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Abstract: A high penetration level of renewable energy in a power system increases variability and
uncertainty, which can lead to ramping capability shortage. This makes the stable operation of a
power system difficult. However, appropriate management of electric vehicles (EVs) can overcome
such difficulties. In this study, EVs were applied as a flexible ramping product (FRP), and a method
was developed to increase the system ramping capability. When increasing the FRP to the amount
required for the system, the effect on transmission lines cannot be neglected. Thus, the required FRP
considering transmission constraints is calculated separately for each zone to secure deliverability.
To make adjustment possible, the zonal available capacity is calculated by considering the probabilities
of the location and the plugged and charged states of EVs. The applicability of EVs as an FRP resource
is examined, and the results showed that they can be used at a more significant level considering the
transmission constraints.

Keywords: electric vehicles (EVs); flexible ramping capacity; power system operation; variability;
uncertainty; flexibility

1. Introduction

Researchers have long pointed out the problems with power system operation due to increased
renewable energy use. Previous studies have examined the impact of increased renewable energy use
on power systems from diverse perspectives [1,2]. Controlling the output of renewable energy is not
easy, and the controllable range is not broad, even if available. Therefore, power systems experience
variability in the power output of renewable energy resources [3–6]. The predicted output of renewable
resources has higher uncertainty than that of a conventional power generator; this intensifies the
operational challenges of a power system. Therefore, flexibility must be ensured during the planning
and operation of a power system so that it can respond to these risky conditions [7,8]. Otherwise,
events with insufficient ramping capacity of generation would occur frequently [9]. This could lead
to undesired outcomes such as wind curtailment [10]. This risk can reportedly be alleviated using a
flexible ramping product (FRP) [11,12]. An FRP is extremely necessary for enhanced system flexibility
and operational efficiency, particularly for systems with a significant proportion of power generated
from renewable resources [13,14].

The Midcontinent Independent System Operator (MISO) and California Independent System
Operator (CAISO) have established and have been managing a ramp market where FRPs are procured
to prepare for the variability and uncertainty in the net load [15–17]. However, meeting the FRP
requirements of a power system using only conventional generators has limitations. Research has been
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conducted on securing FRPs with alternative resources. Chen et al. [18] and Cui et al. [19] suggested
methods of procuring FRPs through wind power, and Zhang and Kezunovic [20] performed early
research on utilizing electric vehicles (EVs) as FRPs.

The persistent increase in the popularity of EVs is expected to contribute to environmental
friendliness through de-carbonization in the transportation sector and enable EVs to serve as a
resource for providing system flexibility through their charging and discharging interactions with
power systems. The penetration level of renewable energy can be increased when higher system
flexibility is ensured through EVs [21]. Vehicle-to-grid may serve as a storage resource for handling
the intermittency of renewable energy output [22]. Existing research from this perspective has mostly
applied EVs for frequency regulation [23] or providing reserve resources [24,25]. An EV owner can
obtain a significant revenue as a reward for providing regulation reserves to a system operator [26].
However, such services require frequent charging and discharging cycles for a short time, which
may affect the usability of EVs. In contrast, the required charging cycle of EVs for providing FRPs
is typically 5–10 min with considerably less frequent utilization than that for the abovementioned
services. Thus, applying EVs as an FRP resource is a more efficient approach.

Another advantage of applying EVs is that they are relatively unconstrained by the transmission
congestion problem, which can occur in transmission lines connecting different zones. Large-scale
conventional generators and renewable generators are typically far from regions with high power
demand. Thus, the generated power is transmitted through several transmission lines to demand
sites, and this condition is generally considered to be responsible for the transmission congestion
problem. In contrast, utilizing EVs does not aggravate transmission congestion because they are
typically distributed within regions with high load demand. Moreover, the mobility of EVs can
enhance system conditions from the perspective of mitigating transmission congestion and reducing
grid operation costs [27,28]. Adequate utilization of mobility can reduce curtailment for the energy
capacity of renewable power; this can increase the integration of renewable energy [29]. Therefore,
applying EVs as an FRP resource is more advantageous compared to using a conventional generator
when transmission constraints are considered.

Existing research has considered the transmission congestion problem within the process of
energy and ancillary service co-optimization [30,31]. However, research on transmission congestion
that considers FRPs is insufficient. This paper examines the effects of FRPs on transmission constraints
and the applicability of EVs as an FRP resource.

A method of securing FRPs by zone is proposed to consider transmission constraints. In addition,
this paper describes a methodology of stochastically estimating the optimal location and the plugged
and charged states of EVs to utilize them most efficiently and suggests an application of the method
for system operation. Finally, the paper proposes a method of optimizing the operation of a power
system with energy and FRPs using a conventional generator and EVs considering the charging and
discharging characteristics of EVs.

The remainder of this paper is organized as follows: Section 2 describes the methodology of
utilizing EVs as an FRP. The mathematical formulation is shown in Section 3. Case studies are presented
in Section 4. To concentrate on the effect of applying FRP resources, a simulation was conducted
excluding reserve products. Finally, Section 5 concludes the paper and proposes future research topics.

2. Methodology

2.1. Flexible Ramping Product

Power system load fluctuates constantly, and appropriate countering is essential for stable
operation. Thus, operational flexibility is an important factor that must be secured. When the
level of renewable energy penetration in a power system is considerably increased, the net load
becomes more concentrated. The net load refers to the value of non-controllable generation such
as renewable energy that is excluded from the normal load; it is characterized by variability and
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uncertainty. Variability is the change in the net load over time. In a state where the normal load does
not change significantly, the variability in the net load increases with the penetration level of renewable
energy. Uncertainty occurs because the variation of the net load cannot be precisely forecasted; it is
produced by system contingencies or generator outage. Moreover, it increases with the penetration
level of renewable energy. There is a limit to preventing the increase in variability and uncertainty
using only the ramp rate of existing conventional generators. Thus, an FRP is required to ensure the
operational flexibility of a power system.

An FRP is composed of flexible ramping up (FRU) and flexible ramping down (FRD) to
compensate the upward and downward variations in the net load, respectively. The required capacities
for FRU and FRD can be calculated as follows [32]:

FRUsystem,t = max
{
[NetLoadt+s − NetLoadt] + Uncertaintyup,t+s, 0

}
(1)

FRDsystem,t = max
{
[NetLoadt − NetLoadt+s] + Uncertaintydown,t+s, 0

}
(2)

where NetLoadt+s − NetLoadt and NetLoadt − NetLoadt+s refer to the variability in the net load. The
FRP required at t + s is ensured at t, which captures the variability and uncertainty in the net load.
Operational flexibility can be increased by procuring an FRP. FRP requirements are determined by
zones for increased reliability. Such a method has been developed by the MISO and is applied below:

∑
z

FRUz,t ≥ FRUsystem,t (3)

∑
z

FRDz,t ≥ FRDsystem,t (4)

2.2. EV Utilization for FRP

An EV operates by charging and using a battery. Thus, connection with a power system is
essential. An EV plugged in a system is equivalent to a battery with remarkable ramping capability,
and it can be applied to the system for charging and discharging. Sufficient capacity can be secured
through EVs because their use is expected to continue to increase [33]. Thus, EVs are appropriate as
an FRP. To utilize EVs as an FRP, their location and plugged and charged states must be estimated.
A probabilistic approach is proposed to calculate the applicable energy capacity of EVs at a specific time.

2.2.1. EV State Estimation

To utilize EVs as an FRP resource, it is necessary to predict the location and plugged and charged
states. In this study, we calculated the usable capacity of an EV that changes over the interval time of a
dispatch through stochastic estimation of EV states. The available capacity of an EV can be utilized for
charging and discharging from a system and as an FRP resource. This process is presented as follows:
The state of an EV is memoryless; it is determined only by the state of the immediately preceding time
interval and is completely independent from past states. In addition, the EV state changes with time.
The Markov chain is regarded as suitable for reflecting this property and can be used to model state
transitions. Therefore, the Markov chain is applied to consider such states, as shown in Figure 1.

Figure 1 illustrates every state of an EV in a power system using the Markov chain. The power
system consists of three zones and six nodes. First, the states of an EV can be classified as “traveling”
and “plugged”. The EVs in the plugged state can be divided into those in the “fully charged” state
and “partially charged” state. Every state can either be returned to its previous state or be transited to
another state following the transition probability.

The change in each state complies with the following rules: if a traveling EV in one zone moves
to another zone and parks there, it must pass through the traveling state in that zone. For example,
a driver traveling with his EV in Zone A can park his car at a node in Zone C only after the EV passes
through the traveling state in Zone C at least once. Additionally, the EV should pass through the



Energies 2017, 10, 2028 4 of 18

traveling state of the zone every time it moves to other plugging nodes placed within the same zone.
Note that the EV cannot transit from the traveling state to the fully charged state because it uses battery
power while traveling. On the contrary, EVs in the fully charged and partially charged states can
transit directly to the traveling state. A partially charged EV can transit to the following three types of
states: remain unchanged, transit to the traveling state, or transit to the fully charged state. In the first
type, the EV can provide its power to the grid from the partially charged state. The EV remains in this
state until charging is complete. In the second type, the partially charged EV starts to drive. In the last
type, the EV transits to the fully charged state when charging is completed. If an EV in this state is
discharged, it changes to the partially charged state. Otherwise, it can remain fully charged or transit
to the traveling state.Energies 2017, 10, 2028  4 of 18 
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Figure 1. Markov chain for electric vehicle (EV) state estimation.

The location state indicates which zone an EV resides in. The probability of the number of EVs in
each zone is assumed to follow a normal distribution with mean mz and standard deviation σz [34]:

Ez ∼ N
(

mz, σ2
z

)
=

1√
2πσz

e−
(k−mz)2

2σ2 (5)

When a considerable number of vehicles exist, the probability of the number of vehicles traveling
on a road follows the Poisson distribution [35]. The probability that a given number, k, of vehicles are
traveling on a road is given by:

Ptr(k) =
ρk

k!
e−ρ (6)

where ρ is the population parameter value of the Poisson distribution. The term ρ refers to the
average number of traveling EVs, which is calculated by dividing the arrival rate of vehicles into the
traffic system by the reciprocal of the mean travel time. Therefore, (6) represents the probability
that k EVs are traveling when the average number of traveling EVs is ρ. For example, if the
average number of traveling vehicles is 100, then the probability that 90 vehicles are traveling is
Ptr(90) = 10090

90! e−100 ≈ 0.025. The probability that j EVs are parked out of ν EVs is represented by:

Ppa(j) =
∞∫
−∞

ρ(v−j)

(v− j)!
e−ρ · 1√

2πσz
e
− (v−mz)2

2σ2
z dv (7)

In this case, ν − j EVs would be traveling. The probability of this condition is derived using (6).
Equation (7) can be obtained by combining the above two equations.
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Because a system operator can utilize only parked EVs, the applicable capacity of EVs is calculated
using the number of parked EVs. The applicable EV energy capacity differs according to the charged
state of a parked EV. The charged state is divided into the partially charged state (pc) and fully charged
state(fc). The energy distribution probabilities according to each state are given by:

Epc ∼ N
(

mpc, σ2
pc

)
(8)

E f c ∼ N
(

m f c, σ2
f c

)
(9)

The distribution of charged energy for the EVs is assumed to follow a normal distribution.
With this distribution, the mean value of the fully charged state (mfc) is the same as the chargeable
maximum capacity of an EV battery with a standard deviation (σfc) of close to zero. The plugged EV
energy distribution (Ppl) is calculated by combining the probabilities of the partially charged state (Ppc)
and fully charged state (Pfc) and the charged energy distribution of each state in (8) and (9). This is
formulated as follows:

Epl ∼ N
(

mpl , σ2
pl

)
(10)

mpl =
Ppc

Ppc + Pf c
·mpc +

Pf c

Ppc + Pf c
·m f c (11)

σ2
pl =

(
Ppc

Ppc + Pf c

)2

· σ2
pc +

(
Pf c

Ppc + Pf c

)2

· σ2
f c (12)

2.2.2. EV Available Energy and Power Estimation

The energy gained through the EVs in the system is estimated as follows: First, the cumulative
energy distribution function of the plugged EV fleet is calculated by combining the parked probability
of j EVs out of ν EVs with the distribution probability of energy:

KE(g) =
g∫
−∞

∑
j=1

(
∞∫
−∞

ρ(v−j)

(v−j)! · e
−ρ · 1√

2πσz
· e
− (v−mz)2

2σ2
z dv

)
· 1

j
√

2πσpl
· e
−

( u
j −σpl )

2

2σ2
pl du

=
g∫
−∞

∞∫
−∞

∑
j=1

ρ(v−j)

(v−j)! ·
1

j2πσzσpl
· e
−(ρ+ (v−mz)2

2σ2
z

+
( u

j −σpl )
2

2σ2
pl

)

dvdu

(13)

The energy capacity that can be discharged/charged through the EV fleet is calculated as follows:

EVEdis = K−1
E (α)− γ× C f leet

total ×
v− ρ

v
− q× ρ (14)

EVEcha = C f leet
total − K−1

E (β) (15)

For the first term of (14), the expected level of energy that can be secured in the EV fleet through
α is determined. KE(g) = α Indicates that the EV fleet can ensure the energy capacity g at probability
α. In other words, it implies that the probability of securing more energy than g is 1 − α. Therefore,
securable expected capacity g decreases as the expected level increases owing to a smaller value of
α. The second and third terms of (14) consider the minimal amount of remaining energy. γ is the
depletion limit, and q is a parameter that indicates the average energy required for traveling over one
interval. The chargeable amount of an EV can be deduced by excluding the currently charged energy
from the total energy capacity of the EV fleet.

The calculated energy that can be charged and discharged from the EV fleet is divided by time
duration h to convert it to the possible charging/discharging power:
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EVPdis = EVEdis/h (16)

EVPcha = EVEcha/h (17)

The actually utilizable power of the EV fleet is considered by applying the maximum discharging
and charging rates of the EV:

Limitdis = rdis,max × nd (18)

Limitcha = rcha,max × nc ×
Ppc

Ppc + Pf c
(19)

pevdis,max = min
(

EVPdis, Limitdis
)

(20)

pevcha,max = min
(

EVPcha, Limitcha
)

(21)

where Ppa(nd) ≤ α and Ppa(nc) ≥ β.

3. Mathematical Formulation

3.1. Objective Function

The objective function is the minimization of the system operating cost, which consists of the
energy production cost, the FRU and FRD costs of a conventional generator, the discharging and
charging costs of the EV, and EVRU and EVRD costs. In addition, the objective function includes the
cost of unserved energy. The cost of load shedding is calculated by multiplying the load shedding
amount at each time interval with the value of lost load (VOLL), as shown in (25). To minimize the
system operating cost, load shedding should be minimized because the VOLL is generally considerably
larger than the marginal production cost. In this manner, the objective function ensures economic and
reliable operation of the system. The EVs are aggregated in the fleet to secure a valid capacity. Rather
than minimize the operating cost within each time interval, the purpose is to minimize the overall
operating cost for all time intervals that are considered. The objective function is defined as:

Min
ts

∑
t=t0

(CGi + CEVx + CLSt) (22)

CGi = ∑
i∈I

[
Cenergy

i (pi,t) + CFRU
i (FRUi,t) + CFRD

i (FRDi,t)
]

(23)

CEVx = ∑
x∈X

[
Cdis

x

(
pevdis

x,t

)
− Ccha

x

(
pevcha

x,t

)
+ CEVRU

x (EVRUx,t) + CEVRD
x (EVRDx,t)

]
(24)

CLSt = VOLL× LSt (25)

3.2. Constraints

For stable operation of the power system, the diverse constraints specified below should be
satisfied. The constraints include maintaining power balance in the system, the output constraints of
generators and EVs, FRP requirements, and transmission constraints.

3.2.1. Power Balance

Intrinsically, the power output of a generator in a system must meet the net load and diverse
electric demands at all times. Load shedding occurs when the generated power output does not fully
satisfy the net load. EVs increase electrical supply by discharging the energy stored in their batteries.
In contrast, they can increase demand by charging their batteries:



Energies 2017, 10, 2028 7 of 18

∀t : ∑
i∈I

pi,t + ∑
x∈X

pevdis
x,t = ∑

n∈N
nln,t + ∑

x∈X
pevcha

x,t − LSt (26)

3.2.2. Resource Constraints

Generator Constraints

The output and characteristic constraints of controllable resources are given below. Conventional
generators are constrained by the minimum and maximum power outputs that they can generate at a
given time and the physical constraints for the ramp rate:

∀t, ∀i : pmin
i ≤ pi,t ≤ pmax

i (27)

∀t, ∀i : pi,t + FRUi,t ≤ pmax
i (28)

∀t, ∀i : pi,t − FRDi,t ≥ pmin
i,t (29)

∀t, ∀i : 0 ≤ FRUi,t ≤ RCi × ∆t (30)

∀t, ∀i : 0 ≤ FRDi,t ≤ RCi × ∆t (31)

∀t, ∀i : −RCi × ∆t ≤ pi,t − pi,t−1 ≤ RCi × ∆t (32)

EV Constraints

EVs can supply capacity to a system in the form of battery charge. Because of the limits of battery
capacity, only the residual battery excluded from the total capacity can be charged. Even though the
ramp rate of the battery is almost limitless, the ramp rate of an EV is constrained by the charging
station that connects the EV and system or the abilities of the EV power charger. To consider the
loss during charging and discharging, coefficients (η−,η+) are applied and the required level of EV
energy(εreq) at a certain time is considered:

∀t, ∀x : 0 ≤ pevdis
x,t ≤ pevdis,max

x,t (33)

∀t, ∀x : 0 ≤ pevcha
x,t ≤ pevcha,max

x,t (34)

∀t, ∀x : pevdis
x,t − pevcha

x,t + EVRUx,t ≤ pevdis,max
x,t (35)

∀t, ∀x : pevdis
x,t − pevcha

x,t − EVRDx,t ≥ −pevcha,max
x,t (36)

∀x : eevx,t−1 − eevx,t =

(
1

η+
pevdis

x,t − η−pevcha
x,t

)
× ∆t (37)

∀x : eevx,t

∣∣∣t=ts ≥ C f leet
x,total · εreq (38)

3.2.3. System and Zonal FRP Constraints

When the generator and EVs in each zone are applied, the zonal FRP requirement should be
satisfied. The sum of these zonal requirements should ultimately satisfy the system FRP requirement.

System FRP
∀t : ∑

z∈Z
rRU

z,t ≥ RRU
system,t (39)

∀t : ∑
z∈Z

rRD
z,t ≥ RRD

system,t (40)

Zonal FRP
∀t, ∀z : ∑

i∈I,z
FRUi,t + ∑

x∈X,z
EVRUx,t ≥ rRU

z,t (41)
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∀t, ∀z : ∑
i∈I,z

FRDi,t + ∑
x∈X,z

EVRDx,t ≥ rRD
z,t (42)

3.2.4. Transmission Constraints

All factors that affect transmission lines are considered so that the transmission limit is not
exceeded. The power generated by generators (including renewable generators), the charge and
discharge by EVs, and electricity demand impact transmission flow. The burden on each transmission
constraint, l, is calculated from the sensitivity (Hn,l,t) of each node. In contrast, the impact of the FRPs

in each zone on transmission is calculated by aggregating the sensitivity
(

HU
l,z,t

)
so that the sum does

not exceed the transmission capacity limit.

Zonal Deployment Transmission Constraints

∀t, ∀l : Fl,t(Pt, RPt, EVt, Dt)

= ∑
i∈I,n

{
pi,t · Hl,n,t

}
+ ∑

i∈I,n

{
rpn,t · Hl,n,t

}
+ ∑

x∈X,n

{(
pevdis

x,t − pevcha
x,t

)
· Hl,n,t

}
− ∑

n∈N

{
dn,t · Hl,n,t

} (43)

∀t, ∀l : Fl,t(Pt, RPt, EVt, Dt) + ∑
i∈I,z

{
FRUi,t · HFRU

l,z,t

}
− ∑

i∈I,z

{
FRDi,t · HFRD

l,z,t

}
+ ∑

x∈X,z

{
EVRUx,t · HEVRU

l,z,t

}
− ∑

x∈X,z

{
EVRDx,t · HEVRD

l,z,t

}
≤ Flimit

l,t

(44)

4. Case Studies

4.1. Problem Formulation

The proposed method was verified through case studies on a renewable power generator and a
modified PJM 5-bus system with added EVs. The system is shown in Figure 2.
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The simulated system was composed of two zones. Only the power flow in the transmission line
from node 1 to node 2 reached the maximum capacity among the transmission lines between Zones
A and B. Therefore, the case studies considered the constraint only for transmission line 1–2, whose
flow limit was 60 MW. The zonal aggregated sensitivities were HFRU

1–2,a,t = HFRD
1–2,a.t = HEVRD

1–2,a,t = 0.4846
and HFRU

1–2,b,t = HFRD
1–2,b,t = HEVRU

1–2,b,t = −0.0463. Table 1 presents the characteristics of the conventional
generator applied in the case studies, and Table 2 presents the sensitivity of the flow along transmission
line 1–2 at each node.
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Table 1. Conventional generator characteristics.

Generator Min (MW) Max (MW) Ramp Rate (MW/min) Offer Price ($/MWh) Initial Output

G1 0 80 4 10 50
G2 0 80 4 10.1 25
G3 0 60 1 8 60
G4 0 160 1 25 160
G5 0 160 1 30 50
G6 0 100 1 15 100

Table 2. Sensitivity matrix of line 1–2.

H1–2,1,t H1–2,2,t H1–2,3,t H1–2,4,t H1–2,5,t

Sensitivity 0.6 −0.08 −0.04 0.12 0.3

For all case studies, the regulating reserve and contingency reserve were not considered to
concentrate on the FRP effect. Thus, only energy and the FRP were included. See Appendix A for
versions of the above equations when reserves are included. The offer price of resources that provide
ramping capability was excluded. A multiple-interval time-coupled dispatch model was applied to
the simulation. This is an improvement over a single-interval dispatch model. Case studies were
conducted regarding four dispatch time intervals of 5 min in series. EVs were assumed to be able to
supply power to the system and to only be charged by the system. In addition, EVs were assumed
to only be an FRU resource, not an FRD resource. The VOLL was assumed to be 3500 $/MWh.
The problems of the case studies were solved using the GAMS 23.5/CPELX software (IBM, Armonk,
NY, USA). Figure 3 presents all EV states that can exist through the Markov chain. EVs operated only
at nodes 2, 3, and 4.
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The battery capacity of an individual EV was assumed to be 75 kWh, and the number of EVs
in the test system was assumed to be 1500, which was assumed to represent a 1% EV penetration
rate. At every time interval, the EV states changed according to the transition probability between
the states. EVs were only applied as FRU resources in the fully charged or partially charged states,
when connected with the system. η+ = 0.95, η− = 0.98 and εini = 0.7, εreq = 0.8 were assumed. η+ and
η− indicate the discharging and charging coefficients of an EV, respectively. εini represents the mean
value of the remaining energy of each EV at T1. In addition, εreq represents the required energy level of
an EV at the end of the dispatch time. Figures 4 and 5 show the results under these conditions.
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The number of parked EVs changed according to the time interval, which affected the available
discharging capacity that could be secured from the EVs. Even though the number of parked EVs
in the EV1 fleet at T1 was less than that of the EV2 fleet, more EVRU could be procured from the
EV1 fleet. This is because even though the EV2 fleet contained more parked EVs, the EV1 fleet had
higher available capacity considering the charged state of each EV. At T2–T4, even though the number
of parked EVs changed with time, the applicable charging capacity was reached. Thus, the system
operator could utilize the maximum available capacity supplied by the EV fleets for system operation
at T2, T3, and T4.
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4.1.1. Low Variability in Renewable Power—Case (a)

Case (a) was considered as the baseline of the case studies. The input data provided in Table 3
were applied. The results when EVs were and were not applied as an FRU resource were compared.
The EV charge and discharge capacities were based on the pre-calculated values shown in Figure 4.
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Furthermore, the transmission constraint was considered in all cases. The results are presented in
Table 4.

Table 3. Load and renewable data.

T1 T2 T3 T4 T5 T6

Load (MW) 498 504 513 501 507 510

Renewable output (MW) Low variability (a) 68 70 74 72 68 64
High variability (b) 68 76 70 71 66 60

Table 4. Dispatch cleared products in case (a).

EV, No Utilization for FRU (a)-1
Operating Cost: $11,009

EV, Utilization for FRU (a)-2
Operating Cost: $10,933

Cost Saving: $76 (0.69%)

(MW) T1 T2 T3 T4 T1 T2 T3 T4

G1
Energy 51.09 59.49 59.51 53.5 54.51 59.52 59.04 58.86

FRU 6 0 0 9 1.83 0 1.05 0
FRD 0 0 12 0 0 0 12 0

G2
Energy 5 0 0 0 5 0 0 0

FRU 0 0 0 9 0 0 0 2.53
FRD 0 0 0 0 0 0 0 0

G3
Energy 60 60 60 60 60 60 60 60

FRU 0 0 0 0 0 0 0 0
FRD 0 10 0 0 0 10 0 0

G4
Energy 155 160 155 150 155.64 160 159.26 154.26

FRU 5 0 5 10 4.36 0 0.74 5.74
FRD 0 10 0 0 0 10 0 0

G5
Energy 55 58.51 62.96 67.96 52.19 57.19 58.11 58.50

FRU 10 10 10 10 10 10 10 10
FRD 0 10 0 0 0 10 0 0

G6
Energy 100 100 99.13 100 100 100 100 100

FRU 0 0 0 0 0 0 0 0
FRD 10 10 0 0 10 10 0 0

EV1
Energy 0.52 −0.53 0.51 −0.52 0.52 −0.53 0.51 −0.52
EVRU x x x x 0 0 0 0

EV2
Energy 1.61 −1.64 0.68 −0.69 0.89 −0.9 0.86 −0.88
EVRU x x x x 2.59 5.21 3.45 5.19

EV3
Energy 1.79 −1.82 1.22 −1.25 1.25 −1.28 1.21 −1.24
EVRU x x x x 2.22 5.59 3.1 5.55

Operating costs were reduced by applying EVs as an FRU resource. This is because the FRU
capacity of the existing generator was replaced by EVs. The comparatively cheap G1 exhibited a high
ramp rate. Table 4 indicates that G1 was used as an FRU resource and to generate energy to satisfy the
ramp requirement of the system in case (a)-1. However, when EVs were applied as an FRU resource
in case (a)-2, the EV2 and EV3 fleets were dispatched as FRU resources from T1 to T4. Therefore, the
power generation of G1 could be used as energy instead of as an FRU resource, which reduced the
relatively expensive power generation of G5. Thus, the total operating cost was reduced.

4.1.2. High Variability in Renewable Power—Case (b)

The normal loads for case (b) and (a) were the same; however, the change in renewable power
increased. If the variability in renewable power increases, the variability in net load also increases,
along with the ramp requirement of the system. In case (b)-1, EVs were not applied as an FRU resource;
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in case (b)-2, they were. For case (b)-1, a local shedding of 1.19 MW occurred at T1 of L3. With the set
of a conventional generator, load shedding occurred because the ramp requirement was not satisfied
owing to the high variability in renewable power. In case (b)-2, the increased ramp requirement was
satisfied because EVs were applied as an FRU resource. Table 5 presents the dispatch results for cases
(b)-1 and (b)-2. In case (b)-2, load shedding did not occur because EVs were applied as an FRU resource.
This considerably reduced the operating cost compared to case (b)-1.

Table 5. EV dispatch results for case (b).

EV, No Utilization for FRU (b)-1
Operating Cost: $12,457

EV, Utilization for FRU (b)-2
Operating Cost: $10,956

Cost Saving: $1501 (12.05%)

(MW) T1 T2 T3 T4 T1 T2 T3 T4

EV1
Energy 1.49 −1.52 0.53 −0.54 1.49 −1.52 1.44 −1.47
EVRU x x x x 0 0 0 0

EV2
Energy 1.8 −1.84 0.68 −0.7 1.8 −1.84 1.75 −1.78
EVRU x x x x 1.67 6.15 2.57 6.09

EV3
Energy 1.79 −1.82 1.22 −1.25 1.79 −1.82 1.73 −1.77
EVRU x x x x 1.69 6.13 2.58 6.08

4.1.3. EV Market Penetration Rate Increase—Case (c)

The change with increased EV penetration was analyzed. The results were presented in Table 6.
For case (a)-2, EVs were applied as an FRU resource. The EV penetration rates were 1%, 2%, and 3%;
for cases (a)-2, (c)-1, and (c)-2, respectively.

When the EV penetration rate was 1%, the number of EVs was assumed to be 1500. Thus,
a 1% increase in the penetration rate was equivalent to an increase of 1500 in the number of EVs.
The charging load of EVs increases with the number of EVs; thus, the total load ultimately increases.
According to the assumptions of the case studies, EVs should charge 10% of their batteries within four
time intervals. Therefore, increasing the EV penetration rate by 1% increases the charging energy by
11.25 MWh.

The results showed that the operating cost of case (c)-1 increased slightly compared to that in case
(a)-2. When the EV penetration rate was increased by 1%, the additional energy required for charging
was 11.25 MWh, and the average offer price from G1 to G6 was approximately $16.3/MWh. Thus, the
additional cost of charging the EVs through a generator was approximately $45. However, the actual
increase in operating cost was smaller than this because the increased number of EVs was utilized as
an FRU resource. As the EVs that could be applied as an FRU resource increased, the FRP capacity
managed by a relatively cheap generator (e.g., G1) could be applied as energy. This decreased the
energy produced by expensive generators, which reduced the total operating cost.

The operating cost in case (c)-2 was considerably higher than that in case (a)-2. This was because
of the large increase in the charging load and the occurrence of load shedding at T2 of L3. When the
EV penetration rate was above 3%, the total load (including the EV load) deviated from the range that
could be managed by the system.

Table 6. Operating cost and load shedding results for case (c).

EV Penetration Rate Operating Cost Load Shedding

1% (a)-2 $10,933 x
2% (c)-1 $10,941 x
3% (c)-2 $13,002 T2, L3 1.76 MW
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4.1.4. Necessity of Considering the Transmission Constraint—Case (d)

Table 7 presents the results when the transmission constraint was and was not considered
(cases (d)-1 and (d)-2, respectively). Figure 6 shows the power generation for cases (d)-1 and (d)-2.

Table 7. Dispatch cleared products for case (d).

Network Constraint Not Considered (d)-1
Operating Cost: $10,150

Network Constraint Considered (d)-2
Operating Cost: $10,933

(MW) T1 T2 T3 T4 T1 T2 T3 T4

G1
Energy 67.55 80 80 80 54.51 59.52 59.04 58.86

FRU 0 0 0 0 1.83 0 1.05 0
FRD 0 0 12 0 0 0 12 0

G2
Energy 5 16.5 31.63 41.42 5 0 0 0

FRU 0 0 12 9 0 0 0 2.53
FRD 0 0 0 0 0 0 0 0

G3
Energy 60 60 60 60 60 60 60 60

FRU 0 0 0 0 0 0 0 0
FRD 10 10 0 0 0 10 0 0

G4
Energy 155 150 145 140 155.64 160 159.26 154.26

FRU 5 0 0 10 4.36 0 0.74 5.74
FRD 10 10 0 0 0 10 0 0

G5
Energy 45 40 35 30 52.19 57.19 58.11 58.5

FRU 10 10 0 10 10 10 10 10
FRD 10 10 0 0 0 10 0 0

G6
Energy 95 90 85 80 100 100 100 100

FRU 5 0 0 0 0 0 0 0
FRD 10 10 0 0 10 10 0 0

EV1
Energy 0.52 −0.53 0.51 −0.52 0.52 −0.53 0.51 −0.52
EVRU 1 0 0 0 0 0 0 0

EV2
Energy 0.68 −0.69 0.66 −0.7 0.89 −0.9 0.86 −0.88
EVRU 0 0 0 0 2.59 5.21 3.45 5.19

EV3
Energy 1.25 −1.28 1.21 −1.24 1.25 −1.28 1.21 −1.24
EVRU 0 0 0 0 2.22 5.59 3.1 5.55
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In case (d)-1, where the transmission constraint was not considered, the power output from Zone
A generators changed without limit as the total power generation increased. However, in case (d)-2,
which considered the transmission constraint, the limits of transmission line capacity implied that Zone
A generators could not produce more than a certain power output. As shown in Figure 6, the ratio of
the power generation at T3 in Zone A was 44.91% in case (d)-1 and 36.34% in case (d)-2. When the
transmission constraint was not considered, even if a large amount of power was generated in Zone A,
the physical transmission constraints limited the power that could flow to Zone B. In this situation, the
power of Zone A was wasted, or there was a shortage of power in Zone B. Thus, for reliable system
operation and practical available dispatch results, the transmission constraint should be considered.

For case (d)-2, the operating cost was higher than that of case (d)-1. However, such a result is not
practical. Because G1 is a relatively cheap generator, it was dispatched to the maximum in T2–T4 for
case (d)-1. However, the results of case (d)-2 showed that the G1 generator could not be dispatched to
the maximum owing to the transmission constraint.

In case (d)-1, EV fleets were mostly not used for FRU. In case (d)-2, however, EVRU was actively
used. Of course, EV fleets could be applied in case (d)-1 as FRU; however, they were not applied because
the conventional generators could be used for FRU. When constraint conditions were considered in
case (d)-2, the system operator procured FRU through the EV2 and EV3 fleets in Zone B. These results
indicate that the FRU capacity should be calculated by considering the transmission constraint to
derive a practical result and increase EV utilization.

5. Conclusions

This paper proposed a method of applying EVs as an FRP in a power system including renewable
energy. The charging and discharging capacities between the grid and EV were considered. To
consider the movement and location of EVs and the changes in their charged states, a probabilistic
method of calculating battery capacity was propose to make EVs applicable as an FRU resource. Case
studies were conducted to understand the impact of applying EVs as an FRU resource. The simulation
results revealed that applying EVs as an FRU resource reduced the operating cost, and it was more
effective in situations with high variability due to renewable power. The results demonstrated the
effectiveness of considering the transmission constraint to increase the utilization of EVs as an FRU
resource. Future work will involve applying the proposed approach to actual systems and including
reserve products. In addition, methods of calculating the ramp requirement capacity more precisely
will be developed.
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Nomenclature

Indices and Sets
i,I Index and set for units
z,Z Index and set for zones
n,N Index and set for nodes
x,X Index and set for EV fleets
l Index for transmission constraints
S Set for EV state categories (pc, fc, pl}
U Set for ramping product categories {FRU, FRD, EVRU, EVRD}
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Parameters
ms Mean value of EV states s
σs Standard deviation of EV states s
Ps Probability of EV states s
rmax,dis Maximum EV discharging rate
rmax,cha Maximum EV charging rate
VOLL Value of lost load
Pmax

i Upper limit for the power output of unit i
Pmin

i Lower limit for the power output of unit i
RCi

RCi Ramp capability of unit i
η+ Discharging coefficient of EV
η− Charging coefficient of EV
εini Initial energy level of EV
Ereq Required energy level of EV
RRU

system,t System ramping up requirement at time t
RRD

system,t System ramping down requirement at time t
rpn,t Renewable power output of node n at time t
dn,t Demand of node n at time t
RPt Vector of renewable power at time t
Dt Vector of demand at time t
Hl,n,t Sensitivity to transmission constraint l of node n at time t

HU
l,z,t

Aggregated sensitivity for ramping product U to transmission constraint l of zone z at
time t

Flimit
l,t Flow limit for transmission constraint l at time t

Variables
EVEdis Aggregated energy capacity of EV for discharging
EVEcha Aggregated energy capacity of EV for charging
EVPdis Aggregated power of EV for charging
EVPcha Aggregated power of EV for discharging
pevdis

x,t EV discharging power of fleet x at time t
pevcha

x,t EV charging power of fleet x at time t
pi,t Power output of unit i at time t
nln,t Net load of node n at time t
FRUi,t Ramping up of unit i at time t
FRDi,t Ramping down of unit i at time t
EVRUx,t EV ramping up of fleet x at time t
EVRDx,t EV ramping down of fleet x at time t
CLSt Load shedding cost at time t
LSt Load shedding volume at time t
Pt Vector of cleared generator energy at time t
EVt Vector of cleared EV energy at time t
Functions
Ptr(·) Probability function of the number of traveling EVs
Ppa(·) Probability function of the number of parked EVs
KE(·) Cumulative distribution function of the energy from the parked EV fleet
CGi(·) Total production cost function of unit i
Cenergy

i (·) Production cost function of energy of unit i
CU

i (·) Production cost function of ramping product U of unit i
CEVx(·) Total EV cost function of fleet x
Cdis

x (·) EV discharging cost function of fleet x
Ccha

x (·) EV charging cost function of fleet x
CU

x (·) Cost function of EV ramping product U of fleet x
Fl,t(·) Flow with transmission constraint l at time t
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Appendix A. Formulation Including Reserve

The equations of Section 3 can be modified by including reserves. The reserves are divided into the regulating
reserve and contingency reserve. The latter is composed of the spinning reserve and supplemental reserve.

Appendix A.1. Objective Function

Min
ts

∑
t=t0

(CGi + CEVx + CLSt) (A1)

CGi = ∑
i∈I

[
Cenergy

i pi,t + CFRU
i FRUi,t + CFRD

i FRDi,t + ∑
w∈W

Cw
i rw

i,t

]
(A2)

CEVx = ∑
x∈X

[
Cdis

x pevdis
x,t − Ccha

x pevcha
x,t + CEVRU

x EVRUx,t + CEVRD
x EVRDx,t

]
(A3)

CLSt = VOLL× LSt (A4)

Appendix A.2. Objective FunctionAppendix A.2. Constraints

- Resource Capability

∀t, ∀i : pi,t + ∑
w∈W

rw
i,t + FRUi,t ≤ pmax

i − φi,t

(
pmax

i,t − preg,max
i,t

)
(A5)

∀t, ∀i : pi,t − rreg
i,t − FRDi,t ≥ pmin

i,t − φi,t

(
pmin

i,t − preg,min
i,t

)
(A6)

- System Reserve
∀t : ∑

z∈Z
rreg

z,t ≥ Rreg
system,t (A7)

∀t : ∑
z∈Z

{
rreg

z,t + rspin
z,t

}
≥ Rreg

system,t + Rspin
system,t (A8)

∀t : ∑
z∈Z

{
∑

w∈W
rw

z,t

}
≥ ∑

w∈W
Rw

system,t (A9)

- Zonal Reserve
∀t, ∀z : ∑

i∈I,z
rreg

i,t ≥ rreg
z,t (A10)

∀t, ∀z : ∑
i∈I,z

{
rreg

i,t + rspin
i,t

}
≥ rreg

z,t + rspin
z,t (A11)

∀t, ∀z : ∑
i∈I,z

{
∑

w∈W
rw

i,t

}
≥ ∑

w∈W
rw

z,t (A12)

- Reserve Up and FRU/FRD

∀t, ∀l : Fl,t(Pt, EVt, Dt) + ∑
z∈Z

{
rreg

z,t · H
reg
l,z,t

}
+ ∑

z∈Z

{
FRUi,z,t · HFRU

l,z,t

}
− ∑

z∈Z

{
FRDz,t · HFRD

l,z,t

}
+ ∑

x∈X,z

{
EVRUx,t · HEVRU

l,z,t

}
− ∑

x∈X,z

{
EVRDx,t · HEVRD

l,z,t

}
− Hl,LC,t · R

reg
Mar ≤ FN.max

l,t

(A13)

- Reserve Down and FRU/FRD

∀t, ∀l : Fl,t(Pt, EVt, Dt)− ∑
z∈Z

{
rreg

z,t · H
reg
l,z,t

}
+ ∑

z∈Z

{
FRUz,t · HFRU

l,z,t

}
− ∑

z∈Z

{
FRDz,t · HFRD

l,z,t

}
+ ∑

x∈X,z

{
EVRUx,t · HEVRU

l,z,t

}
− ∑

x∈X,z

{
EVRDx,t · HEVRD

l,z,t

}
+ Hl,LC,t · R

reg
Mar ≤ FN.max

l,t

(A14)
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- Contingency

∀t, ∀l : Fl,t(Pt, EVt, Dt)−Qz,t · HC
l,z,t + Dspin

z,t · ∑
z′∈Z

{
rspin

z′,t · H
spin
i,z′,t

}
+ Dsupp

z,t · ∑
z′∈Z

{
rsupp

z′,t · H
supp
i,z′,t

}
≤ FC.limit

l,t (A15)
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