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Abstract: The solo duck wave-energy converter (WEC) captures power in a point absorber manner,
hence it exhibits high power-capture efficiency within only a narrow bandwidth. Passive control
is characterized by a unidirectional power flow, and thus its engineering implementation can be
simplified. In this paper, two typical passive control strategies, latching and declutching control,
are applied to the solo duck WEC to improve its power-capture performance at wave periods larger
and smaller than the natural period of the WEC, respectively. Special attention is paid to the peak
value of instantaneous WEC performance parameters, including the peak motion excursion, the peak
power take-off (PTO) moment, and the peak-to-average power ratio, when the captured power is
maximized. Performance differences between the linear and coulomb loads are also investigated.
Results show that both latching and declutching control can effectively improve captured power,
but also incidentally increase the peak motion excursion and peak-to-average power ratio. When
under latching and declutching control, the coulomb load leads to the same maximum relative
capture width and peak motion excursion as the linear load, but presents smaller peak PTO moment
and peak-to-average power ratio than the linear load, hence making the coulomb load the better
choice for the solo duck WEC.

Keywords: passive control; latching control; declutching control; solo duck; load types

1. Introduction

Environmentally friendly power supply requires clean and renewable energy resources, one of
which is the wave energy. Despite the fact that the wave-energy converter (WEC) was first patented
as early as 1799 [1], wave-energy conversion technology did not enter spotlight until 1970s, when it
was proposed as a promising alternative to traditional fossil energy [2]. The Edinburgh duck WEC
was proposed at this time [3] and is renowned for its high efficiency, which is confirmed to exceed
90% in 2D regular wave tests [4]. In addition to the WEC farm topology whereby duck members
are closely spaced and working as terminators, the topology whereby duck members are spaced at a
distance and working as point absorbers has also received wide attention [5–10]. In the latter case, each
duck member is called a ‘solo duck’. The high power-capture efficiency of the solo duck WEC was
confirmed by the relative capture width exceeding 1.6 and 2, as observed by Skyner [5] and Pizer [6],
respectively. An innovative solo duck with a circular cross section but off-centered pitch axis was
proposed by Lucas et al. [7] and Cruz et al. [8] to simplify the manufacturing process. The separation
distance and layout of the solo duck WECs in an array was optimized by Wu et al. [9].
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It is well known that a point absorber exhibits high power-capture efficiency within only a narrow
bandwidth [11]. Hence, at wave periods apart from the natural period, the power-capture ability of a
point absorber may be significantly reduced. To tackle this challenge, both active control and passive
control [12,13] have been proposed, and they are distinguished by whether or not the power take-off
(PTO) system should inject power to the primary wave-energy absorber [14]. Since passive control
presents a unidirectional power flow, its engineering implementation can be simplified. Among the
various passive control strategies that have been proposed, latching and declutching control are most
frequently employed and are effective for wave periods larger and smaller than the natural period of the
WEC, respectively [15]. Latching control was proposed by Budal and Falnes [16], and is implemented
by holding the oscillating body in a fixed position when its velocity vanishes and releasing it after
an appropriate time duration so that the velocity is in phase with the excitation force in order to
capture the most power. Declutching control, also denoted as ‘unlatching’, was originally proposed
by Salter [17] and works as the dual of latching control by alternatively switching the PTO system
on and off. In [18–20], a significant performance enhancement due to latching control was observed.
Babarit [21] applied declutching control to the SEAREV WEC and showed that the declutching control
could at least lead to power-capture performance equivalent to that of pseudo-continuous control.
Feng [15] revealed that latching and declutching control can be combined to increase power-capture
performance by appropriately switching within three modes: power generation, declutching with
no power generation, and latching with zero velocity. In addition to improving the power-capture
performance of WECs, latching and declutching can also help to control WECs from the engineering
operation point of view. For example, when maintenance is required, oscillating bodies can be locked by
the latching mechanism to allow for the access of staff. Also, in extreme waves, oscillating bodies may
be declutched from the PTO system by the declutching mechanism so that the PTO system is protected,
so that then the compliance of oscillating bodies to waves may reduce the hydrodynamic impact forces.

Since the solo duck WEC captures power in a point absorber manner, it should be properly
controlled to enhance power-capture performance apart from the natural period. Latching and
declutching control seem to be good options due to their engineering simplicity. Therefore, the first
question that the paper aims to answer is: to what extent can latching and declutching control benefit
the solo duck WEC? The answer may be of significance when estimating if it is cost effective to
implement latching and declutching control to a solo duck WEC. Furthermore, nowadays two kinds
of PTO system are mainly adopted in WECs: either a full-electrical linear generator system used in
the Seabased AB WEC [22], the Archimedes Wave Swing [23], etc.; or the hydraulic system used in
the CETO WEC [24], Wavestar [25], etc. Usually, the linear generator system is modeled as the linear
load (LL) [26,27], while the hydraulic system is modeled as the coulomb load (CL) [18,26] supposing
that the accumulators in the hydraulic circuit are large enough. Obviously, different types of load will
result in a different control effect. Hence, the second question that the paper aims to answer is: which
type of load is better for the solo duck WEC under latching and declutching control? The answer will
guide the selection of load types when considering applying the latching and declutching control to a
solo duck WEC. In Section 2, the geometry of the solo duck to be studied is introduced. In Section 3,
the equation of motion of the duck WEC is established in a time domain. In Section 4, the control
effects that resulted from latching and declutching control and differences between the linear and
coulomb loads are presented.

2. Geometry of the Duck

The cross section of the solo duck is shown in Figure 1 [5,9,10]. The dimension of the solo duck
prototype studied in this paper is the same as the one studied by Pizer [6,28], and is 100:1 scaled
from [5]. Therefore, we set as follows: the radius of the stern part is 5 m; the depth of pitch axis is 5.5 m;
the width of the duck is W = 29 m; and the water depth is h = 60 m. According to [9], the power-capture
performance of the solo duck WEC is sensitive to the wave direction, which requires that the solo
duck WEC should align the pitch axis perpendicular to the wave-propagating direction and it should



Energies 2017, 10, 2070 3 of 18

be located at positions of small wave direction variation. In this paper, to simplify the analysis, it is
assumed that the duck is in head seas. Also, the pitch axis of the solo duck can be treated as fixed
provided that the pre-tension margin and stiffness of the tension legs of the WEC taut-mooring system,
which is shown in [9], are sufficiently large.
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3. Governing Equation

In this paper, it is assumed that the fluid is incompressible, inviscid, the flow is irrotational with
small wave steepness, and the excursion of the duck is small. Then, the motion of the duck can be
described in the time domain by the Cummins’ equation [29] as

(I + A∞)
..
θ(t) +

∫ t

−∞
K(t− τ)

.
θ(τ)dτ + Cθ(t) = Me(t) + Mpto(t), (1)

where I is the dry moment of inertia of the duck WEC; A∞ is the added moment of inertia at infinite
frequency; K(t) is the retardation function regarding the radiation moment; C is the hydrostatic
restoring spring coefficient; Me is the excitation moment; Mpto is the reacting moment from the PTO
system; θ is the angular displacement of the duck; and t and τ are the flow time. According to
the experimental setup of Skyner [5], we have I = 6.36 × 107 kg·m2 and C = 1.165 × 108 N·m/rad.
In regular waves, the excitation moment can be written as

Me(t) = Re(Awave M̂eejwt), (2)

where Awave is the wave amplitude; M̂e is the complex amplitude of the excitation moment per wave
amplitude; and w is the angular frequency of the incident wave. Since we confine our study to the
linear wave region, only Awave = 1 m is considered in this paper. The retardation function K(t) satisfies
the following relation [30]

K(t) =
2
π

∫ ∞

0
B(w) cos(wt)dt, (3)

where B is the radiation-damping coefficient of the solo duck. The Fourier transformation of the
retardation function satisfies

K(w) = B(w) + jw[A(w)− A∞], (4)

where A is the added moment of inertia of the solo duck. The hydrodynamic coefficients are calculated
using the ANSYS AQWA (ANSYS, Inc., Canonsburg, PA, USA) [31] software and they are validated
in [9,10] by comparison with experimental results measured in [5].

Due to the angular velocity be involved in the convolution term, solving Equation (1) by directly
integrating the convolution is time-consuming. In fact, the convolution term is the output of a linear
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system, whose frequency-response function (FRF) and impulse-response function (IRF) are K(w)
and K(t), respectively. According to [32], by replacing the convolution term with the output of an
approximated linear system, which is described by a state-space model, Equation (1) will be simplified
to a first order ordinary differential equation and will be solved more rapidly. The approximated linear
system is defined in the state-space formulation as

.
z(t) = Az(t) + B

.
θ(t),

p(t) = Cz(t) + D
.
θ(t),

(5)

where z is the state vector describing the internal state of the linear system; p is the output of the
linear system; and A, B, C and D are the corresponding coefficient matrix and vectors that are to be
determined by the system identification process so that the FRF and IRF of the approximated linear
system approach K(w) and K(t), respectively. By adopting the ‘regression in the frequency domain’
method introduced in [32], we find that the convolution term can be approximated by a 9th order linear
system. The coefficients in Equation (5) are presented in Appendix A. Figure 2 shows the comparison of
FRF and IRF between the original and approximated linear system. It is found that both the FRF and
IRF of the approximated linear system agree well with that of the original linear system, indicating that
the linear system described by the state-space model is very close to that described by the convolution.
Small deviation is detected around the wave frequency of 3.9 rad/s for the FRF as a result of the low
order of the approximated linear system. The deviation of the IRF at a very low time range is also seen,
resulting from the ‘regression in the frequency domain’ method used in the system identification process.
This deviation is also observed in [32], and is found to make no difference to the solution of Equation (1).
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Based on the approximated linear system described by the state-space model as shown in
Equation (5), Equation (1) can be re-arranged as a first order ordinary differential equation

.
Z = UZ + V, (6)

where

Z =

 θ
.
θ

z

, U =

 0 1 0
− C

I+A∞
0 − C

I+A∞

0 B A

, V =

 0
Me+Mpto

I+A∞

0

. (7)

Equation (6) can be solved by the 4th order Runge-Kutta method with a fixed time step. In this
paper, the time-step convergence tests are performed for each PTO moment Mpto setup and wave
frequency w. The larger the PTO moment and the wave frequency are set, the smaller the time step is
tuned. Finally, the time step ranges from 0.0002 s to 0.02 s to keep the simulation result independent of
the time-step size. To estimate the accuracy of the solution of Equation (1), we show in Figure 3 the
duck WEC’s intrinsic mechanical impedance, calculated in both the frequency and time domain. In the
frequency domain, the intrinsic mechanical impedance is calculated according to [33] as

Zi(w) = B(w) + j
{
[I + A(w)]w− C

w

}
. (8)

In the time domain, the intrinsic mechanical impedance can be calculated in regular waves by
removing Mpto from Equation (1) as

Zi(w) =
Awave M̂e

.̂
θsteady

, (9)

where
.̂
θsteady is the complex amplitude of the WEC angular velocity when it evolves to the steady

state in the time domain. It can be seen that the intrinsic mechanical impedance predicted in the time
domain agrees well with that directly calculated in the frequency domain. Deviations of the FRF
around wave frequency of 3.9 rad/s and the IRF at very low time range cause little influence on the
simulation result, which agrees with the observation in [32]. The above analysis confirms that when the
convolution term in Equation (1) is replaced by the output of a state-space model of an approximated
linear system, the dynamic of the solo duck WEC can be accurately predicted in the time domain.
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4. Results and Discussion

In this section, performance of the solo duck WEC without latching and declutching control is
first studied as a reference to measure the control effect due to latching and declutching control in
subsequent sections.

4.1. Performance without Latching and Declutching Control

When no latching and declutching control is applied, the power-capture ability of the duck WEC
can be maximized by simply tuning the PTO moment setup to an appropriate extent, and this is called
‘resistive control’ in this paper. For the linear load, the PTO moment is defined as

Mpto(t) = −Bp
.
θ(t), (10)

where Bp is the damping coefficient of the PTO system and is called the ‘PTO damping coefficient’ in
this paper. Then, the frequency-domain complex amplitude of the duck angular velocity is obtained as

.̂
θ =

Awave M̂e(w)

Bp + B(w) + jw
[

I + A(w)− C
w2

] . (11)

According to [33], the average captured power of the duck WEC follows

P =
1
2

Bp
.̂
θ

.̂
θ
∗
, (12)

where * represents the complex conjugate. To simplify the expressions, we replace the imaginary part
of the denominator of Equation (11) by

X = w
[

I + A(w)− C
w2

]
. (13)

Inserting Equation (11) to Equation (12) gives the averaged captured power of the duck WEC

P =
1
2

Bp
A2

wave M̂e(w)M̂e(w)∗

[Bp + B(w)]2 + X2
, (14)

which will be maximized to be

Pmax =
1
4

A2
wave M̂e(w)M̂e(w)∗

B(w) +
√

B(w)2 + X2
, (15)

when Bp satisfies

Bp =

√
B(w)2 + X2. (16)

The power-capture efficiency of the duck WEC can be measured by the Relative Capture Width
(RCW), which is defined as

RCW =
P

PinW
, (17)

where Pin is the incident wave power of the unit wave crest. In regular waves, it is [34]

Pin =
ρgA2

wavew
4k

[
1 +

2kh
sinh(2kh)

]
, (18)

where ρ is the water density; g is the gravity acceleration; and k is the wave number.
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For the coulomb load, the PTO moment is defined as

Mpto(t) =

{
−sign

[ .
θ(t)

]
Mp,

.
θ(t) 6= 0,

Cz(t) + Cθ(t)−Me(t),
.
θ(t) = 0,

(19)

where Mp is the moment caused by the hydraulic cylinder in the PTO hydraulic circuit and is called the
‘PTO cylinder moment’ in this paper. To start moving the duck WEC from a still position, the resultant
hydrodynamic moment, including the excitation moment, radiation moment and hydrostatic restoring
moment, should overcome the PTO cylinder moment Mp. The averaged captured power of the duck
WEC can be calculated as

P =
1
T

∫ t+T

t
Mpto(t)

.
θ(t)dt, (20)

where T denotes the wave period. Because of the non-linear behavior of the PTO moment for the
coulomb load, the average captured power could not be solved analytically as for the linear load. Here,
we numerically find the relative capture width of the duck WEC as a function of the PTO cylinder
moment at several typical wave periods, as shown in Figure 4. It is found that, for a given wave period,
the relative capture width is a unimodal function of the PTO cylinder moment. Therefore, the simple
derivative-free golden-section search algorithm [35] is used to find the maximum relative capture
width at different wave periods.
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Figure 4. Relative capture width of the duck WEC as a function of the PTO cylinder moment at several
typical wave periods for the coulomb load.

In addition to the maximum relative capture width, the peak value of instantaneous performance
parameters are paid special attention to in this paper. The peak motion excursion is of significance
when motion constraints are considered, as studied in [36,37]. The peak PTO moment is a key factor
for determining the physical size of the PTO structure so that the peak moment can be effectively
resisted. The peak-to-average power ratio defines the volume of the energy-storage system that delivers
smoothed power to the grid [38,39]. Also, a large peak-to-average power ratio may result in the peak
power capacity of the devices greatly exceeding the time-averaged capacity, thus causing low efficiency
of the system. Figure 5 shows the performance of the solo duck WEC as a function of the wave period
for different load types when the relative captured width is maximized under resistive control, where
RCWmax is the maximum relative capture width, θpeak is the peak motion excursion, Mptopeak is the peak
PTO moment, and PAR is the Peak-to-Average power Ratio. By equating X in Equation (13) to zero, we
find that the natural period of the solo duck WEC T0 in pitch degree-of-freedom is 6.3 s. This explains
the large maximum relative capture width and peak motion excursion within the wave periods from
4 s to 8 s. For wave periods other than from the natural period, the power-capture performance reduces
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significantly. The maximum relative capture width larger than one confirms the point absorber effect of
the solo duck WEC. Hence, the accompanied narrow bandwidth for high power-capture performance
is as expected [11]. One interesting finding is that, despite different load types, the maximum relative
capture width and peak motion excursion is quite similar, except at wave periods from 8 s to 11 s for
the maximum relative capture width and larger than 12 s for the peak motion excursion, where small
deviations are observed. On the other hand, the peak PTO moment and peak-to-average power ratio
show relatively large differences. The peak PTO moment for the coulomb load is smaller than that
for the linear load, especially at small wave periods. While the peak-to-average power ratio for the
coulomb load increases monotonously with the wave period, it keeps at 2 for the linear load as a result
of the sinusoidal variation characteristic of the pitch angular velocity.

Energies 2017, 10, 2070 8 of 18 

 

is that, despite different load types, the maximum relative capture width and peak motion excursion is 
quite similar, except at wave periods from 8 s to 11 s for the maximum relative capture width and 
larger than 12 s for the peak motion excursion, where small deviations are observed. On the other 
hand, the peak PTO moment and peak-to-average power ratio show relatively large differences.  
The peak PTO moment for the coulomb load is smaller than that for the linear load, especially at 
small wave periods. While the peak-to-average power ratio for the coulomb load increases 
monotonously with the wave period, it keeps at 2 for the linear load as a result of the sinusoidal 
variation characteristic of the pitch angular velocity. 

(a) (b)

(c) (d)

Figure 5. Performance of the solo duck WEC as a function of the wave period for different load types 
when relative capture width is maximized under resistive control: (a) maximum relative capture 
width; (b) peak motion excursion; (c) peak power take-off (PTO) moment; (d) peak-to-average power 
ratio. 

4.2. Latching Control at T > T0 

In this section, latching control is applied to the solo duck WEC for both linear and coulomb 
loads at wave periods larger than the natural period. Figure 6 shows the relative capture width as a 
function of the PTO moment setup, and latching duration for different load types at T = 10 s, where 
tl is the latching duration, during which the WEC is held fixed. Here, ‘PTO moment setup’ is a generic 
term denoting the PTO damping coefficient for the linear load and the PTO cylinder moment for the 
coulomb load. Although latching duration can range from zero to half a wave period, i.e.,5 s for  
T = 10 s, only 0–4 s is presented here since higher latching duration causes irregular behavior of the 
pitch angular velocity and low captured power, thus is meaningless in the following investigation. 
For both the linear and coulomb loads, we find that the relative capture width is a unimodal function 
near the optimal combination of the PTO moment setup and latching duration that maximizes the 
relative capture width. Therefore, the maximum relative capture width can be found simply by 
gradually contracting the variable ranges that contain the solution. Actually, this method uses the 
same principle as the golden-section search algorithm employed above, but is extended to two 

5 10 15 20
0

0.25

0.5

0.75

1

1.25

1.5

T [s]

RC
W

m
ax

 

 

Resistive control, LL
Resistive control, CL

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

T [s]

 pe
ak

 [r
ad

]

5 10 15 20
0

2

4

6

8

10

12 x 10
6

T [s]

M
pt

op
ea

k [N
.m

]

5 10 15 20
0

1

2

3

4

5

6

T [s]

PA
R

Figure 5. Performance of the solo duck WEC as a function of the wave period for different load types
when relative capture width is maximized under resistive control: (a) maximum relative capture width;
(b) peak motion excursion; (c) peak power take-off (PTO) moment; (d) peak-to-average power ratio.

4.2. Latching Control at T > T0

In this section, latching control is applied to the solo duck WEC for both linear and coulomb
loads at wave periods larger than the natural period. Figure 6 shows the relative capture width as a
function of the PTO moment setup, and latching duration for different load types at T = 10 s, where tl
is the latching duration, during which the WEC is held fixed. Here, ‘PTO moment setup’ is a generic
term denoting the PTO damping coefficient for the linear load and the PTO cylinder moment for the
coulomb load. Although latching duration can range from zero to half a wave period, i.e., 5 s for
T = 10 s, only 0–4 s is presented here since higher latching duration causes irregular behavior of the
pitch angular velocity and low captured power, thus is meaningless in the following investigation.
For both the linear and coulomb loads, we find that the relative capture width is a unimodal function
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near the optimal combination of the PTO moment setup and latching duration that maximizes the
relative capture width. Therefore, the maximum relative capture width can be found simply by
gradually contracting the variable ranges that contain the solution. Actually, this method uses the same
principle as the golden-section search algorithm employed above, but is extended to two dimensions.
From Figure 6, we find that high relative capture width is achieved at a quite narrow range of latching
duration of around 2 s, while at a wide range of the PTO moment setup. That means the latching
duration should be assigned more accurately than the PTO moment setup to benefit from latching
control. Another obvious finding is that, for the coulomb load, when the latching duration is small
it almost causes no change of the relative capture width for a given PTO cylinder moment. Actually,
this is due to the latching duration being so small that the resultant hydrodynamic moment has not
yet been developed to the level that can drive the WEC from still to motion. The duck keeps fixed
even after the latching duration until the resultant hydrodynamic moment is sufficiently large, thus
variation of the latching duration does not influence the captured power.
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Figure 6. Relative capture width as a function of the PTO moment setup and latching duration at
T = 10 s: (a) for the linear load; (b) for the coulomb load.

Using the method introduced in the above paragraph, we find that the maximum relative capture
width is achieved at tl = 2.02 s, Bp = 2.08 × 107 N·m·s/rad for the linear load and at tl = 2.10 s,
Mp = 6.22 × 106 N·m for the coulomb load when T = 10 s. The time history of angular velocity along
with the excitation moment when the maximum relative capture width is achieved for both the linear
load and coulomb loads is shown in Figure 7. It can be seen that the duck is locked for some time
after the angular velocity crosses the zero point. One interesting finding is that the angular velocity
profiles for the two load types are quite close to each other, and they are both in good phase with
the excitation moment. Common sense when it comes to the latching control field suggests the best
unlatching instance should advance the time when the excitation force peaks around T0/4 [18], so that
peaks of the WEC velocity and the excitation force coincide with each other to capture the maximum
power. From Figure 7, we find that the two peaks are closely, but not exactly, matched. This may be
explained by the asymmetrical shape of the angular velocity profile with respect to the time when
the angular velocity peaks as a result of the asymmetrical total moment applied to the duck in the
half-motion period. Since the profile of the excitation moment is symmetrical while that of the angular
velocity is asymmetrical, it makes sense that time difference exists between the two peaks so that the
maximum power can be captured.



Energies 2017, 10, 2070 10 of 18
Energies 2017, 10, 2070 10 of 18 

 

 
Figure 7. Time history of the angular velocity and excitation moment when the maximum relative 
capture width is achieved for both the linear load and coulomb loads at T = 10 s. 

Figure 8 shows the optimal latching duration tl and optimal unlatching lead time Δtl, which is 
defined as the time difference between when the WEC is unlatched and when the excitation moment 
peaks, as functions of the wave period for different load types. It can be seen that the optimal 
unlatching lead time is well distributed around T0/4, which is plotted as the horizontal black solid 
line. This again confirms the finding in previous literature [18] that the unlatching instance should 
advance the time when the excitation peaks at around T0/4 in order to capture the maximum power. 
Although we find from Figure 7 that the angular velocity profile is asymmetrical, it only skews a little 
from the sinus curve. This characteristic provides a rough way to estimate the optimal latching 
duration as T/2–T0/2, which is also plotted in Figure 8 as the black dash line. We find that the optimal 
latching duration fits this asymptotical line very well. When comparing the difference between the 
linear and coulomb loads, we find that optimal latching duration and optimal unlatching lead time 
for the linear load approach the ideal value slightly closer than the coulomb load. 

 
Figure 8. Optimal latching duration tl and optimal unlatching lead time Δtl as functions of the wave 
period for different load types. The black solid and dash lines are the asymptotical lines of tl and Δtl, 
respectively. 

Figure 9 shows the duck WEC performance comparison between latching and resistive control 
when relative capture width is maximized for different load types. It can be clearly seen that latching 
control can effectively increase the power-capture ability of the duck WEC at wave periods larger 

155 160 165 170 175
-0.6

-0.4
-0.2

0
0.2
0.4

0.6
0.8

1

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

t [s]

 

 

155 160 165 170 175
-1.5

-1
-0.5

0
0.5
1

1.5
2
2.5x 10

7

Ex
ci

ta
tio

n 
m

om
en

t [
N

.m
]

Angular velocity, LL
Angular velocity, CL
Excitation moment

8 10 12 14 16 18 20
0

2

4

6

8

T [s]

Ti
m

e 
[s

]

 

 

tl, LL

tl, CL

tl, LL

tl, CL

Figure 7. Time history of the angular velocity and excitation moment when the maximum relative
capture width is achieved for both the linear load and coulomb loads at T = 10 s.

Figure 8 shows the optimal latching duration tl and optimal unlatching lead time ∆tl, which is
defined as the time difference between when the WEC is unlatched and when the excitation moment
peaks, as functions of the wave period for different load types. It can be seen that the optimal unlatching
lead time is well distributed around T0/4, which is plotted as the horizontal black solid line. This again
confirms the finding in previous literature [18] that the unlatching instance should advance the time
when the excitation peaks at around T0/4 in order to capture the maximum power. Although we find
from Figure 7 that the angular velocity profile is asymmetrical, it only skews a little from the sinus
curve. This characteristic provides a rough way to estimate the optimal latching duration as T/2–T0/2,
which is also plotted in Figure 8 as the black dash line. We find that the optimal latching duration
fits this asymptotical line very well. When comparing the difference between the linear and coulomb
loads, we find that optimal latching duration and optimal unlatching lead time for the linear load
approach the ideal value slightly closer than the coulomb load.
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Figure 9 shows the duck WEC performance comparison between latching and resistive control
when relative capture width is maximized for different load types. It can be clearly seen that latching
control can effectively increase the power-capture ability of the duck WEC at wave periods larger
than the natural period. Table 1 lists the magnification factor of the WEC performance parameters
under latching control compared to that under resistive control averaged over the wave period set
Twl = {8, 8.5, 9, ..., 20}, in which the performance change due to latching control is obvious. The captured
power under latching control is averaged to be 2.47 and 2.19 times that under resistive control for
the linear and coulomb loads, respectively. The peak motion excursion also increases due to latching
control, showing an averaged magnification factor of 2.64 and 2.90 for the linear and coulomb loads,
respectively. This agrees with the observation in [19] that increased power capture by latching control
is accompanied by magnification of the motion amplitude. Although it is found in Section 4.1 that
small deviations of the maximum relative capture width and peak motion excursion exist between
different load types under resistive control, these deviations almost disappear when latching control is
applied. This indicates that latching control leads to the same power-capture ability of the solo duck
WEC for both load types. Also, when motion constraints are considered, the two load types show
no advantage over each other. From Figure 9c, we find that latching control can lower the peak PTO
moment for most of the wave periods, and it is especially prominent for the coulomb load. This may
be intuitively explained by the fact that, since the duck finishes one pitch stroke only in a half-natural
period, the WEC works at a pseudo-resonant state, resulting in X being small and even equal to zero.
From Equation (16), we find that the optimal Bp will be reduced. Because the peak angular velocity
increases due to latching control, the decrease of peak PTO moment for the linear load, which is the
multiplication of Bp and peak angular velocity, may not be as remarkable as that for the coulomb load.
When latching control is employed, the peak PTO moment for the coulomb load is only 0.74 times that
for the linear load when averaged over Twl. This suggests that the physical size of the PTO structure for
the coulomb load may be designed smaller in order to resist smaller peak moment. From Figure 9d, it is
found that latching control causes an increase of the peak-to-average power ratio, which agrees with the
finding in [40]. This is due to the fact that the power-capture process is focused within a time interval
that is smaller than that when resistive control is applied. To keep the same averaged captured power,
the peak instantaneous captured power should be increased within this short time interval, hence the
peak-to-average power ratio is increased. When latching control is employed, the peak-to-average
power ratio for the coulomb load is only 0.78 times that for the linear load, indicating that the volume
of the energy storage system for the coulomb load can be designed smaller than that for the linear load.
To summarize from the above analysis, we find that, under latching control, the coulomb load may be
the better choice since it reduced the peak PTO moment and peak-to-average power ratio, but in the
meantime shows the same captured power and peak motion excursion as the linear load.
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Figure 9. Duck WEC performance comparison between latching and resistive control when relative
capture width is maximized for different load types: (a) maximum relative capture width; (b) peak
motion excursion; (c) peak PTO moment; (d) peak-to-average power ratio.

Table 1. Magnification factor of the WEC performance under latching control compared to that under
resistive control, averaged over the wave period set Twl = {8, 8.5, 9, . . . , 20}.

WEC Performance Parameters Linear Load Coulomb Load

RCWLatching control
max /RCWResistive control

max 2.47 2.19

θ
Latching control
peak /θResistive control

peak 2.64 2.90

MLatching control
ptopeak /MResistive control

ptopeak 0.96 0.75

PARLatching control/PARResistive control 2.50 1.41

4.3. Declutching Control at T < T0

When the wave period is smaller than the natural period of the duck WEC, declutching control
could be employed to improve its power-capture performance. In [21], the PTO is switched off when
the angular velocity vanishes, while it is switched on at an appropriate moment. However, in the
calculation in this paper, we find that this control strategy is not optimal for the solo duck WEC to
capture the maximum power since the optimal declutching instance does not always coincide with the
angular velocity zero-crossing point. In fact, the declutching control process can be explicitly defined
by two parameters: the time that the PTO is reconnected to the duck, which we call the ’clutching start
time’; and the time duration that the PTO is being connected to the duck, which we call the ’clutching
duration’. Since the time history of the excitation moment is provided in advance in regular waves,
the clutching start time is set with respect to the zero-crossing point of the excitation moment. In the
calculation in this section, we find that, under declutching control, the power capture characteristic of
the duck WEC for the linear load is more or less the same as that for the coulomb load, which was also
observed for latching control. Hence, only the behavior for the coulomb load is described in detail in
the first part of this section to avoid repetition. Figure 10 shows the relative capture width as a function
of the clutching start time and clutching duration for the coulomb load at Mp = 7 × 106 N·m and
T = 3 s. We find that near the optimal combination of the clutching start time and clutching duration
that maximize the relative capture width, the relative capture width is a unimodal function. Thus,
the maximum relative capture width and corresponding optimal clutching start time and clutching
duration can be found by the method introduced in Section 4.2.
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Figure 10. Relative capture width as a function of the clutching start time and clutching duration for
the coulomb load at Mp = 7 × 106 N·m and T = 3.0 s.

We find from Figure 10 that the optimal clutching start time and clutching duration is 0.86 s
and 0.84 s, respectively. Figure 11 shows the time history of the pitch angular velocity, PTO moment
and excitation moment for the coulomb load at Mp = 7 × 106 N·m and T = 3.0 s when the maximum
relative capture width is achieved under declutching and resistive control, respectively. When under
declutching control, it can be clearly seen that, before the clutching start time, the duck is declutched
from the PTO and speeds up rapidly. Then, within the clutching duration, the PTO is reconnected to the
duck and works at a high-pitch angular velocity. The significant increase of the pitch angular velocity
at the same PTO cylinder moment reveals that declutching control is quite effective at enhancing the
solo duck WEC’s performance.

Energies 2017, 10, 2070 13 of 18 

 

 
Figure 10. Relative capture width as a function of the clutching start time and clutching duration for 
the coulomb load at Mp = 7 × 106 N·m and T = 3.0 s. 

We find from Figure 10 that the optimal clutching start time and clutching duration is 0.86 s and 
0.84 s, respectively. Figure 11 shows the time history of the pitch angular velocity, PTO moment and 
excitation moment for the coulomb load at Mp = 7 × 106 N·m and T = 3.0 s when the maximum relative 
capture width is achieved under declutching and resistive control, respectively. When under 
declutching control, it can be clearly seen that, before the clutching start time, the duck is declutched 
from the PTO and speeds up rapidly. Then, within the clutching duration, the PTO is reconnected to 
the duck and works at a high-pitch angular velocity. The significant increase of the pitch angular 
velocity at the same PTO cylinder moment reveals that declutching control is quite effective at 
enhancing the solo duck WEC’s performance. 

(a) (b)

Figure 11. Time history of the pitch angular velocity, PTO moment and excitation moment for the 
coulomb load at Mp = 7 × 106 N·m and T = 3.0 s when maximum relative capture width is achieved:  
(a) under declutching control; (b) under resistive control. 

Figure 12a shows the optimal clutching start time and clutching duration that maximize the 
relative capture width as functions of the PTO cylinder moment for the coulomb load at T = 3 s. When 
the PTO cylinder moment increases, the optimal clutching start time increases while the optimal 
clutching duration decreases. At small PTO cylinder moments, the optimal clutching duration 
approaches half the wave period, which is equivalent to the case under resistive control, indicating 
that performance improvement due to declutching control is not significant. This is confirmed in the 
low PTO cylinder moment range in Figure 12b, which shows the maximum relative capture width as 
a function of the PTO cylinder moment for the coulomb load. At large PTO cylinder moments, 

0.
12

0.12 0.12
0.12

0.1
2

0.12

0.12
0.12

0.2

0.
2

0.2

0.2
0.2

0.2

0.2

0.2 0.2

0.3

0.3

0.3

0.3

0.3
0.3

0.
40.4

0.4

0.4

0.4

0.5

0.5
0.5

Clutching start time [s]

C
lu

tc
hi

ng
 d

ur
at

io
n 

[s
]

0 0.5 1 1.5
0

0.5

1

1.5

54 56 58 60
-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

 

 

54 56 58 60
-1

-0.5

0

0.5

1

1.5

2x 10
7

M
om

en
t [

N
.m

]

t [s]

Angular velocity
PTO moment
Excitation moment

54 56 58 60
-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

54 56 58 60
-1

-0.5

0

0.5

1

1.5

2x 10
7

M
om

en
t [

N
.m

]

t [s]

Figure 11. Time history of the pitch angular velocity, PTO moment and excitation moment for the
coulomb load at Mp = 7 × 106 N·m and T = 3.0 s when maximum relative capture width is achieved:
(a) under declutching control; (b) under resistive control.

Figure 12a shows the optimal clutching start time and clutching duration that maximize the
relative capture width as functions of the PTO cylinder moment for the coulomb load at T = 3 s. When
the PTO cylinder moment increases, the optimal clutching start time increases while the optimal
clutching duration decreases. At small PTO cylinder moments, the optimal clutching duration
approaches half the wave period, which is equivalent to the case under resistive control, indicating
that performance improvement due to declutching control is not significant. This is confirmed in the
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low PTO cylinder moment range in Figure 12b, which shows the maximum relative capture width
as a function of the PTO cylinder moment for the coulomb load. At large PTO cylinder moments,
declutching control leads to a significant captured power increment. The maximum relative capture
width grows continuously with the PTO cylinder moment, and keeps at almost a fixed value when
exceeding the critical PTO cylinder moment, and this is clearly shown for T = 5 s in Figure 12b.
The critical PTO cylinder moment varies widely with the wave period, e.g., it is around 8 × 107 N·m
at T = 3 s while is around 7 × 106 N·m at T = 5 s. Under declutching control, the maximum relative
capture width at a given wave period can be found at the critical PTO cylinder moment. However,
it should be noted that, in reality, the critical PTO cylinder moment at small wave periods is so large
that the investment may not bring equivalent payback if the maximum relative capture width is
required. Take T = 3 s for example, the maximum relative capture width at Mp = 8 × 107 N·m is only
1.24 times that at Mp = 1 × 107 N·m but with an 8 times larger PTO cylinder moment. This makes
it unreasonable to apply a PTO cylinder moment of the critical level so that the maximum power
is captured. Therefore, in this paper we limit the PTO moment setup within 1 × 107 N·m for Mp

and 2 × 108 N·m·s/rad for Bp so that the PTO system is kept cost effective.
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Figure 12. (a) Optimal clutching start time and clutching duration that maximize the relative capture
width as functions of the PTO cylinder moment for the coulomb load at T = 3 s; (b) the maximum
relative capture width as a function of the PTO cylinder moment for the coulomb load under different
control methods.

Figure 13 shows the duck WEC performance comparison between declutching and resistive
and control when the relative capture width is maximized for different load types. Table 2 lists the
magnification factor of the duck WEC performance under declutching control compared to that under
resistive control, averaged over the wave period set Twd = {3, 3.5, 4, 4.5}, in which the performance
change due to declutching control is obvious. Here, we should remind the reader that the maximum
relative capture width at a given wave period is the maximum of the maximum relative capture width
at different PTO moment setups. We find that declutching control leads to more or less the same
control effect as latching control. Both the maximum relative capture width and peak motion excursion
are effectively increased when declutching control is applied, and their deviations between different
load types disappear except at T = 3 s and 3.5 s, where the WEC performance improvement is limited
by constraints on the maximum PTO moment setup. As for latching control, the peak-to-average
power ratio is also increased, due to declutching control, and it is especially prominent for the linear
load. As a result, when declutching control is applied, the average peak-to-average power ratio for
the coulomb load is only 0.45 times that for the linear load. Among the four performance parameters
listed in Table 2, the peak PTO moment is the only one that differs in variation tendency between
declutching and latching control. By contrast with the decreased peak PTO moment caused by latching
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control, declutching control leads to an increment of the peak PTO moment and is especially prominent
for the linear load. When declutching control is applied, the averaged peak PTO moment for the
coulomb load is only 0.49 times that for the linear load. To summarize from above analysis, we find
that, in declutching control, the coulomb load may also be the better choice since it reduced the peak
PTO moment and peak-to-average power ratio, but in the meantime shows the same captured power
and peak motion excursion as the linear load.
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Figure 13. Duck WEC performance comparison between declutching and resistive control when
relative capture width is maximized for different load types: (a) maximum relative capture width;
(b) peak motion excursion; (c) peak PTO moment; (d) peak-to-average power ratio.

Table 2. Magnification factor of the WEC performance under declutching control compared to that
under resistive control, averaged over the wave period set Twd = {3, 3.5, 4, 4.5}.

WEC Performance Parameters Linear Load Coulomb Load

RCWDeclutching control
max /RCWResistive control

max 1.33 1.49

θ
Declutching control
peak /θResistive control

peak 1.32 1.34

MDeclutching control
ptopeak /MResistive control

ptopeak 3.29 2.08

PARDeclutching control/PARResistive control 3.95 2.04

5. Conclusions

In this paper, two typical passive control strategies, latching and declutching control, are applied
to the solo duck WEC to improve its power-capture performance at wave periods larger and smaller
than the natural period of the WEC, respectively. Special attention is paid to the peak value of
instantaneous WEC performance parameters, including the peak motion excursion, peak PTO moment
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and peak-to-average power ratio, when the captured power is maximized. Performance differences
between the linear and coulomb loads are also investigated.

Compared to resistive control, the maximum relative capture width, which is averaged over the
wave periods where performance change is prominent, is increased to 2.47 and 2.19 times larger owing
to latching control for the linear and coulomb loads, respectively, and to 1.33 and 1.49 times larger
owing to declutching control. Incidentally, both the peak motion excursion and peak-to-average power
ratio increase as a result of latching and declutching control. While latching control causes a decrease
of the peak PTO moment, declutching control causes an increase of the peak PTO moment.

When under latching and declutching control, both the linear and coulomb loads present almost
the same maximum relative capture width and peak motion amplitude. This indicates that latching
and declutching control lead to the same power-capture ability of the duck WEC for both the linear and
coulomb loads. Also, when motion constraints are considered, the two load types show no advantage
over each other. The coulomb load shows smaller peak PTO moment and peak-to-average power ratio
than the linear load. This suggests that the physical size of the PTO structure for the coulomb load
may be designed smaller in order to resist smaller PTO moment, and the volume of the energy-storage
system for the coulomb load may also be smaller since fluctuation of the input instantaneous power is
smaller. Therefore, to summarize, we conclude that the coulomb load may be the better choice for the
solo duck WEC under latching and declutching control.
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Appendix A

The coefficient of the state-space model in Equation (5) is obtained by the ‘regression in the
frequency domain’ method as

A =



−3.217
8
0
0
0
0
0
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0
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0
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−0.6889
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−0.4232
0
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0.25

−0.1364
0
0
0
0
0
0
0
0


,

B = [ 16380 0 0 0 0 0 0 0 0 ]
T

,
C = [ 5365 1069 3102 1774 2088 1148 1087 120.8 1.335 ],
D = 0.

(A1)
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