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Abstract: A class of adaptive disturbance tracking controllers (ADTCs) is augmented with disturbance
and state estimation and adaptive state feedback, in which a controller and estimator, which are
designed on the basis of a lower-order model, are used to control a higher-order nonlinear plant.
The ADTC requires that the plant be almost strict positive real (ASPR) to ensure stability. In this paper,
we show that the ASPR property of a plant is retained with the addition of disturbance and state
estimation and state feedback, thereby ensuring the stability of the augmented system. The proposed
adaptive controller with augmentation is presented in the context of maximum power extraction
from a wind turbine in a low-wind-speed operation region. A simulation and comparative study on
the National Renewable Energy Laboratory’s (NREL’s) 5 MW nonlinear wind turbine model with an
existing baseline Proportional-Integral-Derivative(PID) controller shows that the proposed controller
is more effective than the existing baseline PID controller.
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1. Background

Electrical energy generated from wind power is one of the major sources of renewable energy.
The size of the wind turbine has to be large in order to reduce the cost of the energy; however,
this increase in size comes with the cost of added weights in its structures [1]. For large wind
turbines, the blade is one of the most important structures that needs to be considered for both fatigue
life and weights. Using stiff materials to construct wind turbine blades increases the blade’s life,
but it also increases its weight significantly. This requires a larger foundation and tower to support
the blades, which results in high installation costs and an increase in the cost of energy. On the
other hand, using lightweight materials reduces the weight significantly, but the blade becomes
highly flexible, which makes it prone to damage by different types of aerodynamic and structural
loading. Stiffening the blade is not a viable option for a large wind turbine. However, advents in
modern control theory have made it possible to reduce the blade loading significantly, thereby making
a flexible blade design a viable option [2]. Besides blade loading, other structural loading, such as
drivetrain and tower loading, also needs to be considered to increase the life span of the wind turbine,
which directly affects the cost of energy. Maximizing the power captured while operating the wind
turbine at a below-rated wind speed is another important aspect of a wind turbine control system [3].
Modern wind turbines are capable of operating at variable rotor speeds to accompany the maximum
power point tracking algorithm.
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A wind turbine is a highly complex dynamical system containing multiple structures connected
together. The inclusion of aerodynamics and an aeroelastic interaction with a highly flexible blade
makes the system more complex, which introduces uncertainties during modeling. A wide spectrum
of controller architecture, such as traditional Proportional-Integral-Derivative (PID) [4], multivariable [5,6],
robust [7,8], model predictive [9,10] architecture, and so forth, have been used to achieve different
performance goals. However, an adaptive control architecture is very attractive because of its capability
to incorporate the uncertainty involved in the system. A class of adaptive controls accompanied with
a system identification algorithm has also been successfully used [3]. Intelligent adaptive control
strategies have also been used to achieve different control goals for a wind turbine [11–13].

A class of adaptive controllers has been developed and studied by Balas [14–16], one of the
authors of this paper, and was successfully implemented to reject the persistent disturbance on flexible
space structures [17] and suppress persistent rotor vibration [18]. Frost and Balas [19] extended
this adaptive control theory to control the wind turbine rotor speed in the high-wind-speed region.
Another extension of this adaptive control theory, developed by Balas et al., is to maximize the
power captured by a wind turbine where the wind speed is assumed to be directly measured [20].
The direct measurement of wind speed is either expensive when LiDAR is used or unreliable when
a cup anemometer is used; therefore, we extended this theory to incorporate wind-speed estimation
based on the lower-order linear model of wind turbines [21,22]. We demonstrate the effectiveness
of this extended control system with wind-speed estimation through controller implementation and
simulation on the National Renewable Energy Laboratory’s (NREL’s) 5 MW nonlinear wind turbine
model [23]. In this paper, we present the stability analysis of the proposed extension of the adaptive
controller. The foundation for the stability of the class of adaptive controllers is presented in [14,24] and
it is shown that the system needs to satisfy the almost strict positive real (ASPR) conditions to ensure
the stability. We show that the augmentation of state estimation and state feedback still preserves the
ASPR properties and hence the stability of the original system.

The rest of the paper is structured as follows. The problem of maximum power point tracking at
below-rated wind speeds is formulated in Section 2. Section 3 presents an overview of the wind turbine
as a linear time-invariant (LTI) system, introduces the idea of a disturbance generator, and lays out the
foundation for partial state estimation with wind-speed estimation. The proposed adaptive control
algorithm and the corresponding stability analysis are presented in Section 4; these are followed by the
illustration of the proposed controller through the simulation with the 5 MW wind turbine model in
Section 5. Section 6 presents the concluding remarks and future research direction for the paper.

2. Problem Formulation

A variable-speed wind turbine has three regions of operation based on the wind speed. Region I is
a start-up region, and no power is produced because the wind speed is very low. In Region II, the wind
speed is sufficiently high to produce power, and the wind turbine operates at a below-rated speed
producing electrical energy. When the wind speed is high enough to produce rated power, the wind
turbine operates in Region III. A variable-speed wind turbine is capable of maximizing the power
captured while operating in Region II, which is typically achieved by controlling the generator torque.

The power captured by a typical horizontal-axis wind turbine is given by the following [25]:

P =
1
2

ρACpV3 (1)

where P is the mechanical power captured, A is the rotor disc area, Cp is the power coefficient, ρ is the
air density, and V is the free-stream wind velocity.

The power coefficient, which typically represents the fraction of the total wind power converted
to mechanical energy in the wind turbine, depends on the tip-speed ratio (λ) and blade-pitch angle (β),
which can be expressed as follows:

λ =
ΩR
V

(2)
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where Ω is the rotor speed and R is the rotor radius.
In the below-rated wind speed region, the wind turbine blades are held at a constant pitch angle;

hence the power coefficient is a function of the tip-speed ratio only. The power coefficient initially
increases with the increase in the tip-speed ratio and starts decreasing if it is further increased beyond
a certain point. Hence, to maximize the power captured by the wind turbine, the power coefficient
has to be maximized. This is achieved by operating the wind turbine at a constant tip-speed ratio
pertaining to the maximum power coefficient.

To formulate the power maximization problem as the tip-speed-ratio tracking problem, we define
the tip-speed-ratio tracking error (ε) as the deviation of the current tip-speed ratio from the operating
tip-speed ratio as follows:

ε = λ− λOP =
ΩR
V
− ΩOPR

VOP
=

R
V

(
Ω− ΩOP

VOP
V
)

(3)

where VOP is the operating wind speed in Region II, and ΩOP is the corresponding operating rotor
speed to have the optimum tip-speed-ratio value (λOP). Here we have restated the tip-speed tracking
error in some observable quantities, R, Ω, and V.

Now, assuming both the rotor speed (Ω) and wind velocity (V) are available, part of Equation (3)
can be redefined as the tracking error as follows:

ey = Ω−QV (4)

where Q = ΩOP
VOP

is defined as the tracking ratio. Equations (1)–(4) suggest that driving the output
tracking error (ey) or tip-speed-ratio tracking error (ε) to zero leads to the optimum tip-speed-ratio
tracking and hence maximizes the power captured by the wind turbine. To achieve this, a proportional
change in the rotor speed is necessary when the wind speed changes, where the constant of
proportionality is given by the tracking ratio (Q). To use this formulation, both the wind speed
and the rotor speed need to be observed and the rotor speed is changed through the generator torque
control scheme.

3. System Description and Wind-Speed Estimation

As noted in the previous section, we need to observe both the wind speed and rotor speed to
incorporate the output error and tip-speed-ratio tracking error equations (Equations (3) and (4)) in
the control system design. A simple rotary encoder would be sufficient to measure the rotor speed.
However, the wind speed measurement is not an obvious task. A cup anemometer and LiDAR are the
two most extensively used technologies for in situ measurements of wind speed. A cup anemometer
lacks the accuracy to be incorporated in the control system loop. LiDAR, on the other hand, is a very
expensive solution to measure wind speed accurately. Moreover, LiDAR measures the wind speed well
ahead of the wind turbine, and hence its measurement must be accompanied with a wind evolution
model to predict the wind speed at the rotor [26]. Therefore, we propose a method to estimate the
wind speed from the rotor speed measurement.

We suppose the wind turbine dynamics is modeled as a LTI state-space formulation as follows:

ẋ = Ax + Bu + ΓuD

y = Cx + Du
(5)

where x is an N-dimensional state vector, u is a P-dimensional input vector, uD is a pD-dimensional
disturbance input vector, and y is an M-dimensional measurement vector. A, B, C, D, and Γ are matrices
having appropriate dimensions obtained from the physical parameters of the wind turbine. Because
the matrix D is zero for most of the practical systems and because this also holds true for the system
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under study, we do not incorporate this term for simplicity in the analysis; however, the inclusion of
this term does not alter the analysis in later sections.

Because we are interested in the control of a higher-order model using a subset of states,
a lower-order representation of Equation (5) can be written as follows:

ẋm = Amxm + Bmum + ΓuD

y = Cmxm
(6)

Here we assume the same set of measurements for both the full state and lower-order system,
therefore representing the output with the same symbol y.

To align this system with the wind-speed tracking problem formulation of the previous section,
um is taken as a generator torque command, uD is taken as the wind speed (noting that both uD
and V are used interchangeably to represent the wind speed), and y is taken as the rotor speed (also
noting that we use y and Ω interchangeably to represent the rotor speed). The state vector (xm)
consists of many system response parameters and/or a combination of these as per the control system
performance requirement.

Taking reference from [27], we assume that the wind comes from a disturbance generator of
the following form:

uD = ΘzD

żD = FzD; zD(0) = z0
(7)

where the disturbance or wind speed vector (uD) is assumed to have evolved from disturbance states
(zD), and Θ and F are the appropriate matrices representing a known form of disturbance [17].

Assuming that the form of disturbance is known (e.g., sinusoidal, step, etc.), the disturbance state
vector (zD) can be composed from the appropriate basis functions (ϕD) as follows:

zD = LϕD (8)

where L is the matrix combining the known basis functions for the disturbance (ϕD).
For this paper, we assume the wind to be a step disturbance. This assumption is also valid

for turbulent disturbance because we can assume the turbulent wind profile to be formed from the
combination of steps. Then, the disturbance-state basis function can be taken as ϕD = 1. Additionally,
because a step function consists of a constant value, its derivative will be zero; hence it is imperative
to use F = 0 in Equation (7). Because only the form of disturbance is known, hence we assume that
the exact values of L and Θ are unknown. For a step disturbance generator, we could ideally assume
Θ = constant and use Θ = 1 when needed. In conclusion, Equations (7) and (8) represent a disturbance
generator model from which the wind speed is assumed to be generated.

To estimate the wind speed, Equations (6) and (7) are combined together to form an augmented
model as follows: [

ẋm

żD

]
=

[
Am ΓΘ
0 F

]
︸ ︷︷ ︸

Am

[
xm

zD

]
︸ ︷︷ ︸

z

+

[
Bm

0

]
︸ ︷︷ ︸

Bm

u

y =
[

Cm 0
]

︸ ︷︷ ︸
Cm

(9)

Typically the pair (Am, Cm) is observable and an appropriate state estimator can be designed on
the basis of Equation (9) as follows:
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˙̂z = Am ẑ + Bmu + K(y− ŷ)

ŷ = Cm ẑ
(10)

where (.̂) represents the estimated quantities.
The estimated state vector (ẑ) in Equation (10) consists of both lower-order wind turbine states (x̂m)

and the states corresponding to the wind speed (ẑD). Therefore, this equation provides an estimation
of the wind speed along with the desired plant states. In particular, the estimated wind speed can be
obtained from the disturbance generator of Equation (7) as follows:

ûD = ΘẑD (11)

We note that the measured variable (y) is the rotor speed (Ω) for this particular case.
The output tracking error of Equation (4) can now be updated according to the estimated wind

speed as follows:
êy = Ω−QûD (12)

where uD in Equation (4) is replaced with the estimated wind speed (ûD). Then the control objective
is to drive the estimated output error (êy) to zero by controlling the measured rotor speed (Ω or y)
through a torque controller.

4. Adaptive Controller

To drive the estimated output tracking error of Equation (12) to zero, we use an adaptive controller
of the following form:

u = Ge êy + Gx x̂m + GD ϕD (13)

with the gain adaption laws:

Ġe = −êy êT
y γe; γe > 0

ĠD = −êyφT
DγD; γD > 0

Ġx = −êyxT
mγx; γxm > 0

(14)

where Ge, GD, and Gx are the adaptive gains with corresponding gain adaption laws from Equation (14),
and γD, γe, and γx are the arbitrary positive definite matrices that should be tuned to obtain the
desired performance.

Equation (14) presents only the statement of gain adaption laws, and details of these gain adaption
laws can be found in [14]. The focus of this paper is to prove that the proposed adaptive laws and the
corresponding gain adaption laws are stable under certain conditions.

Closed-Loop System Formulation

In this section we formulate the dynamics of a closed-loop system on the basis of the wind
turbine dynamics represented by Equations (5) and (6) that incorporates the adaptive control law of
Equation (13) with the adaptive gains of Equation (14). We begin with the sufficient condition for the
stability and convergence of the closed-loop system incorporating the proposed adaptive controller
that does not have adaptive state feedback. We only state the conditions here, and the necessary proof
can be found in [28].

Theorem 1. A system represented by state-space matrices (A, B, C, D) will be stable under the adaptive feedback
control given by Equations (13) and (14) (without adaptive state feedback term Gx x̂m or corresponding gain
adaption term Ġx = −êyxT

mγx) if ϕD is bounded and the system is ASPR. A system is ASPR if
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• it is non-minimum-phase;
• the product CB of system matrices is positive (or CB > 0).

(We refer to [24] for a detailed discussion.)

Because Theorem 1 in [28] does not incorporate the adaptive state feedback term, it is imperative
to prove that the stability of the system is preserved with augmentation of adaptive state feedback.
For this, we form a closed-loop system for the system under study and show that the corresponding
pseudo-open-loop system (this will be clear later) preserves the ASPR properties.

The state estimation Equation (10) can be re-stated as follows:

˙̂z = L21y + L22ẑ + L23u (15)

where each variable y, ẑ, and u in Equation (10) is separated, and L21, L22, and L23 represent the
corresponding matrices from Equation (10).

To have a more general formulation, we assume that the lower-order augmented state vector (z)
is obtained from a linear transformation of the full-order state vector augmented with a disturbance
generator, or z = Tw 3 w ≡ [x uD]

T . Then, the estimation error can be expressed as follows:

e = ẑ− z = ẑ− Tw

⇒ ẑ = Tw + e
(16)

and the dynamics of the full-order state model represented by Equation (9) augmented with the
disturbance generator model of Equation (7) can be presented as follows:

ẇ =

[
A ΓΘ
0 F

]
︸ ︷︷ ︸

A

w +

[
B
0

]
︸ ︷︷ ︸

B

u

y =
[

C 0
]

︸ ︷︷ ︸
C

w

(17)

The output tracking error of Equation (4) can also be expressed in terms of the full-order
augmented state vector w as follows:

ey = y−QuD

= Cx−QΘzD

=
[

C −QΘ
]

︸ ︷︷ ︸
Ce

w
(18)

where w = [x uD]
T is the full-order augmented state vector.

Now, we define an ideal trajectory for the system to achieve the desired control goal as follows:

ẇ∗ = Aw∗ + Bu∗
y∗ = Cw∗
e∗y = Cew∗ = 0

(19)

In Equation (19), e∗y is assumed to be zero, because it is the ideal tracking error and the ideal
control objective is to make this zero.
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Assuming the existence of a liner transformation S1 that takes a disturbance state vector (zD) to
a plant state vector (x), the augmented state (z) can then be expressed as follows:

w∗ =

[
x∗
zD

]
=

[
S1

ID

]
︸ ︷︷ ︸

S1

zD ≡ S1zD (20)

where ID is the identity matrix of appropriate dimension.
The ideal control input, which results in the desired ideal trajectory, can then be expressed

as follows:

u∗ = S2zD + G∗z z∗ (21)

Now the perturbation of the true system from the ideal trajectory is expressed as follows:

∆w = w− w∗
∆u = u− u∗
∆y = y− y∗

∆ey = ey − e∗y = ey (∵ e∗y = 0 From Equation (19))

(22)

The dynamics of the perturbation Equation (22) can be expressed as follows:

∆ẇ = A∆w + B∆u

∆y = [C 0]∆w

ey = ∆ey = Ce∆w

(23)

Thus, the estimated output tracking can be expressed in terms of the perturbed state vector (∆w)
and augmented state estimation error (Equation (16)) as follows (see Proof 1 in Appendix A):

êy = Ce∆w−QΘHDe (24)

where HD = [0 ID].
Noting that the adaptive control law from Equation (13) is u = Ge êy + GD ϕD + Gz ẑ and assuming

the deviation in the control gain (∆G = G− G∗ with G = [Ge GD Gz]) as the difference between
the true and the ideal gain, the input deviation equation can be expressed as follows (see Proof 2 in
Appendix A):

∆u = (G∗e C + Gz∗T)∆w + (Gz∗ − G∗e QΘHD)e + h (25)

where h ≡ [∆Ge ∆GD ∆Gz][êy ϕD ẑ]T .
Using this control input in the dynamic equation represented by Equation (23), we obtain the

following (see Proof 3 in Appendix A):

∆ẇ = [A + B(G∗e C + G∗z T)]∆w + B(G∗z − G∗e QΘHd)e + Bh (26)

The estimation error dynamics can be expressed as follows (see Proof 4 on Appendix A):

ė = ˙̂z− z = L22e (27)
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Now combining the feedback dynamic Equation (26) and error dynamic Equation (27), we can
give a closed-loop system as follows:[

∆ẇ
ė

]
=

[
A + B(G∗e C + G∗z T) B(G∗z − G∗e QΘHd)

0 L22

]
︸ ︷︷ ︸

Ãc

[
∆w

e

]
+

[
B
0

]
︸ ︷︷ ︸

B̃

h

êy = [C −QΘHd]︸ ︷︷ ︸
C̃

[
∆w

e

] (28)

Now, the closed-loop matrix Ãc can be decomposed into a pseudo-open-loop system as follows:

Ãc =

[
A + BG∗e T BG∗z

0 L22

]
︸ ︷︷ ︸

Ã

+

[
B
0

]
︸ ︷︷ ︸

B̃

G∗e [C −QΘHd]︸ ︷︷ ︸
C̃

(29)

In other words, the closed-loop matrix Ãc can be viewed as being stemmed from a pseudo-
open-loop system represented by (Ã, B̃, C̃) with an output feedback through a feedback gain of G∗e .
We note that this is just an analogy for the convenience in a closed-loop system analysis.

Now we give three lemmas to prove that the pseudo-open-loop system of Equation (29) is ASPR
(see Proof in Appendix A), which will allow us to apply Theorem 1 to prove the stability of the
closed-loop system given by Equation (28).

Lemma 1. The system matrices product (CB) of the pseudo-open-loop system is equal to that of the true system
or C̃B̃ = CB.

Lemma 2. The transfer function of the pseudo-open-loop system can be expressed as follows:

P̃(s) = C[sI − (A + BG∗z T1)]
−1B

This system is equivalent to state feedback via a feedback gain of G∗z .

Lemma 3. The state feedback (in the form of Lemma 2) does not alter the minimum phase of a transfer
function; or, if the system transfer function P(s) = C(sI − A)−1B is minimum-phase, then P̃(s) will also
be minimum-phase.

Lemmas 1, 2, and 3 state that, if the system (A, B, C) is ASPR, then the resulting system (P̃(s))
from adaptive state feedback will also be ASPR. Combining this fact with Theorem 1 concludes
the following:

Theorem 2. If

• the system P(s) is minimum-phase;
• the product of system matrices CB is positive (or CB > 0);
• ϕD is bounded;

then the adaptive control and state-estimator pair:

u = Ge êy + GD ϕD + Gz ẑ
˙̂z = L21y + L22ẑ + L23u
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with adaptive gains of

Ġe = −êy êT
y γe; γe > 0

ĠD = −êy ϕT
DγD; γD > 0

Ġz = −êy ẑTγz; γz > 0

produce the desired tracking of

∆w t→∞−−→ 0 state deviation from ideal trajectory

e t→∞−−→ 0 estimation error

êy
t→∞−−→ 0 estimated output tracking error

ey
t→∞−−→ 0 output tracking error

Theorem 2 follows from Theorem 1 because of the fact that the system with adaptive feedback
will be ASPR if the system itself is ASPR in the first place.

Here, we have assumed a LTI plant to prove the stability of the proposed controller and its
augmentation; however, the adaptive controller itself is not a linear controller, and its implementation
is not restricted to a linear plant, as we demonstrate in the next section. Because the ASPR properties
presented are applicable for LTI systems only, one way to ensure the ASPR property for a nonlinear
plant is to linearize the plant at different operating points and evaluate the ASPR requirements at these
points [29,30].

5. Illustration of Adaptive State Feedback

The proposed adaptive state feedback was used for tip-speed-ratio tracking of the NREL’s 5 MW
wind turbine model [31]. This is a horizontal-axis wind turbine with a rotor radius of 63 m. It has
a rated wind speed of 11.4 m/s, a rated rotor speed of 12.1 rpm, and a rated tip-speed ratio of 7.55
(this is the tip-speed ratio for maximum power extraction). It is a nonlinear wind turbine model;
however, the full-order model for this wind turbine consists of 31 states when linearized at a certain
operating point, and all of these are stable in Region II operation. As described previously, our aims are
to augment the disturbance generator to the lower-order plant model, to estimate the corresponding
states along with the wind speed, and to use this lower-order model as an adaptive state feedback for
the full-order nonlinear model. The estimated wind speed, on the other hand, is used for adaptive
tip-speed-ratio tracking. The schematic of the proposed estimator/controller is shown in Figure 1.
The input for the wind turbine is the generator torque (Tg), and the rotor speed (Ω) is assumed as the
measured variable.

The desired lower-order model containing three states arising from the generator Deegres of
Freedom (DoF) and drivetrain DoF was generated by linearizing the nonlinear model at a blade pitch
angle of 0◦ and wind speed of 8 m/s. A step wind-speed profile ranging from 6 to 11 m/s was used
to investigate the performance of the proposed controller. Ideally, any positive values of gains γe,
γD, and γz would be sufficient for stability of the feedback system. However, these values affect the
system transients as well as the overall performance. For this particular case, we used a trial and error
method to obtain satisfactory values of these gains, as we have not yet developed a systematic way to
tune the gains. The performance of the proposed adaptive controller is compared to that of existing
baseline PID torque controllers [31]. As stated previously, one of the main aims of this simulation was
to estimate the wind speed from the rotor speed measurement using the disturbance generator model
of Equation (7) and the state estimation Equation (10).
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Figure 1. Schematic of the estimator/controller implementation.

A step wind profile was used as the input to the system, and the corresponding wind estimation is
presented in Figure 2. This figure shows that the proposed disturbance generator model and estimation
scheme are capable of estimating the wind speed closely.

Figure 2. True and estimated wind speed.

The next objective was to track the tip-speed ratio (an optimum value of 7.45 for this particular
wind turbine) of the wind turbine to maximize the power capture.

Figure 3 indicates that the proposed adaptive controller is very effective in tracking the desired
tip-speed ratio regardless of the large fluctuation in the wind speed.

Driving the estimated tracking error (Equation (12)) to zero is another objective of the proposed
adaptive controller. Figure 4 shows that the rotor speed is very close to the quantity QuD and that the
resulting estimated tracking error (êy = Ω−QuD) is close to zero.
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Figure 3. Tip-speed-ratio comparison between existing Proportional-Integral-Derivative (PID) controller
and proposed adaptive controller.

(a)

(b)

Figure 4. (a) Rotor speed; (b) estimated tracking error.

6. Conclusions

We have extended a class of adaptive disturbance tracking controllers developed by Balas et al.
to incorporate state and wind-speed estimation and adaptive state feedback. This adaptive controller
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requires an ASPR system to retain stability and convergence. Therefore, we proved that the
augmentation of the state and disturbance does not alter the ASPR properties of the system, thereby
preserving its stability. The stability analysis was performed under the assumption that the system
is LTI, although the implementation of the controller is not restricted to LTI systems so long as
the nonlinear system retains ASPR properties when linearized within the set of operating points,
as demonstrated by Li et al. [29]. The simulation results obtained using the NREL’s nonlinear wind
turbine model show that the proposed control system is more effective compared to the baseline
PID controller.

As presented by Li [29] and Yuan [30], one way to analyze the ASPR property of a nonlinear system
is to linearize it at different operating points and verify whether the system is non-minimum-phase
and whether the product of matrices CB is positive. However, this results in an infinite number of
operating points to be analyzed. One of the future endeavors is to incorporate nonlinear systems
directly into analysis. Additionally, the theory does not reveal the optimal values of gains in gain
adaption equations. A systematic study on finding effective values of gains to satisfy certain control
performance is another research direction that we would like to explore.

Author Contributions: All authors have equal contribution on the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof 1. Express zD as a linear transformation of z as follows:

zD = HDz = HDTw ≡
[

0 ID

] [ x
zD

]
(∵ z = Tw)

=⇒ HDT = [0 ID]

(A1)

This results in

ẑD = HD ẑ = HD(Tw + e) (∵ ẑD = Tw + e from Equation (16))

ẑD = zD + HDe (∵ HDTw = zD from Equation (A1))
(A2)

Now, we have

ûD = ΘẑD

êy = y−QûD
(A3)

This implies

êy = y−QΘzD = y−QΘ(zD + HDe) = y−QΘzD −QΘHDe

= ey −QΘHDe (∵ ey = y−QΘzD from Equation (4))

= (ey− e∗y)−QΘHDe (∵ e∗y is ideal tracking error and is equal to zero)

= ∆ey −QΘHDe = Ce∆w−QΘHDe

(A4)

This completes the proof.

Proof 2. The adaptive control law is expressed as u = Ge êy + GD ϕD + Gz ẑ. Now, the perturbation in
the input from the ideal input corresponding to the ideal trajectory can be written as follows:

∆u = u− u∗ = u− (S2zD + G∗z z∗) (∵ u∗ = S2ZD + G∗z from Equation (21))

= u− S2LϕD − G∗z
(A5)
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Assuming ideal adaptive gains to be G∗e , G∗D, and G∗z and the deviation of gains from the ideal to
be ∆Ge = Ge − G∗e , ∆GD = GD − G∗D, and ∆Gz = Gz − G∗z , we have

u = Ge êy + GD ϕD + Gz ẑ

= (G∗e + ∆Ge)êy + (G∗D + ∆GD)ϕD + (Gz ∗+∆Gz)ẑ

= G∗e êy + G∗D ϕD + G∗z ẑ + [∆Ge ∆GD ∆Gz]

 êy

ϕD
ẑD


= (G∗e êy + G∗D ϕD + G∗z ẑ) + h with h = [∆Ge ∆GD ∆Gz]

 êy

ϕD
ẑD


(A6)

Substituting u from Equation (A6) into Equation (A5) and with some algebraic manipulation, we have

∆u = G∗e êy + (G∗D − S2L)ϕD + G∗z ẑ− G∗z z∗ + h (A7)

and we choose S2 such that (G∗D − S2L = 0) for disturbance rejection. Because ẑ = Tw + e and
ẑ− z∗ = Tw + e− Tw∗ = T(w− w∗) + e = T∆w + e, this results in

∆u = G∗e (C∆w−QΘHDe) + G∗z (T∆w + e) + h (here we have substituted êy from Proof 1)

= (G∗e C + G∗z T)∆w + (G∗z − G∗e QΘHD)e + h
(A8)

This completes Proof 2.

Proof 3. In Equation (23), we use the perturbation input obtained in Equation (25) to obtain

∆ẇ = A∆w + B[G∗e C + G∗z T)∆w + (G∗z − G∗e QΘHD)e + h]

= [A + B(G∗e C + G∗z T)]∆w + B(G∗z − G∗e QΘHD)e + Bh
(A9)

This completes the proof.

Proof 4. Because the estimation error is e = ẑ − z ≡ ẑ − Tw, the error dynamic can be expressed
as follows:

ė = ˙̂z− Tẇ

= (L21y + L22ẑ + L23u)− T(Aw + Bu) (substituting ˙̂z and ẇ from Equations (15) and (17))

= L21Cw + L22(Tw + e) + L23u− TAw− TBu (∵ y = Cw and ẑ = Tw + e)

= (L21C + L22T − TA)w + (L23 − TB)u + L22e

(A10)

Now, we choose L23 = TB and T 3 TA − L22T = L21C, which is uniquely solvable when
σ(A) ∩ σ(L22C) = φ, with σ being the corresponding eigenvalue and L22 being appropriately stable.
This results in

ė = L22e (A11)

This completes the proof.

Proof of Lemma 1. We take values of C̃ and B̃; upon multiplication, this gives the desired result of
C̃B̃ = CB.
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Proof of Lemma 2. The transfer function of a pseudo-open-loop system of Equation (29) can be
expressed as follows:

P̃(s) = C̃(sI − Ã)−1B̃

= [C −QΘHD]

(
sI −

[
A + BG∗e T BG∗z

0 L22

])−1 [
B
0

]

= [C −QΘHD]

[
[sI − (A + BG∗z T1)]

−1 W12

0 (sI − F)−1

] [
B
0

]
= C[sI − (A + BG∗z T1)]

−1B

(A12)

This completes the proof.

Proof of Lemma 3. Assuming a square transfer function with the output matrix having a dimension
of M, the transmission zeros of the system (A, B, C) can be expressed as follows:

λ∗ 3rank

[
A− λ∗ I B

C 0

]
< N + M

⇒rank

[
A− λ∗ I B

C 0

]
= rank

([
A− λ∗ I B

C 0

] [
I 0

G∗e I

])

= rank

[
A + BG∗ − λ∗ I B

C 0

] (A13)

Therefore, the transmission zeros of the state pseudo-open-loop system obtained from the adaptive
state feedback (A + BG∗, B, C) are the same as that of (A, B, C) and (A, B, C) non-minimum-phase⇒
(A + BG∗, B, C) non-minimum-phase.
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