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Abstract: The purpose of this research is to develop a new torque vectoring differential (TVD) for
vehicle applications and investigate its effect on vehicle dynamic control. TVD is a technology that
is able to distribute the engine torque to the left and right driving wheels at different ratios so that
the yaw motion control can be realized. Attention has been paid to this technology in recent years
because of its potential to improve the vehicle performance and driving safety. In this study, a new
TVD design with a Ravigneaux gearset was developed. This new design is able to use only one pair
of gearsets to generate two different speed ratios, and the weight and volume of the system can be
reduced. To execute the research, current TVD designs were analyzed and their design principles
were clarified. Next, a new TVD design with Ravigneaux gearset was proposed. Then the connecting
manner and the gear ratio of the Ravigneaux gearset were discussed. The dynamic equation of
the system was then derived and the operation of the system was simulated in a MATLAB program.
Further simulation was performed with a vehicle dynamic model in SimulationX to demonstrate
the effect of the new system. The results of this study show the potential of building a new TVD with
a Ravigneaux gearset and can be helpful for further system development.

Keywords: vehicle component design; torque vectoring differential; vehicle dynamics

1. Introduction

Vehicle dynamic control is an essential task for improving driving performance and vehicle
safety. Different control strategies such as direct yaw-moment control (DYC) have been proposed
and well-discussed in the past [1,2]. Various systems, e.g., electronic stability program (ESP) [3],
four-wheel steering (4WS) [4] have been developed to realize vehicle dynamic control in practical
applications. Torque vectoring is a new technology that has been drawing the attention of the car
industry in recent years. It is employed in automobile differentials and is able to distribute different
driving torque values to different wheels so that traction distribution can be realized. Because of
the operation of transferring the torque instead of diminishing the torque on the wheels, better system
efficiency can be achieved. The torque vectoring technology becomes more competitive than
the brake-based systems.

Different torque vectoring differential (TVD) patents have been revealed by car companies
and suppliers, such as Ford, ZF, and Honda recently [5–9]. Most general designs consist of two pairs
of gearsets in different speed ratios, and utilize clutches, brakes, or motors to control the direction of
the transferred wheel torque [10–14]. However, the two pairs of gearsets or motors in current designs
result in heavier system weight and larger space requirements. In this paper, a new TVD design with
Ravigneaux gearset is proposed. This design is able to use only one pair of gearsets to generate two
different speed ratios, and the weight and volume of the system can be reduced.
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The research process of this study is described as follows. Firstly, the current TVD designs are
analyzed and their design principle is understood. A new TVD design with Ravigneaux gearset
is proposed. Then the connecting manner and gear ratio of the Ravigneaux gearset is discussed.
The dynamic equation of the system is then derived and the operation of the system is simulated in a
MATLAB program (The MathWorks, Inc., Natick, MA, USA). Further simulation is performed with
vehicle dynamic model in SimulationX (ESI ITI GmbH, Dresden, Germany) to demonstrate the effect
of the new system to vehicle dynamics. The results of this study are summarized in the conclusions.

2. Current Torque Vectoring Differential

Two current TVD designs are under investigation in this section to understand the design
principles of the systems. The schematic diagrams of the superposition-clutch TVD (SPC-TVD) and the
stationary-clutch TVD (STC-TVD) [15] are illustrated in Figure 1, and their system configurations
transferred by means of a function power graph (FPG) [16] are shown in Figure 2. In Figures 1 and 2,
DG denotes the differential gearset; W1 and W2 are the left and right wheels; C1 and C2 are clutches; B1

and B2 are brakes; G, G0, G1 and G2 are gear pairs; PG1 and PG2 are planetary gearsets; IN is the input
of the engine power.
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When C1 is engaged, the speed ratio of the left and right wheels is decided by the gear ratio of G1. 
Similarly, when C2 is engaged, the speed ratio of the two wheels is decided by the gear ratio of G2. 
With the different gear ratios of G1 and G2, tire slip ratio of the two tires can be controlled with 
different engagements of the clutches, so that different traction distributions can be achieved and the 
torque vectoring effect can be realized. 
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Figure 1. Schematic diagrams of current torque vectoring differential (TVD) designs: (a) superposition-clutch
(SPC)-TVD and (b) stationary-clutch (STC)-TVD [15].
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Figure 2. System configurations of current TVD designs: (a) SPC-TVD and (b) STC-TVD.

In Figure 2, the SPC-TVD consists of two gear pairs (G1 and G2), and two clutches (C1 and C2).
When C1 is engaged, the speed ratio of the left and right wheels is decided by the gear ratio of G1.
Similarly, when C2 is engaged, the speed ratio of the two wheels is decided by the gear ratio of G2.
With the different gear ratios of G1 and G2, tire slip ratio of the two tires can be controlled with different
engagements of the clutches, so that different traction distributions can be achieved and the torque
vectoring effect can be realized.
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A similar operation principle is also observed from the STC-TVD design, in which two planetary
gearsets PG1 and PG2 are involved, and two brakes B1 and B2 are used to select the direction of
the torque vectoring effect. When B1 is engaged, the speed ratio of the left and right wheels is decided
by the gear ratio of PG1. On the other hand, when B2 is engaged, the speed ratio of the two wheels is
decided by the gear ratio of PG2.

According to the two current TVD designs discussed above, a TVD can be developed when
two gear ratios between the left and right wheels are achievable, and the two ratios can be selected
by controlling the engagement of the clutches or brakes. This is the design principle of the TVD
understood by the authors and will be used for further TVD development in the later part of this study.

3. Design of New Torque Vectoring Differential

It is found that the STC-TVD uses two planetary gearsets in order to acquire the two different
speed ratios between the two wheels. However, this may cause the system to require more space
and have a heavier weight. Since the Ravigneaux gearset can reduce one ring gear compared to the two
planetary gearsets design, there is a potential to reduce the space and weight of the STC-TVD design.
Therefore, the authors of this study propose a new TVD design which involves a Ravigneaux gearset,
and the new system is named Ravigneaux TVD (Rav-TVD) in this research.

Here, the feasible configuration of a Rav-TVD is discussed. The Ravigneaux gearset is a two
degrees-of-freedom (DoF) mechanism which has four links, i.e., ring gear, carrier, large sun gear,
and small sun gear, to connect to other devices. The twelve possible configurations of a Rav-TVD
are listed in Table 1. In order to achieve the torque vectoring effect, the two brakes B1 and B2 have
different effects on the speed relation between the input IN and the wheel W1. This means when the B1

engagement makes the input IN rotate faster than the wheel W1, then the B2 engagement should make
IN rotate slower than W1. According to Table 1, configurations 1, 2, 4, and 6 satisfy this requirement
and can be developed as a TVD. Since the gear ratio of the Ravigneaux gearset in configuration 2
is the most practical in realistic applications, configuration 2 is considered to be the most feasible
configuration for a Rav-TVD, and was further investigated in this study.

Table 1. Possible arrangements of a Ravigneaux TVD (Rav-TVD).

No.
Connected Units

Effect of the Two Brakes to the Speed Ratio between IN-W1 Shafts
IN W1 B1 B2

1 r c sl ss ∆
2 * r sl ss c ∆
3 r ss c sl
4 c r sl ss ∆
5 c sl r ss
6 c ss r sl ∆
7 sl r c ss
8 sl c r ss
9 sl ss r c
10 ss r c sl
11 ss c r sl
12 ss sl r c

∆: different effect, : same effect, *: selected configuration.

The configuration of the Rav-TVD is shown in Figure 3a and its schematic diagram is shown in
Figure 3b. The Ravigneaux gearset is denoted as a square in the sketch of system configuration, and the
four corners of the square are marked with the corresponding gears. The r is the ring gear, c is the carrier,
ss is the small sun gear, and sl is the large sun gear. The Rav-TVD connects the ring gear to the input
and differential carrier. The large sun gear is connected to wheel W1 and one of the differential shafts.
The small sun gear and the carrier of the Ravigneaux gearset are connected to brakes individually so that
different torque vectoring effects can be controlled by the engagement of the brakes.
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Figure 3. (a) System configuration and (b) Schematic diagram of the Rav-TVD.

The speed relation between each gear in the Ravigneaux gearset can be visualized in the lever
diagram as shown in Figure 4, and can be calculated via Equations (1) and (2) [17,18], in which
ωr, ωc, ωsl, and ωss are the rotating speed of the ring gear, carrier, large sun gear, and small sun
gear, respectively. iss is the gear ratio between the ring gear and the small sun gear, as presented
in Equation (3), and isl is the gear ratio between the ring gear and the large sun gear, as shown in
Equation (4), where Zr, Zss and Zsl are the number of teeth on the ring gear, small sun gear, and large
sun gear respectively. The constraint of iss and isl is indicated in Equation (5).
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ωss − issωr = (1 − iss)ωc, (1)

ωsl + islωr = (1 + isl)ωc, (2)

iss =
Zr

Zss
, (3)

isl =
Zr

Zsl
, (4)

iss > isl > 1, (5)

To operate the Rav-TVD, when the brake B1 is engaged, a braking force will be applied to the small
sun gear and reduce its speed; according to the lever diagram, this operation results in a trend such
that the speed of the large sun gear (wheel W1) will be faster than the ring gear (Input IN), and hence
the wheel W1 will rotate faster than the wheel W2. On the other hand, when the brake B2 is engaged,
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a braking force will be applied to the carrier, and the speed of the large sun gear (wheel W1) will
be slower than the ring gear (Input IN). Thus, the wheel W1 will rotate slower than the wheel W2.
With the opposite speed trends between the two wheels controlled by the two brakes, the torque
vectoring effect can be realized by the Rav-TVD.

4. Modeling

The dynamic equation of the Rav-TVD is a combination of the dynamic equations of a Ravigneaux
gearset and a conventional differential. The dynamic equation of a Ravigneaux gearset is shown in
Equation (6), where I is the inertia, R the radius,

.
ω the rotational acceleration, T the applied torque of

each gear in the Ravigneaux gearset, and F1 and F2 respectively are the internal forces between the ring
gear and the planet gears, and between the planet gears and the large and small sun gears. To establish
the Rav-TVD model, parameters in Equation (6) were replaced with the parameters of the Rav-TVD
system according to the connection relation introduced in the previous section. The dynamic model of
the Rav-TVD is shown in Equation (7).

To have a preliminary insight of the system, a simulation program was developed based on
Equation (7) and written in the MATLAB program to demonstrate the operation of the Rav-TVD.
In the simulation, the torque on the input shaft Tin and the two wheels Tw1 and Tw2 are set to be
constant. The braking torque Tb1 or Tb2 are initially zero and will be applied to the system at 1–2 s.
The speed of the input shaft, the two wheels and the two brake discs were recorded. The parameters
of this simulation are arranged in Table 2.

Ic 0 0 0 Rsl + Rr Rss − Rr

0 Ir 0 0 −Rr Rr

0 0 Isl 0 −Rsl 0
0 0 0 Iss 0 −Rss

Rsl + Rr −Rr −Rsl 0 0 0
Rss − Rr Rr 0 −Rss 0 0





.
ωc
.

ωr
.

ωsl.
ωss

F1

F2


=



Tc

Tr

Tsl
Tss

0
0


, (6)



Iin 0 0 0 0 2 Rr −Rr

0 Iw1 0 0 0 −1 0 −Rsl
0 0 Iw2 0 0 −1 0 0
0 0 0 Ib1 0 0 −Rss 0
0 0 0 0 Ib2 0 Rss − Rr Rsl + Rr

2 −1 −1 0 0 0 0 0
Rr 0 0 −Rss Rss − Rr 0 0 0
−Rr −Rsl 0 0 Rsl + Rr 0 0 0





.
ωin
.

ωw1
.

ωw2
.

ωb1.
ωb2
F1

F2

F3


=



Tin
Tw1

Tw2

Tb1
Tb2
0
0
0


, (7)

Table 2. Parameters of the MATLAB simulation.

Parameter Value

Inertia of the input shaft Iin 0.18 (kg·m2)
Inertia of the wheels Iw1 and Iw2 2.70 (kg·m2)
Inertia of the brakes Ib1 and Ib2 0.01 (kg·m2)

Radii of the ring gear Rr 60 (mm)
Radii of the large sun gear Rsl 40 (mm)
Radii of the small sun gear Rss 30 (mm)
Torque on the input shaft Tin 20 (N·m)

Torque on the wheels Tw1 and Tw2 −10 (N·m)
Torque applied to the brakes Tb1 and Tb2 −5 (N·m)
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The results of the MATLAB simulation are shown in Figure 5. Figure 5a is the case when B1 is
engaged at 1–2 s and B2 is not activated. When B1 is engaging, the wheel speed of W1 becomes faster
than W2 and the speed difference constantly increases when B1 is activated. Figure 5b shows the case
when B2 is engaged at 1–2 s when B1 is not activated. In this case, an opposite situation happens for
the two wheels’ speeds, and W1 becomes slower than W2. According to these results, the proposed
Rav-TVD can control the speed ratio between the two wheels symmetrically with different engagement
of the brakes, and the design requirement of a TVD mentioned previously is fulfilled.
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5. Simulation Results

In this section, to demonstrate the torque vectoring effect of TVDs and its influence while
turning in vehicle applications, the SPC-TVD and the Rav-TVD systems were built and applied
to a vehicle dynamic model that was compared with a solid axle (SA) and an open differential (OD) in
the simulation software called SimulationX. SimulationX is software provides a modeling platform
and libraries with customizable elements and tools which can be used for system development
and analysis, and it is one of the most popular software in the field of multi-physics modeling
and simulation. In automotive technology, for examples, transmission elements (e.g., clutches [19–21],
continuously variable transmissions [22,23]), hydraulic systems [24–27], powertrain drivelines [28–30],
and hybrid transmissions [31–33] etc. have been surveyed and modeled based on SimulationX.
In addition to computer-aided engineering (CAE) analysis, computer aided design (CAD) with
three-dimensional (3D) solid modeling for vehicles has also been established [34,35].

Figure 6 shows the interface of SimulationX and a vehicle dynamic model with a steering control
for front wheels, and an OD for rear wheels. In the diagram view of our model, connection lines can
be categorized into three types: (a) Signal Blocks (blue lines for control signals), (b) 1D Mechanics
(black lines for power transmission), and (c) Multi-Body System Mechanics (yellow lines for 3D vehicle
that can be visualized in the 3D view). Due to the convenience of the SimulationX-based model,
only the transmission part needs to be altered. For example, a vehicle dynamic model for a SA can
be established easily by directly removing the differential element. In this simulation, the vehicle
dynamics of the same vehicle equipped with different transmissions (SA, OD, SPC-TVD, and Rav-TVD)
are investigated, where the vehicle is assumed be to a rear-wheel-drive vehicle. The simulation scenario
is that the vehicle is driven, starting from 0 km/h at −6 s (time = −6 s) at first and accelerated to a
constant speed at 60 km/h before 0 s (time < 0 s). Then, a P controller (Proportional controller) is
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used to maintain the vehicle speed at 60 km/h during the entire process (time > 0 s). More detailed
numerical data is shown in Table A1 of Appendix A.
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tires always share the similar traction forces for the OD model (Figure 7b). As a result, the vehicle 
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Figure 6. The interface and vehicle dynamic model for the open differential (OD) in SimulationX.

Figure 7 shows the traction, normal force, tire speed of rear tires, and the vehicle trajectory for
SA and OD cases while a 5-degree constant steering angle to the left is applied to the front wheels at
0.2 s (time = 0.2 s). Both SA and OD models show the normal forces are shifted from the inside (rear
left, RL) tire to the outside (rear right, RR) tire due to the centrifugal force while cornering (Figure 7a).
The traction of the inside tire is always larger than the outside tire; this causes the difficulty while
turning for the SA model, whereas the differential function is achieved such that both rear tires always
share the similar traction forces for the OD model (Figure 7b). As a result, the vehicle with an OD will
slow down the inside tire and accelerate the outside tire, making a turn easier than the one with an SA
(Figure 7c), and it has a smaller turning radius for better cornering ability (Figure 7d).
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Next, one of the current TVD designs (SPC-TVD) was selected to understand what the torque
vectoring effect is and how this effect influences the vehicle while turning. A vehicle dynamic model
of the SPC-TVD shown in Figure 8 was transferred from the system configuration of the SPC-TVD
shown in Figure 2a, and the only difference compared to the OD model was the transmission as shown
in the diagram view. Except for the open differential, two clutches and two pairs of gearsets were
added in the SPC-TVD for torque distributions.
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Figure 8. The vehicle dynamic model for the SPC-TVD in SimulationX.

In this simulation, the scenario was similar to the SA and OD models. However, in order to
examine the torque vectoring effect, the steering angle was fixed to zero all the time, and three cases
were simulated: (a) no actuation (NA) in the SPC-TVD will happen, (b) the clutch C1 will start to be
engaged at 0.2 s, and (c) the clutch C2 will start to be engaged at 0.2 s, where the speed of the vehicle is
still maintained at 60 km/h over the whole process, and the simulation results including the traction of
tires and the trajectory of the vehicle are recorded and illustrated in Figure 9. As shown in the simulated
results, there was no turning maneuver observed when no clutch was engaged (Figure 9a). In the case
of C1 engaged (Figure 9b), the traction of the inside (rear left) tire was transferred to the outside
(rear right) tire, causing a torque moment to the vehicle body, and the vehicle began to turn left.
Conversely, in the case of C2 engaged (Figure 9c), a similar phenomenon occurred but in the opposite
direction, and the vehicle began to turn right. According to this simulation, the torque vectoring effect
of the SPC-TVD was demonstrated, and the effect of the C1 and C2 engagement was shown to be
opposite to the vehicle behavior (Figure 9d). Therefore, this effect could also be observed for the vehicle
during cornering, while a 5-degree constant steering angle to the left was applied to the front wheels,
where the curves of NA, C1, and C2 engaged cases shown in Figure 9e were denoted as neutral-steering
(NS), over-steering (OS), and under-steering (US).
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Figure 9. Torque vectoring effect and influence of the vehicle turning of the SPC-TVD model, (a) no
engagement; (b) C1 is engaged; (c) C2 is engaged; (d) without steering; (e) with a 5-degree constant
steering angle.

In Figure 10, the Rav-TVD model was also transferred from the system configuration, as shown
in Figure 3a, where the transmission was a differential plus one pair of the Ravigneaux gearset with
two brakes (B1 and B2). The scenario was the same as in the SPC-TVD simulation, under the same
vehicle speed (60 km/h) without steering for the whole process, and the three cases were: (a) no brake
in the Rav-TVD will be engaged, (b) the brake B1 will start to be engaged at 0.2 s, and (c) the brake B2

will start to be engaged at 0.2 s. Figure 11 shows the simulated results for the Rav-TVD model that
also had the ability to adjust the torque distributions during cornering. Therefore, the vehicle during
a NS condition could be shifted to a US or OS condition by generating a torque vectoring effect to
conquer or facilitate the steering maneuver. Finally, four vehicle dynamic models (SA, OD, SPC-TVD,
and Rav-TVD) were put together for comparison of cornering ability, as shown in Figure 12. All of
the vehicles could be observed clearly from the top view of the 3D illustration, and the trajectories
showed that the SPC-TVD with the smallest turning radius had the best performance. Although
the cornering ability of Rav-TVD was not as good as the SPC-TVD, however, it was still better than
the SA and OD.
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6. Analysis of the Numerical Simulation

In order to verify the soundness of the simulation model and understand the vehicle performance,
numerical simulation with different design parameters were demonstrated. The Rav-TVD model
with the original design parameters (Table A1) was selected as a benchmark, and then the simulation
results with different design parameter values (gear ratios of the Ravigneaux gearset, Max. press-on
force of the brakes, vehicle speed, and steering angle) were adjusted to compare. First, for the gear
ratios of the Ravigneaux gearset, the values of isl and iss were changed with a variation (±10%) from
the benchmark value 1.5 and 2.0. With the same scenario in previous section (for the case of steering
angle = 0 degree), the simulated results are shown in Figure 13. Also, for the Max. press-on force of
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the brakes B1 and B2, the values were changed with a variation (±10%) from the benchmark value
7200 N, and the simulated results are shown in Figure 14. The results at t = 5 s among these parameters
are collected and listed in Table 3, and iss had the largest increment and decrement on the y-direction
displacement of the vehicle trajectory. As a result, adjusting the gear ratio of ring gear and small sun
gear was the most efficient way to change the torque vectoring effect.

Energies 2017, 10, 2157  11 of 16 

 

= 5 s among these parameters are collected and listed in Table 3, and iss had the largest increment 
and decrement on the y-direction displacement of the vehicle trajectory. As a result, adjusting the 
gear ratio of ring gear and small sun gear was the most efficient way to change the torque vectoring 
effect. 

(a) (b)

Figure 13. Sensitivity analysis of the Rav-TVD model for different gear ratios: (a) isl and (b) iss. 

(a) (b)

Figure 14. Sensitivity analysis of the Rav-TVD model for different Max. press-on forces: (a) brake B1 
and (b) brake B2. 

Table 3. Sensitivity analysis for the Rav-TVD model. 

Parameter Variation Value Result (y-Axis at t = 5 s) Difference

Gear ratio of ring gear and large sun gear isl 
+10% 1.65 1.910 m  −5.45% 

0 1.5 2.020 m 0% 
−10% 1.35 2.144 m +6.14% 

Gear ratio of ring gear and small sun gear iss 
+10% 2.2 −1.642 m +19.35% 

0 2 −2.036 m 0% 
−10% 1.8 −2.432 m −19.45% 

Max. press-on force of the brake B1 
+10% 7920 N 2.213 m +9.55% 

0 7200 N 2.020 m 0% 
−10% 6480 N 1.826 m −9.60% 

Max. press-on force of the brake B2 
+10% 7920 N −2.233 m +9.68% 

0 7200 N −2.036 m 0% 
−10% 6480 N −1.840 m −9.63% 

In Figure 15, the original vehicle speed (60 km/h) of the Rav-TVD model was changed to 30 
km/h and 75 km/h. The simulation time was also extended to 475 s to make sure that the vehicle 
trajectory was a circular shape after one of the brakes was engaged at t = 0.2 s. This means the 
Rav-TVD provided the same torque vectoring effect on vehicle to make a turn. The simulated 
results showed that the radius of curvature of the vehicle trajectory differed from vehicle speed; the 
higher vehicle speed, the larger the radius of curvature. On the other hand, the parameter of 
constant steering angle also varied, and the original steering angle (5 degree) is already shown in 
Figure 11e. Under the same vehicle speed (60 km/h), different steering angles such as 1 degree and 
3 degrees were also simulated, and shown in Figure 16a,b. Finally, Table 4 shows the calculated 

Figure 13. Sensitivity analysis of the Rav-TVD model for different gear ratios: (a) isl and (b) iss.

Energies 2017, 10, 2157  11 of 16 

 

= 5 s among these parameters are collected and listed in Table 3, and iss had the largest increment 
and decrement on the y-direction displacement of the vehicle trajectory. As a result, adjusting the 
gear ratio of ring gear and small sun gear was the most efficient way to change the torque vectoring 
effect. 

(a) (b)

Figure 13. Sensitivity analysis of the Rav-TVD model for different gear ratios: (a) isl and (b) iss. 

(a) (b)

Figure 14. Sensitivity analysis of the Rav-TVD model for different Max. press-on forces: (a) brake B1 
and (b) brake B2. 

Table 3. Sensitivity analysis for the Rav-TVD model. 

Parameter Variation Value Result (y-Axis at t = 5 s) Difference

Gear ratio of ring gear and large sun gear isl 
+10% 1.65 1.910 m  −5.45% 

0 1.5 2.020 m 0% 
−10% 1.35 2.144 m +6.14% 

Gear ratio of ring gear and small sun gear iss 
+10% 2.2 −1.642 m +19.35% 

0 2 −2.036 m 0% 
−10% 1.8 −2.432 m −19.45% 

Max. press-on force of the brake B1 
+10% 7920 N 2.213 m +9.55% 

0 7200 N 2.020 m 0% 
−10% 6480 N 1.826 m −9.60% 

Max. press-on force of the brake B2 
+10% 7920 N −2.233 m +9.68% 

0 7200 N −2.036 m 0% 
−10% 6480 N −1.840 m −9.63% 

In Figure 15, the original vehicle speed (60 km/h) of the Rav-TVD model was changed to 30 
km/h and 75 km/h. The simulation time was also extended to 475 s to make sure that the vehicle 
trajectory was a circular shape after one of the brakes was engaged at t = 0.2 s. This means the 
Rav-TVD provided the same torque vectoring effect on vehicle to make a turn. The simulated 
results showed that the radius of curvature of the vehicle trajectory differed from vehicle speed; the 
higher vehicle speed, the larger the radius of curvature. On the other hand, the parameter of 
constant steering angle also varied, and the original steering angle (5 degree) is already shown in 
Figure 11e. Under the same vehicle speed (60 km/h), different steering angles such as 1 degree and 
3 degrees were also simulated, and shown in Figure 16a,b. Finally, Table 4 shows the calculated 

Figure 14. Sensitivity analysis of the Rav-TVD model for different Max. press-on forces: (a) brake B1

and (b) brake B2.

Table 3. Sensitivity analysis for the Rav-TVD model.

Parameter Variation Value Result (y-Axis at t = 5 s) Difference

Gear ratio of ring gear and large sun gear isl

+10% 1.65 1.910 m −5.45%
0 1.5 2.020 m 0%

−10% 1.35 2.144 m +6.14%

Gear ratio of ring gear and small sun gear iss

+10% 2.2 −1.642 m +19.35%
0 2 −2.036 m 0%

−10% 1.8 −2.432 m −19.45%

Max. press-on force of the brake B1

+10% 7920 N 2.213 m +9.55%
0 7200 N 2.020 m 0%

−10% 6480 N 1.826 m −9.60%

Max. press-on force of the brake B2

+10% 7920 N −2.233 m +9.68%
0 7200 N −2.036 m 0%

−10% 6480 N −1.840 m −9.63%

In Figure 15, the original vehicle speed (60 km/h) of the Rav-TVD model was changed to 30 km/h
and 75 km/h. The simulation time was also extended to 475 s to make sure that the vehicle trajectory
was a circular shape after one of the brakes was engaged at t = 0.2 s. This means the Rav-TVD
provided the same torque vectoring effect on vehicle to make a turn. The simulated results showed
that the radius of curvature of the vehicle trajectory differed from vehicle speed; the higher vehicle
speed, the larger the radius of curvature. On the other hand, the parameter of constant steering angle
also varied, and the original steering angle (5 degree) is already shown in Figure 11e. Under the same
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vehicle speed (60 km/h), different steering angles such as 1 degree and 3 degrees were also simulated,
and shown in Figure 16a,b. Finally, Table 4 shows the calculated radius of curvatures from the vehicle
trajectories for different conditions. In addition, a higher vehicle speed (90 km/h) and a larger steering
angle (7 degree) have also been simulated; however, the vehicles flipped and turned over during torque
vectoring due to the larger centrifugal force while cornering. Nevertheless, the vehicle dynamics
model still had good stability, agility, and safety for most situations.
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No Brakes Engaged Brake B1 Is Engaged Brake B2 Is Engaged

Vehicle speed

30 km/h - 1273 m 1268 m
60 km/h - 1450 m 1436 m
75 km/h - 1589 m 1570 m
90 km/h - × ×

Steering angle

1 degree 167.1 m 149.7 m 188.9 m
3 degree 56.4 m 53.7 m 59.0 m
5 degree 37.8 m 36.7 m 38.6 m
7 degree × × ×

-: vehicle trajectory is flat (no curvature), ×: vehicle flips or turns over (simulation failed).
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In this section, four design parameters were selected for a sensitivity analysis and for vehicle
dynamics. From the viewpoint of the mechanical dimensions of the Ravigneaux gearset, the gear ratios
(isl and iss) directly affected the characteristics of the torque vectoring effect. For example, after selecting
the size of the ring gear, a gearset combined by a larger large sun gear (smaller isl) and a smaller
small sun gear (larger iss) had more torque vectoring power. From the viewpoint of press-on force
of the brakes, the force is proportional to the torque applied on brake. Therefore, the larger press-on
force, the larger the torque that is transmitted to the other side to make a turn. From the viewpoint
of the vehicle trajectory, the radius of curvature is changed from various vehicle speeds and steering
angles; the higher the speed or the smaller the steering angle, the lager the radius of curvature of
the vehicle trajectory. Moreover, the vehicle dynamics of this model showed vehicle stability, agility,
and safety at speeds under 75 km/h, and at steering angles below 5 degrees.

7. Conclusions

The development of a new vehicle component design and torque vectoring differential is
demonstrated in this paper. First, the design principles of current TVDs are clarified, and their system
configurations transferred from schematic diagrams are illustrated. Second, the new TVD design,
which consists of a Ravigneaux gearset and two brakes, is introduced, and the feasible configuration
of the Rav-TVD is discussed. Next, the interface of SimulationX software is introduced, and examples
of the solid axle and open differential have been demonstrated. Due to the convenience of the system
configuration, SimulationX-based models for the same vehicle equipped with different transmissions
(SA, OD, SPC-TVD, and Rav-TVD) are established intuitively and directly. Simulations have been
performed to show the operation of the system and the torque vectoring effects of the SPC-TVD
and Rav-TVD have been demonstrated. According to the simulation results, both the SPC-TVD
and Rav-TVD are able to obtain different traction distributions when different clutches or brakes are
engaged, and can be used for DYC for vehicle applications. Furthermore, the cornering ability of four
transmissions are simulated and compared, and numerical simulations for the Rav-TVD model have
been analyzed.

In summary, our mechanical design, the Rav-TVD, has the potential for torque vectoring ability.
The vehicle dynamics can also be improved with the system to fulfil driving requirements such as
stability and agility, and better driving safety and performance are considered to be realizable with
the new Rav-TVD design for vehicle applications.
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Nomenclature

DYC direct yaw-moment control
ESP electronic stability program
4WS four-wheel steering
TVD torque vectoring differentials
DG differential gearset
SPC-TVD superposition clutch TVD
STC-TVD stationary clutch TVD
Rav-TVD Ravigneaux TVD
FPG function power graph
DoF degree-of-freedom
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SA solid axle
OD open differential
P controller Proportional controller
NA no actuation
CAE computer-aided engineering
CAD computer aided design
3D three-dimensional
RL rear left
RR rear right
NS neutral-steering
OS over-steering
US under-steering
Subscripts
W1, W2 left and right wheels
C1, C2 clutches
B1, B2 brakes
G, G0, G1, G2 gear pairs
PG1, PG2 planetary gearsets
IN input of the engine power
r ring gear
c carrier
ss small sun gear
sl large sun gear

Appendix A

Table A1. Parameter value settings in the SimulationX model.

Parameters Value

1. Dimensions of the original Rav-TVD
Radii of ring gear Rr 60 mm
Radii of large sun gear Rsl 40 mm
Radii of small sun gear Rss 30 mm

2. Dimensions of the original vehicle
Mass 1200 kg
Wheel radius (unloaded) 310 mm
Tire width 210 mm
Wheel base 2.6 m
Truck width 1.8 m
Inertia of the wheel 0.3381 kg·m2

Inertia of the powertrain 1 kg·m2

Rolling resistance coefficient of the tire 0.01
Aerodynamic drag coefficient Cd 0.3
Air density ρ 1.204 kg/m3

Frontal area of the vehicle A 1.5 m2

3. Setting of the original system parameters
Gear ratio of ring gear and large sun gear isl (Rr/Rsl) 1.5
Gear ratio of ring gear and small sun gear iss (Rr/Rss) 2.0
Max. press-on force of the brakes B1 & B2 (Corresponding braking torque) 7200 N (230 N·m)
Vehicle speed 60 km/h
Steering angle (starts at t = 0.2 s) 5 degree
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