Table 2 illustrates the forecasting accurate indexes 
for the proposed SVRCQBA and other alternative compared models. 

 
Figure 2. Forecasting values of SVRCQBA and other alternative compared models. 

Table 2. Forecasting indexes of SVRCQBA and other alternative compared models. 

Indexes 
SVRQPSO 

[43] 
SVRCQPSO 

[43] 
SVRQTS 

[44] 
SVRCQTS 

[44] 
SVRQGA 

[45] 
SVRCQGA 

[45] 
MAPE (%) 1.9600 1.3200 1.8900 1.2900 1.7500 1.1700 

RMSE 2.9358 1.9909 2.8507 1.9257 1.6584 1.4927 
MAE 2.8090 1.8993 2.7181 1.8474 1.6174 1.4522 

Indexes SVRBA SVRQBA SVRCQBA 
MAPE (%) 3.1600 1.7442 1.0982 

RMSE 4.7312 2.5992 1.4835 
MAE 4.5234 2.4968 1.4372 

Figure 2 clearly demonstrates that the proposed SVRCQBA model achieves results closer to the 
actual load values than other alternative compared models. In Table 2, the MAPE, RMSE and MAE 
of the proposed SVRCQBA model are 1.0982%, 1.4835, and 1.4372, respectively, which are smaller 
than that of other eight compared models. It also indicates that the proposed SVRCQBA model 
provides very contributions of improvements in terms of load forecasting accuracy. The concrete 
analysis results are as follows. 

For forecasting performance comparison between SVRQBA and SVRBA models, the values of 
RMSE, MAPE and MAE for the SVRQBA model are smaller than that of the SVRBA model. It 
demonstrates that empowering the bats to have quantum behaviors, i.e., using quantum revolving 
gate (Equation (23)) in the BA to let any bats have comprehensive flying direction choices, which is 
an appropriate method to improve the solution, then, to improve the forecasting accuracy while the 
BA is hybridized with an SVR model. For example, in Table 2, the introduction of the quantum 
computing mechanism changes the forecasting performances (MAPE = 3.1600%, RMSE = 4.7312, 
MAE = 4.5234) of SVRBA model to much better performances (MAPE = 1.7442%, RMSE = 2.5992, MAE 
= 2.4968) of SVRQBA model. Employing the quantum revolving gate could improve almost 1.5% 
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(=3.1600% − 1.7442%) forecasting accuracy in terms of MAPE, which plays the critical role in 
forecasting accuracy improvement contributions. Therefore, it is important to look for any more 
advanced quantum gates to empower more selection choices for any bats in the searching processes.  

Meanwhile, comparing the RMSE, MAPE, MAE of SVRCQBA model with that of SVRQBA 
model, the forecasting accuracy of SVRCQBA model is superior to that of SVRQBA model. It reveals 
that the CQBA determines more appropriate parameters combination for an SVR model by 
introducing cat mapping function, which has a critical role in looking for an improved solution when 
the QBA algorithm are trapped in local optima or requires a long time to solve the problem of interest. 
For example, as shown in Table 2, searching parameters for an SVR model by CQBA instead of by 
QBA is excellently to shift the performances (MAPE = 1.7442%, RMSE = 2.5992, MAE = 2.4968) of the 
SVRQBA model to much better performances (MAPE = 1.0982%, RMSE = 1.4835, MAE = 1.4372) of 
the SVRCQBA model. Applying cat mapping function could improve almost 0.7% (=1.7442% − 
1.0982%) forecasting accuracy in terms of MAPE, which also reveals the very contributions in 
forecasting accuracy improvement. Therefore, it is also an interesting issue to use other novel chaotic 
mapping functions to effectively enrich the diversity of population while searching iterations reach 
to a large scale.  

In addition, the forecasting indexes results in Table 2 also illustrate that employing the CQPSO, 
CQTS, and CQGA, it could receive the best solution, (ߪ, C, ߝ) = (0.820 ,35.000 ,19.000), (ߪ, C, ߝ) = 
(12.000, 26.000, 0.320), and (ߪ, C, ߝ) = (0.620 ,54.000 ,6.000), with forecasting error, (MAPE = 1.3200%, 
RMSE = 1.9909, MAE = 1.8993), (MAPE = 1.2900%, RMSE = 1.9257, MAE = 1.8474), and (MAPE = 
1.1700%, RMSE = 1.4927, MAE = 1.4522), respectively. As mentioned above that it is superior to 
classical TS, PSO, and GA algorithms. However, the solution still could be further improved by the 
CQBA algorithm to (ߪ, C, ߝ) = (0.670 ,76.000 ,11.000) with more accurate forecasting performance, 
(MAPE = 1.0982%, RMSE = 1.4835, MAE = 1.4372). It illustrates that hybridizing the cat mapping 
function and quantum computing mechanism with BA to select suitable parameters combination of 
an SVR model is a more powerful approach to receive satisfied the forecasting accuracy. Therefore, 
hybridizing CQBA with an SVR model could only improve at most 0.22% (=1.3200% − 1.0982%) 
forecasting accuracy in terms of MAPE, which also reveals the selection of advanced evolutionary 
algorithms could also contribute to forecasting accuracy improvements, however, along with the 
mature development of evolutionary algorithms, the contributions seem to be minor. Therefore, it 
should be a valuable remark that hybridizing other optimization approaches (such as chaotic 
mapping functions, quantum computing mechanism, cloud theory, and so on) to targeted overcome 
some embedded drawbacks of existed evolutionary algorithms is with much contributions to 
forecasting accuracy improvements. Based on the remark, it indicates that hybridizing novel 
optimization techniques with novel evolutionary algorithms could be the most important research 
tendency in the SVR-based load forecasting work.  

Finally to ensure the significant contribution in terms of forecasting accuracy improvement for 
the proposed SVRQBA and SVRCQBA models the Wilcoxon signed-rank test is then implemented. 
In this paper the test is conducted under two significant levels α = 0.025 and α = 0.005 by one-tail test. 
The test results are demonstrated in Table 3 which indicate that the proposed SVRCQBA model has 
received significant forecasting performance than other alternative compared models. 

Table 3. Results of Wilcoxon signed-rank test. 

Compared Models 
Wilcoxon Signed-Rank Test

α = 0.025; W = 2328 α = 0.005; W = 2328 p-Value 
SVRCQBA vs. SVRQPSO 1087 T 1087 T 0.00220 ** 

SVRCQBA vs. SVRCQPSO 1184 T 1184 T 0.00156 ** 
SVRCQBA vs. SVRQTS 1123 T 1123 T 0.00143 ** 

SVRCQBA vs. SVRCQTS 1246 T 1246 T 0.00234 ** 
SVRCQBA vs. SVRQGA 1207 T 1207 T 0.00183 ** 

SVRCQBA vs. SVRCQGA 1358 T 1358 T 0.00578 * 
SVRCQBA vs. SVRBA 874 T 874 T 0.00278 ** 

SVRCQBA vs. SVRQBA 1796 T 1796 T 0.00614 * 
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T Denotes that the SVRCQGA model significantly outperforms the other alternative compared models; 
* represents that the test has rejected the null hypothesis under α = 0.025.; ** represents that the test 
has rejected the null hypothesis under α = 0.005. 

4. Conclusions 

This paper proposes an electric demand forecasting by hybridizing SVR model with the cat 
mapping function quantum computing mechanism and the BA. The experimental results illustrate 
that the proposed model demonstrates significant forecasting performance than other hybrid chaotic 
quantum evolutionary algorithm SVR-based forecasting models in the literature. This paper 
continues to extend the search space with the limitations from conventional Newtonian dynamics by 
using quantum computing mechanism and to enhance ergodicity of population and to enrich the 
diversity of the searching space by using cat mapping function. Consequently, quantum computing 
mechanism is applied to endow bits to act as quantum behaviors hence to extend the searching space 
of BA and eventually to improve forecasting accuracy. Cat mapping function is further used to avoid 
premature convergence while the QBA is modeling and also contribute to accurate forecasting 
performances.  

This paper also provides some important conclusions and indicates some valuable research 
directions for future research. Firstly, empowering the bats to have quantum behaviors by using 
quantum revolving gate could contribute most accuracy improvements. Therefore, in the future the 
successive researchers could consider constructing an n-dimensional quantum gate where n is the 
dimensions of employed data set i.e., for each bat in the modeling process it has n probability 
amplitudes instead of only one amplitude. Based on this new design it is expected to look for more 
abundant search results via those bats with n probability amplitudes.  

Secondly applying chaotic mapping functions could also improve forecasting accuracy. 
Therefore, in the future any approaches which could enrich the diversity of population during 
modeling process are deserved to employ to receive more satisfied forecasting accuracy such as other 
novel chaotic mapping functions or novel design of mutation or crossover operations and so on. 

Finally, only hybridizing different evolutionary algorithms could contribute minor forecasting 
accuracy improvements. Therefore, hybridizing different novel optimization techniques with novel 
evolutionary algorithms could contribute most in terms of forecasting accuracy improvements and 
would be the most important research tendency in the SVR-based load forecasting work in the future. 
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