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Abstract: A numerical study of the unsteady mixed convection heat transfer characteristics of an 
Ag–water nanofluid confined within a square shape lid-driven cavity has been carried out. The 
Galerkin weighted residual of the finite element method has been employed to investigate the 
effects of the periodicity of sinusoidal boundary condition for a wide range of Grashof numbers (Gr) 
(105 to 107) with the parametric variation of sinusoidal even and odd frequency, N, from 1 to 6 at 
different instants (for τ = 0.1 and 1). It has been observed that both the Grashof number and the 
sinusoidal even and odd frequency have a significant influence on the streamlines and isotherms 
inside the cavity. The heat transfer rate enhanced by 90% from the heated surface as the Grashof 
number (Gr) increased from 105 to 107 at sinusoidal frequency N =1 and τ = 1. 

Keywords: Ag–water nanofluids; unsteady mixed convection; solid volume fraction; sinusoidal 
frequency; finite element method 

 

1. Introduction 

Mixed convection in an enclosure has attracted significant attention from thermal researchers 
and scientists due to its great importance in numerous thermal engineering applications. Enclosures 
with simple usual triangular or rectangular geometries have been considered to a prodigious extent 
as such boundaries are easier to model and the thermal and hydrodynamic flow patterns and 
rotations are less complex than an enclosure having a complex profile, such as a curly surface. 
Irregular types of cavities are used in the design of many types of heat exchangers, such as the cooling 
systems of micro-electronic devices, solar collectors, and food dryers [1,2]. 

A numerical investigation on mixed convection is extremely difficult as the thermal energy and 
the momentum equations are coupled together owing to a buoyancy force that creates the mixed 
convective flow within the domain. This scenario is involved when nanofluids are used in the cavity. 
In a cavity, there are two regions, namely the interior region and the boundary. For the analogous 
boundary conditions, these two regions have different flow and thermal characteristics. In the case 
of nanofluids, this circumstance becomes more troublesome if there are distinctive boundary 
conditions. Natural convection heat transfer phenomena are of prodigious importance as they have 
a very extensive range of applications, including in solar collectors, electronic cooling, and the 
desalination process [3–6]. 
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However, the conventional fluids used for natural convection, such as oil, water, ethylene glycol, 
and air, have very poor thermal conductivity that cannot fulfill a demand for a high thermal 
conductivity of the fluid. To enhance the thermal conductivity notwithstanding the heat transfer rate, 
an innovative procedure has been developed recently by mixing nano-sized particles, for example, 
carbon materials, metal, and metal oxide, in the base fluid [7–9]. Such fluid is known as a nanofluid, 
which has outstanding performance in thermal conductivity and therefore can address the difficulty 
of higher heat transfer efficiency [10–17] in contemporary engineering applications. 

Numerous numerical studies [18–22] have been performed on the effect of a nanofluid 
considering that the nanofluid is in a single phase. Researchers have claimed that the heat transfer 
rate has been enhanced due to an increase in the number of nanoparticles. Kim et al. [23] observed 
that the thermal conductivity and the shape factor are reduced with an increase in the density and 
heat capacity of the nanoparticles. In addition, an experimental study [9] confirmed that a copper–
water nanofluid improved the heat transfer rate. Hwang et al. [24] theoretically showed that the ratio 
of the heat transfer coefficient of a nanofluid to that of the base fluid is reduced as the size of the 
nanoparticles increases. Santra et al. [25] observed that the heat transfer rate decreased with an 
increase in the number of nanoparticles. Ghanbarpour et al. [26] made an experimental study to 
examine the performance of a heat pipe’s performance using nanofluid. They found that the thermal 
performance of the heat pipes was enhanced using nanofluids compared to the base fluid. 

The shape of the enclosure assumes an imperative part in convection; however, the shape relies 
upon a viable application. Distinctive sorts of enclosures [27–38] confined with nanofluids have been 
examined in earlier studies. Yu et al. [39] investigated the impact of nanofluids in a base-heated 
isosceles triangular enclosure using a transient buoyancy driven condition. Laminar mixed 
convection in an inclined triangular cavity [40,41] using a Cu–water nanofluid has been performed. 
The authors claimed that the inclined angle plays an important role for the nanofluids in the heat 
exchange. Billah et al. [42] examined unsteady buoyancy driven heat transfer improvement of 
nanofluids in a triangular cavity. Rahman et al. [43] exhibited the impact of a corrugated base surface 
of a triangular enclosure. Sheremet et al. [44] played out a numerical study on the unsteady free 
convection heat exchange qualities of a nanofluid restricted to a permeable open wavy cavity. They 
found that the normal Nusselt and Sherwood numbers diminish with an expansion in the undulation 
number and that these can be enhanced by means of a fitting tuning of the wavy surface geometry 
parameters. Rahman et al. [45] conducted a computational study to examine the impacts of carbon 
nano tube (CNT)–water nanofluids in an enclosure with non-isothermal heating for higher Rayleigh 
numbers. They demonstrated that there is an ideal incentive for nanofluid volume fraction to control 
heat exchange, temperature appropriation, and stream field. Wu et al. [46] studied the heat transfer 
and pulsed flow in a Y-type crossing point channel with two inlets and one outlet utilizing water–
Al2O3 nanofluids. They demonstrated that the utilization of the pulsed flow enhances the Nusselt 
number, particularly for a huge Reynolds number and a high pulse frequency. Rashidi et al. [47] 
developed a two-way coupling of the discrete phase model to track the discrete nature of aluminum 
oxide particles in an obstructed duct with two side-by-side obstacles. The influence of an induced 
magnetic field on the free convection of an Al2O3–water nanofluid on a permeable plate by means of 
the Koo–Kleinstreuer–Li (KKL) model is examined by Sheikholeslami et al. [48]. 

From the above literature, it is revealed that few investigations have been done for a square 
enclosure along with a sinusoidal heated base surface. The primary enthusiasm for this examination 
is to consider the heat exchange attributes inside a square shape enclosed area filled with an Ag–
water nanofluid with a sinusoidal heated base surface. 

2. Problem Formulation 

2.1. Physical Model 

We consider a two-dimensional lid-driven square enclosure of length L with an Ag–water 
nanofluids confined in it as depicted in Figure 1. The top horizontal wall is permitted to move with 
a steady speed cU . Likewise, the base surface is kept up at a high temperature 
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( ) ( )/c h cT T T T sin N x Lπ= + − . Also, the vertical walls are considered to be insulated. The impact of 
gravity appears in the negative Y axis. 

 
Figure 1. Schematic view of the cavity with the boundary conditions. 

2.2. Thermophysical Property of the Nanofluid 

For this numerical investigation, Ag is considered to be the nanoparticle and water is selected as 
the base fluid. Distinctive examinations have been completed by various researchers. The 
nanoparticles are accepted to have a uniform shape and size. Besides this, it is considered that both 
the fluid phase and nanoparticles are in a thermal balance state and they flow at a similar speed. In 
this examination, the thermophysical properties of the nanofluid are thought to be consistent aside 
from the density variety in the buoyancy force, which depends on the Boussinesq estimation. The 
information utilized for the numerical investigation is taken from Ahmed et al. [49] and is presented 
in Table 1. 

Table 1.Thermophysical properties of the water and nanoparticle. 

Properties Water Ag
cp(J Kg−1 K−1) 4179 235 
ρ(Kg m−3) 997.1 10,500 

k(W m−1 K−1) 0.613 429 
β(K−1) 2.1 × 10−4 5.4 × 10−5 

2.3. Mathematical Modeling 

The governing equations which describe the framework are the conservation of mass, 
momentum, and energy equations. The Ag–water nanofluid is filled into the free space of the 
enclosure which is demonstrated as a Newtonian fluid. The flow is thought to be unsteady, laminar, 
and incompressible. The thermal balance between the base fluid and the nanoparticles are 
considered, and no slip conditions between the two media are assumed. In the light of these 
suppositions, the continuity, momentum, and energy equations [27] in their two-dimensional form 
can be composed as: 
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where the effective density nfρ  of then a nanofluid [41] might be characterized by: 

( )1nf s fρ δρ δ ρ= + − , (5) 

whereδ is the solid volume fraction of nanoparticles. 
In addition, the thermal diffusivity nfα  of nanofluids [49] is specified by: 
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The heat capacitance of nanofluids [42] may be defined as: 
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Furthermore, ( )nf
ρβ  is the thermal expansion coefficient of the nanofluid and it can be found 

by: 
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nfμ  is the dynamic viscosity of the nanofluid introduced by Brinkman [50] as: 

( )5 21n f fμ μ δ= − . (9) 

The effective thermal conductivity [18,51] of the nanofluidis given as follows: 
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The reasonable initial and boundary conditions in their dimensional shape are: 
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Equations (1)–(4) are non dimensionalized using the following dimensionless variables: 
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By employing Equation (13), the resulting dimensionless equations are reduced to: 
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Here, the Prandtl number is defined as: 

f fPr ν α= . (18) 

The Grashof number is expressed as: 
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The overall Nusselt number at the heated surface of the enclosure can be expressed by: 

0
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f

k
Nu dX

k Y

θ∂= −  ∂
. (20) 

The fluid motion is displayed by means of the stream function Ψ acquired from velocity 
components U and V. The relationships among the stream function and velocity components [52] for 
two-dimensional flows are: 

,U V
Y X

ψ ψ∂ ∂= = −
∂ ∂ . (21) 

3. Solution Procedure 

3.1. Numerical Scheme 

The initial and boundary conditions for the governing Equations (15)–(17) are described below. 
The initial and boundary conditions in the dimensionless frame for the present issues for τ = 0. 

The condition of the entire domain: 

0, 0U V θ= = = , (22) 

and for τ > 0, 

( )0, 1
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U for Y=1 and 0 X
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X
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The equations are solved by employing the Finite element method, and the Galerkin weighted 
residual technique is employed to discretize the equations. Details about this discretization method 
can be found in [42]. A non-uniform triangular component is to be found over the enclosed area. For 
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every component, the required factors are processed utilizing an interpolation technique. An 
arrangement of algebraic equations has been framed by the representing condition “decrease the 
continuum territory into the discrete triangular region”. Later on, the algebraic equations are solved 
utilizing Newton′s iteration technique. The convergence criteria for successive solutions are fixed 
such that the relative error for each variable between consecutive iterations is computed below the 
performed value of ε  as: 

1

1 ,
m m

m
ε

+

+
Γ − Γ <

Γ
  

where m is Newton’s iteration index and Γ is the general dependent variable. The value of ε  is set 
to be 510 .−  

3.2. Grid Independency Test 

A grid independency appraisal has been performed for this model and the outcome appears in 
Figure 2. The grid independency assessment has been done for δ = 0.4, N = 1, and Grashof number Gr 
= 107 for the Ag–water nanofluids. The components′ numbers differ for the four indicated conditions. 
The element numbers are 2496, 3588, 4844, and 6186. It has been discovered that overall, the Nusselt 
number is more noteworthy for the grid of element number 2496. So, the investigation has been 
performed for this grid of element number 2496. 

3.3. Validationof the Code and Numerical Scheme 

The present numerical investigation has been validated with the published work. Code approval 
was finished with a view to checking the exactness of the numerical solution and the arrangement 
methodology of the issue. The current investigation was compared with Khanafer et al. [18] with δ = 
0.04 and 103 ≤ Gr ≤ 105 on the premise of the overall Nusselt number, and the deviation with the 
investigation is accounted for in Table 2. From the table, it is clear that the present code and the 
numerical scheme are totally reliable as they demonstrate great concurrence with the earlier 
published work. The present investigation differs not over 3% with the past one. 

 
Figure 2. Grid independency study with δ = 0.04, N = 1, and Gr = 107. 

Table 2. Comparison of Nuav with δ = 0.04 with those of Khanafer et al. [18]. 

Gr 
Nuav 

Ref. [18] Present Study Error (%)
103 2.1182 2.0898 1.34 
104 4.3478 4.3399 0.18 
105 8.9243 8.7351 2.12 
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4. Results and Discussion 

In this article, a time-dependent solution is adopted for the subsequent differential conditions 
utilizing a finite element analysis. The consequences of this investigation are analyzed for the scope 
of Grashof numbers, Gr from 105 to 107, with a parametric variety of sinusoidal even and odd 
frequency, N from 1 to 6, at various instances (for τ = 0.1 and 1). For the other governing parameters, 
the Prandtl number (Pr) is settled at 6.2 and the solid volume fraction δ is set at 0.04. The subsequent 
stream and thermal structures are broken down to provide an understanding of the instrument 
behind the impact of the Grashof number, corrugation frequency, and instances on the stream and 
thermal fields and the enhancement of heat transfer. The essential non-dimensional parameters of 
enthusiasm for the present investigation are the local and average Nusselt numbers, which were 
inspected to reach the significant outcome of the present study. 

4.1. Effect of Even and Odd Frequencies on Streamlines Varying the Dimensionless Time 

In Figure 3, the effect of the odd frequency N (=1, 3, 5) on streamlines has been presented at Gr = 
105for the preferred values of τ. For τ = 0.1, the effect of the odd values of N is depicted in the left 
column. At N = 1 and τ = 0.1, two primary opposite rotating vortices are formed near the bottom 
surface with an incredibly low value of stream function, indicating poor convective heat transfer. 
From this figure, it can be observed that max 0.3ψ = and min 0.3ψ =− . Further, two reverse rotating 
vortices with the same flow strength are created near the vicinity of the vertical walls. Cells are 
framed in a symmetric way, indicating the exceptionally ordinary nature of convection. Here, the 
liquid takes up heat energy from the base-heated wall and ends up plainly lighter to invigorate a 
convective current. Lighter liquid goes up, and because of the symmetric idea of a colder wall, the 
colder bit of liquid takes after the line followed by the colder walls. As a result, symmetric cells are 
acquired. However, at N = 3 and τ = 0.1, the essential inverse pivoting cells rule and cover the entire 
space. This is why the two reverse-rotating vortices near the vertical walls disappear. For N = 5, four 
cells are split instead of two; the dominating cells in the interior have a reverse sense of rotation. At 
the bottom wall, a couple of minor vortices are twisted. On the other hand, for τ = 1, a similar pattern 
on the effect of the odd values of N is shown in the right column. 

 
Figure 3. Influence of the odd values of N on streamlines for the selected values of τ with Gr = 105. 
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The influence of the even frequencies N (=2, 4, 6) on streamlines at Gr = 105 of the preferred values 
of τ is depicted in Figure 4. For τ = 0.1, the effect of the even values of N is shown in the left column. 
At N = 2 and τ = 0.1, a major rotating eddy is formed near the bottom surface which covers nearly the 
major space of the domain. Two very smaller vortices are found at the corner of the bottom wall. An 
elliptic shape vortex is seen at the surrounding area of the right vertical surface. At N = 4, there are 
four cells having an opposite sense of rotation. However, in the case of N = 6, this symmetry is entirely 
conked out and a very strong convective current outline is produced. Five cells are formed, and four 
are near the sinusoidal heated bottom surface having low to moderate strength. In contrast, for τ = 1 
and N = 2, there are two cells instead of four, with the commanding cells in the center having a reverse 
sense of revolution. The commanding cell is at the heart of the square cavity; it has a stream function 
value of −0.34 and is revolving in the clockwise direction. 

 
Figure 4. Influence of the even values of N on streamlines for the selected values of τ with Gr = 105. 

The effects of odd frequencies N (=1, 3, 5) on streamlines at Gr = 106 for the chosen values of τ are 
shown in Figure 5. For N = 1 and τ = 0.1, two key opposite rotating vortices are produced near the 
bottom face with a very low value of stream function, indicating a meager convective heat transfer. 
It is clearly seen that max 0.4ψ =  and min 0.5ψ =− . The other two opposite rotating vortices with the 
same flow strength are formed near the vicinity of the upright walls. However, the primary opposite 
rotating cells at N = 3 and τ = 0.1 dominate and enclose the whole domain. As a consequence, the two 
reverse rotating vortices near the vertical walls are moved out. In this cell, the highest value of the 
stream function is observed to be max 0.11ψ =  and the smallest value is observed to be min 0.10ψ = − . 
However, at N = 5, four cells are split instead of two, and the dominating cells in the interior have a 
reverse sense of rotation. Since the bottom wall induced heat energy into the fluid, the convective 
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currents are more adjoining to the base-heated surface. Generally, the flow at N = 5 indicates very 
good convective characteristics. In contrast, for τ = 1, an analogous pattern on the effect of the odd 
values of N is shown in the right column. While it compares with the rotating cells at τ = 1, both the 
opposite rotating vortices are bigger in size near the bottom surface than at τ = 0.1. In this cell, the 
maximum value of the stream function is assumed to be max 0.16ψ =  and the minimum value of the 
stream function is min 0.16ψ = − . If we compare the primary opposite rotating cells at N = 3 and τ = 1 
with τ = 0.1, it is found that the flow strength is almost doubled. It is clearly observed that the 
maximum value of the stream function is max 0.22ψ =  and the minimum value is min 0.22ψ = − . 

 
Figure 5. Influence of the odd values of N on streamlines for the selected values of τ with Gr = 106. 

The influence of the even frequencies N (=2, 4, 6) on streamlines at Gr = 106 for some values of τ 
is displayed in Figure 6. For N = 2 and τ = 0.1, a most important rotating vortex is created near the 
bottom surface which covers almost the major space of the domain; it has a stream function value of 
0.20 and a negative sense of rotation. Two very smaller vortices are found at the left corner of the 
bottom wall and at the top of the right vertical wall. At N = 4 and τ = 0.1, there are four cells having 
an opposite sense of rotation. However, in the case of N = 6, a mighty convective current outline is 
produced. Six vortices are created, among which five are in the vicinity of the sinusoidal heated base 
surface and have low to moderate strength. It is without a doubt observed that the convective streams 
are all the more connecting to the base-heated wall for an observable reason and that is that from this 
wall heat stream is approaching into the fluid. By and large, a decent convective attribute appears by 
the stream at N = 6 and τ = 0.1. However, for τ = 1 and N = 2, there are two cells rather than three, and 
the ruling cells in the center have an inverse feeling of turn. The commanding cell is at the center of 
the square walled-in area, has a stream function estimation of –0.91, and is turning in a clockwise 
way; however, for N = 4 and τ = 1, there are four cells that have an inverse feeling of rotation. Then 
again, if there should arise an occurrence of N = 6 and τ = 1, an amazingly strong convective current 
sample is generated. In this case, six cells are framed, where three are in the proximity of the 
sinusoidal heated base surface with low to moderate strength. 
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Figure 6. Influence of the even values of N on streamlines for the selected values of τ with Gr = 106. 

The result of the odd frequencies N (=1, 3, 5) on streamlines at Gr = 107 for the different values of 
τ is revealed in Figure 7. For N = 1 and τ = 0.1, a more mightier stream pattern is accomplished with 
four cells shaped in a symmetric way. In general, a decisive change in convection is seen just by 
expanding the estimation of N. If there should arise an occurrence of N = 3 and τ = 0.1, the strongest 
stream pattern is found, with two noteworthy rotating cells framed in a symmetric approach having 

max 0.87ψ =  and min 0.93ψ = − . Yet, there is a fascinating example of progress in the estimation of the 
streamline on account of τ = 0.1 for a fluctuating N. Here, four cells are shaped close to the base-
heated surface of the cavity with a very strong flow strength ( max 0.34ψ =  and min 0.38ψ = − ). The 
convective streams are more nearby the base-heated surface for a clear reason, and that is that from 
this wall heat energy is going into the fluid. Then again, if there should arise an occurrence of τ = 1 
and N = 1, the symmetry is totally broken, and a very strong convective current pattern is created. 
Here, five cells are framed, four at each of the four corners with a low to moderate strength. The 
ruling cell is at the center of the rectangular corner, with a stream function estimation of 7.50 and 
positive sense of rotation. In any case, the overall convective current pattern recommends that the 
convective heat motion is more mightier in instances of N = 5 and τ = 1 than N = 1 at τ = 1. 

Figure 8 gives the effect of the even frequencies N (=2, 4, 6) on streamlines at Gr = 107 for some 
values of τ. For N = 2 and τ = 0.1, a dominating rotating vortex is created near the bottom surface, 
which covered approximately the major part of the domain and has a stream function value of −1.96. 
Three very smaller vortices are found at three corners of the cavity. For N = 4 and τ = 0.1, four cells 
are formed, where three are in the vicinity of the sinusoidal heated foot surface with a lower to fair 
strength. However, in the case of N = 6, a very strong convective current outline is created. In this 
case, six cells are framed, where five are in the vicinity of the sinusoidal heated base surface with a 
low to moderate strength. An interesting flow pattern can be noticed in the right column of Figure 8. 
The overall convective current outline recommends that the convective heat transfer is strongest for 
N = 6 and τ = 1. 
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Figure 7. Influence of the odd values of N on streamlines for the selected values of τ with Gr = 107. 

 
Figure 8. Influence of the even values of N on streamlines for the selected values of τ with Gr = 107. 

4.2. Effect of Even and Odd Frequencies on Isotherms Varying Dimensionless Time 
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In Figure 9, the consequence of varying odd frequency N (=1, 3, 5) on isotherms is shown for 
different values of τ (=0.1 and 1) for Gr = 105. For N = 1, the isotherms near the top leading horizontal 
wall are parallel to each other. The parallel concept of isotherms indicates the control of conductive 
heat transfer; however, near the bottom sinusoidal heated face the isotherms are semi-elliptic and 
densely distributed for both situations τ = 0.1 and 1. For N = 3, the isotherms are found to be compactly 
packed along the bottom surface and very thickly packed at the sinusoidal heated bottom wall for N 
= 5. It confirms that convection is very mighty in those areas. As a consequence, the temperature 
gradient is lower near the top wall for both cases τ = 0.1 and 1. 

 
Figure 9. Influence of the odd values of N on isotherms for the selected values of τ with Gr = 105. 

The results of varying even frequency N (=2, 4, 6) on isotherms for different values of τ (=0.1 and 
1) is depicted in Figure 10 for Gr = 105. For N = 2, the isotherms assume a coconut tree leaf shape 
showing the presence of convective heat transfer in both cases of τ (=0.1 and 1). It can clearly be seen 
that the isotherm pattern is symmetrical about the mid-vertical plane for the lower value of τ (=0.1), 
which demonstrates that our explanation held for the argumentation on the streamlines’ distribution. 
For N = 4, finger print shape isotherms are found to be thickly stacked along the bottom surface and 
very thickly stacked near the sinusoidal heated bottom wall for N = 6. It gives that the convection is 
very strong in the bottom heated region. As an outcome, the temperature gradient is lower near the 
middle part of the top segment of the enclosure for both cases τ = 0.1 and 1. 
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Figure 10. Influence of the even values of N on isotherms for the selected values of τ with Gr = 105. 

The outcome of varying odd frequency N (=1, 3, 5) on isotherms for different values of τ (=0.1 
and 1) is foreshadowed in Figure 11 for Gr = 106. For N = 1, the lower-value isothermal lines are found 
near the top leading horizontal wall and are parallel to each other. This parallel attribute of the 
isotherms provides for the control of conductive heat transfer; however, near the bottom sinusoidal 
heated face, the isotherms are semi-elliptic and densely distributed for both situations τ = 0.1 and 1. 
For N = 3, the isotherms are seen to be tightly crowded in the vicinity of the bottom surface, and are 
very tightly packed at the sinusoidal heated bottom wall for N = 5. At the upper segment of the 
enclosure, the isotherms are distorted. As a result, the temperature gradient is lower near the top wall 
for both cases τ = 0.1 and 1. It proves our remarks in the argumentation on the streamlines’ 
distribution. 

The effects of even frequency N (=2, 4, 6) on isotherms for different values of τ (=0.1 and 1) are 
shown in Figure 12 for Gr = 106. The isothermal pattern is similar to that derived from the procedure 
defined in the earlier even frequency passages with respect to the time variable. No noticeable 
variation is found in the distribution of isotherms in the case τ = 0.1 for each of the even frequencies 
of N, even though for τ = 1, at smaller values of N, strong existence of conduction is found inside the 
cavity. Since the estimation of Gr is enlarged, both heat transfer modes appear to be more efficient. 
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Figure 11. Influence of the odd values of N on isotherms for the selected values of τ with Gr = 106. 

 
Figure 12. Influence of the even values of N on isotherms for the selected values of τ with Gr = 106. 
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Figure 13 displays the influence of odd frequency N (=1, 3, 5) on isotherms for different values 
of τ (=0.1 and 1) for Gr = 107. This process continues that portrayed in the earlier odd frequency 
passages with respect to the time variable. Despite the fact that for τ = 1, at smaller values of N, there 
is mighty existence of conduction inside the cavity, there is no recognizable variation in the isotherms’ 
distribution in the case τ = 0.1 for each of the odd frequencies of N. Moreover, whenever the 
estimation of Gr is improved, both the heat transfer modes appear to be effective. 

The effects of even frequency N (=2, 4, 6) on isotherms for different values of τ (=0.1 and 1) are 
displayed in Figure 14 for Gr = 107. At N = 2, the isotherm patterns are similar to a coconut tree leaf 
shape, showing the presence of convective heat transfer for τ = 0.1. For N = 4, finger print shape 
isotherms are found to be tightly crowded along the bottom heated surface, and areabundantly 
thickly packed at the sinusoidal heated bottom wall for N = 6. It is found that convection is incredibly 
strong in the bottom heated region. 

 
Figure 13. Influence of the odd values of N on isotherms for the selected values of τ with Gr = 107. 
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Figure 14. Influence of the even values of N on isotherms for the selected values of τ with Gr = 107. 

4.3. Effect of Different Frequencies on Local Nusselt Number 

Figure 15 illustrates the variation in local Nusselt number for odd and even frequencies N. In 
each case, it is noticed that for the estimation of Gr = 107, the magnitude of the local Nusselt number 
is extremum. These results show that convection heat transfer appears to be mightier at a higher value 
of Gr and a higher frequency. 

 
Figure 15. Variation of the local Nusselt number for (a) even values of N and (b) odd values of N, 
when Gr = 107and τ = 1. 
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4.4. Effect of Different Frequencies on Overall Nusselt Number for Different Grs 

In Figure 16, the variation in overall Nusselt number with changing instants in comparison to the 
odd and even frequencies N for different Gr has been represented. Figure 16a shows the effects of 
odd frequency N for three different Grashof numbers (Gr = 105, 106, and 107). For all cases, it is 
observed that for N = 1, the magnitude of the overall Nusselt number is supremum. The estimation 
of the overall Nusselt number rises for all values of Gr with a decreasing odd frequency N. These 
results give the connotation that convective heat transfer appears to be mightier at a larger estimation 
of Gr and a lower value of odd frequency, which strongly proves our remarks made during the 
argumentation on the streamlines’ and isotherms’ distribution. However, Figure 16b depicts the 
effects of even frequency N for three different Grashof numbers (Gr = 105, 106, and 107). It is also 
noticed that for N = 2, the value of the overall Nusselt number is supremum for all cases. The 
estimation of the overall Nusselt number grows for all estimations of Gr with a decreasing even 
frequency N. However, it can be noticed that the maximum average heat transfer rate occurred for a 
larger value of Gr with a smaller value of N. 

 
Figure 16. Variation of the overall Nusselt number for (a) odd values of N and (b) even values of N. 
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4.5. Correlation of Overall Nusselt Number for Different Frequencies and Different Grs 

In the current study, the correlation of overall Nusselt number Nuav for N and Gr has been found 
as follows: 

For even frequency N: 
Nuav = 0.0004 Gr − 0.0509 N + 0.2082.  

For odd frequency N: 
Nuav = 0.0003 Gr − 0.1921 N + 1.0647.  

5. Conclusions 

In the present study, Ag–water nanofluids confined within a lid-driven square cavity with a 
sinusoidal heated bottom surface were solved numerically. The numerical results are explained, and 
from the investigation the subsequent points may be drawn: 

• When the solid volume fraction is retained at 0.04, the convective heat transfer execution is 
improved. 

• Improving the Gr number is adequate to raise the convective heat transfer successfully. 
• At larger estimations of Gr, convection is exceptionally strong for lower estimations of 

frequencies for both even and odd values of N. 
• For smaller estimations of Gr, conduction is the primitive mode of heat transfer. 
• A higher value of Gr and lower values of N supports enhanced heat transfer through convection 

and conduction. 
• The overall Nusselt number at the heated surface rises with an increasing estimation of Gr. 

The heat transfer rate improved up to 90% from the heated wall as the Grashof number (Gr) 
increased from 105 to 107 for a low odd frequency at τ = 1. 

Future studies may consider experimental investigations and compare their results with the 
simulation results of this study. Such a comparison will provide further validation of the numerical 
model developed in this study. 
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Nomenclature 

cp specific heat (J kg−1 k−1) 
g gravitational acceleration (m s−2) 
Gr Grashof number 
k thermal conductivity (W m−1 k−1) 
L length of the enclosure (m) 
Nu Nusselt number 
p dimensional pressure (kg m−1 s−2) 
P dimensionless pressure 
Pr Prandtl number 
T fluid temperature (K) 
t dimensional time (s) 
u horizontal velocity component (m s−1) 
U dimensionless horizontal velocity component 
v vertical velocity component (m s−1) 
V dimensionless vertical velocity component 
x horizontal coordinate (m) 
X dimensionless horizontal coordinate 
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y vertical coordínate(m) 
Y dimensionless vertical coordinate 
k thermal conductivity (W m−1 k−1) 
Greek Symbols 
α thermal diffusivity (m2 s−1) 
β thermal expansion coefficient (K−1) 
δ solid volume fraction 
μ dynamic viscosity (kg m−1 s−1) 
υ kinematic viscosity (m2 s−1) 
τ dimensionless time 
θ non-dimensional temperature 
ρ density (kg m−3) 
ψ stream function 
λ wave length 
Γ general dependent variable 
Subscripts 
av average 
h hot 
c cold 
f fluid 
nf nanofluid 
s solid nanoparticle 
max maximum 
min minimum 
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