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Abstract: Lithium-ion batteries are widely used in many systems. Because they provide a power
source to the whole system, their state-of-health (SOH) is very important for a system’s proper
operation. A direct way to estimate the SOH is through the measurement of the battery’s capacity;
however, this measurement during the battery’s operation is not that easy in practice. Moreover,
the battery is always running under randomized loading conditions, which makes the SOH estimation
even more difficult. Therefore, this paper proposes an indirect SOH estimation method that relies
on indirect health indicators (HIs) that can be measured easily during the battery’s operation.
These indicators are extracted from the battery’s voltage and current and the number of cycles
the battery has been through, which are far easier to measure than the battery’s capacity. An empirical
model based on an elastic net is developed to build the quantitative relationship between the SOH
and these indirect Hls, considering the possible multi-collinearity between these HIs. To further
improve the accuracy of SOH estimation, we introduce a particle filter to automatically update
the model when capacity data are obtained occasionally. We use a real dataset to demonstrate our
proposed method, showing quite a good performance of the SOH estimation. The results of the SOH
estimation in the experiment are quite satisfactory, which indicates that the method is effective and
accurate enough to be used in real practice.

Keywords: lithium-ion battery; indirect state-of-health (SOH) estimation; randomized loading
condition; elastic net; particle filter

1. Introduction

Owing to the advantages of a high energy density, low self-discharge ratio and lack of memory
effect, lithium-ion batteries are more and more commonly used in portable electronics, spacecrafts
and electric vehicles [1]. As a critical component in many systems, lithium-ion batteries” performance
plays an important role to ensure the security and reliability of the whole system. An effective
battery management system will help to run the battery more efficiently while increasing its lifetime.
In the battery management system, a very crucial aspect is to efficiently monitor the battery’s
health status.

The health status of a lithium-ion battery is often defined as the state-of-health (SOH). The most
typical definition of the SOH is based on the battery’s capacity. The capacity decreases gradually with
the degradation of the battery [2]. When the capacity reaches a given threshold, the lithium-ion battery
is considered to be failed. Thus, if we can accurately estimate the capacity, the health status of the
lithium-ion battery can be known in advance to assist timely maintenance and prevent serious disaster.
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In recent years, lots of approaches have been proposed to estimate the SOH of lithium-ion batteries.
These approaches can be classified as model-based approaches, data-driven approaches and hybrid
approaches, which combine the model-based approach and the data-driven approach. See Table 1 for a
brief summary of SOH estimation approaches for lithium-ion batteries. The model-based approach [3-10]
relies on the degradation model that describes the physical nature of the battery’s degradation.
In the model, the battery’s SOH is linked to the battery’s electrochemical parameters. For example,
Samadi et al. [5] developed an electrochemical-based aging model to estimate (State-of-charge) SOC
and SOH of the battery. These model-based approaches can achieve high estimation accuracy, but they
also require heavy work in the model development. For the data-driven approach [11-14], it is not
necessary to understand the degradation principle of the battery; it only uses degradation data to build
the degradation model. For example, Rezvani et al. [12] used an adaptive neural network (ANN) and
linear prediction error method for the SOH quantification of a lithium-ion battery. Different features
from three different regimes (charge, discharge, and impedance) are extracted as the input of the ANN.
However, these approaches require a lot of data to achieve good estimation accuracy. To combine
advantages of both model-based and data-driven approaches, some researchers have utilized both,
such as in [15-17]. In these hybrid approaches, the degradation behavior of lithium-ion batteries is
described by a physical model, and then the monitoring data is used to refine the model parameters.

Table 1. Summary of battery state-of-health (SOH) prediction approaches. SVR: Support vector regression.

Category Algorithms/Methods Advantages Disadvantages
Empirical model [3] .
Mechanistic model [4] High accuracy High cost for model development
Model-based approach Electrochemical model [5] Representing few uncertainties
Hybrid models: Combining models
Kalman filter [6,9] and data to achieve .
Particle filter (PF) [7,8] a better performance High cost for model development
Neural networks [11,12,18] Simple Large amount of data are required
Data-driven approach ~ Gaussian process regression (GPR) [13] 8 qut
Relevance vector machine (RVM) [14] Practical Only for short-term prediction
SVR and PF [15] High accuracy
Hybrid approach GPR and PF [16] Combines advantages Complex
RVM and PF [17] of different approaches

It can be noted that most of the existing literature mainly focuses on improving SOH estimation
algorithms by using direct SOH indicators such as the battery’s capacity and internal resistance, while
only a little attention has been paid to finding indirect health indicators (HIs) for SOH estimation,
such as voltage and current, which can be easily measured during the usage of the battery. In fact, when
lithium-ion batteries are used in electronic equipment, the battery’s capacity and internal resistance
are very difficult to measure via existing sensors. Moreover, these quantities can only be used under
constant loading conditions, which occur much less frequently in real practice. Therefore, it is necessary
to find indirect HIs under randomized use of the battery for the online estimation of the SOH.

Among these limited works that have extracted indirect HIs for SOH estimation of lithium-ion
batteries, two different approaches are used. One is analyzing HIs under a constant discharge process,
and the other is achieved under a constant charge process. For example, Saha et al. [19] used the
battery’s impedance as the HI for the SOH of battery, and Tong et al. [20] considered the open-circuit
voltage, both under the circumstances of constant discharge. Moreover, Liu et al. [21] discovered that
the time interval of equal discharging voltage difference in each discharge cycle can be used as a HI
to represent the capacity degradation; Li et al. [22] used the temperature-change rate as the battery’s
HI. For the HIs extracted under a constant charge process, some contributions are worthy of attention.
For example, Wu et al. [23] selected the velocity and the arclength curvature of the charge curve as the
HI, and then the group method of data handling was employed to estimate the SOH of the battery.
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All the above HlIs are extracted under a constant discharge cycle or constant charge cycle [24].
No contribution has been made to find indirect Hls for a battery’s SOH estimation under randomized
loading conditions. However, in real engineering practice, a randomized loading condition is indeed
the general situation. Therefore, in this paper, we dedicate efforts to extracting some indirect Hls for
batteries’ SOH estimation under randomized loading conditions. For this purpose, we first explore Hls
that can be easily obtained from the online condition-monitoring of the battery’s voltage and current,
and we then develop a model based on an elastic net to build the linkage between these HIs and the
battery’s SOH, considering the usually existing redundancies between the HIs. To our knowledge,
we are the first to successfully build up indirect Hls to represent the battery’s health status under
randomized use. In order to improve the online accuracy of the SOH estimation, we apply a particle
filter (PF) to automatically update the model with possible available measurements of the true SOH.

The rest of this paper is organized as follows: Section 2 details the HI extraction. In Section 3,
the relation between the HIs and capacity is constructed using the elastic net method. In Section 4,
the PF is used to update the model with the new data, and the capacity of the batteries is predicted with
the updated model. Finally, conclusions of the results as well as further work are given in Section 5.

2. Health Indicator Extraction

To estimate the SOH of lithium-ion batteries online, we first need to find some indirect HIs that
can be measured easily to represent the battery’s SOH. Most existing contributions devoted to indirect
HI extraction have focused on the situations under constant discharge conditions. However, these
HIs cannot be applied under randomized use. Therefore, in this section, we first extract these robust
indirect Hls.

2.1. The Dataset

In order to present our proposed indirect HIs for batteries under randomized use, we use the
data provided by the NASA Ames Research Center for illustration [25]. In this dataset, a set of
four 18,650 Li-ion batteries (identified as RW3, RW4, RW5 and RW6) were continuously operated by
repeatedly charging them to 4.2 V and then discharging them to 3.2 V using a randomized sequence
of discharging currents between 0.5 and 4 A. The sequence of discharging currents in the discharge
process mimicked randomized use in real practice. Here, this type of discharging profile is referred to
as random walk (RW) discharging. In order to know the true SOH of the aging battery, after every
50 RW discharging cycles, a series of reference charging and discharging cycles were performed.
In these cycles, the battery was firstly fully charged to 4.2 V, then it rested for 20 min, and finally it was
loaded at 1 A for 10 min. Every time, two continuous reference cycles were executed, and the capacity
of each reference cycle was measured. The mean of the two capacities was considered as the true SOH
at this moment. Figure 1 shows the whole process of the discharging and charging cycles. Figure 2
shows the true degrading trend of the capacity of every reference cycle in battery RW3.

The RW discharging and reference discharging cycles were carried out alternatively until the
battery’s SOH reached the failure threshold. In each discharging cycle, the battery’s voltage and current
were measured every 10 s. As shown in Figure 3, the battery’s voltage generally decreased with time,
and it could be measured easily during the discharge. The battery’s current represents the load on
battery, which was constant during reference discharging cycles and random during RW discharging
cycles. From Figure 3, we can also observe that when the load was constant, the voltage trajectory
decreased in a very clear way, from which indirect HIs could be easily extracted. For example, in [21],
the time interval of an equal discharging voltage difference in each discharge cycle was decreased very
clearly as the battery aged, which can be used as an indirect HI for SOH estimation. However, when the
load is random, the voltage trajectory can be very irregular. See Figure 4, for instance. No contribution
has been made to the extraction of indirect HIs under the situation of randomized load.
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Figure 2. Capacity of battery RW3 measured at each discharge cycle.
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Figure 3. Example of the voltage curve when the load is constant during discharge process.
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2.2. HI Extraction

In this paper, we define the battery SOH as follows [26]:
SOH = — x 100% (1)

where Cy is the battery’s capacity of the kth cycle, and C is the rated capacity, which is known
in advance.

Equation (1) indicates that, to estimate the battery SOH of the kth cycle, it is equivalent to estimate
the capacity with the known rated capacity Cx. However, in real applications, such as in electric
vehicles and satellites, measuring the battery’s capacity is difficult for current sensors. Therefore,
some researchers have tried to find indirect Hls to represent the battery’s SOH, but their efforts have
only been confined to the situation of constant loading conditions. In fact, lithium-ion batteries are
usually used under randomized loading conditions; thus in this paper, we extract HIs for randomized
loading situations in order to provide an efficient and accurate SOH estimation approach to meet
practical requirements. In the following, we use the dataset described in Section 2.1 to illustrate our HI
extraction under randomized use.

2.2.1. Charge Capacity

Generally, when the battery ages, its charge storage capacity decreases [27]. The storage capacity
can be calculated using the current measured during each discharge cycle. This is the integration of
the current of one cycle, as shown in Figure 5.

Therefore, the HI related to storage capacity for the kth cycle, denoted by Qj, can be expressed as

ty
Q= / ir(T)dT )
0

where i;(T) is the current measured at the time 7 in the kth cycle, which can be different at different T
according to the randomized loading condition; t; denotes the whole discharge time of the kth cycle.

Battery RW3

w
T

Current(A)
N

0 0.2 0.4 0.6 0.8 1
Time(h)

Figure 5. Example of the charge capacity extracted from the random current curve during
discharge process.

Figure 6 shows the results of Qy for battery RW3 for the whole 844 discharge cycles under
randomized use in the experiment. The trend of Qy is clearly degrading, which supports that Q might
be able to be linked to the battery’s SOH to a certain extent, as they are both reasonable representations
of the battery’s degradation.
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Figure 6. The results of Qj for battery RW3.

2.2.2. Internal Resistance

The second HI is the internal resistance, which is also extracted in the discharge cycle under
randomized use. As the battery ages, its internal resistance generally increases [28]. Therefore, inspired
by this idea, we consider a Hl related to the internal resistance. In Figure 4, it can be observed that when
there is a step change in the current, there will also be a step change in the voltage. The step change is
marked more clearly in Figure 7. Therefore, we can use R = % as the approximate internal resistance
at the step-change time, where AI represents the step change of the current and AU represents the
corresponding step change of the voltage. For each discharge cycle, there are several step changes for
the current; thus we consider the mean value of all R as the HI, which is calculated by

1 & AU;
“n )3 Al ©)

i=1

k

where Ry is the HI related to the internal resistance for the kth cycle, and 7 is the number of step
changes in the kth cycle.

Figure 8 shows the results of Ry for battery RW3 for the whole 844 discharge cycles under
randomized use in the experiment. The trend of R; has a clear upward tendency, which is to be
expected and may be able to be linked to the battery’s SOH.

Battery RW3
4.4 T 4 T

Voltage(V)
w
[o0]

w
)

34

3.2

0 0.2 0.4 0.6 0.8 1
Time(h)

Figure 7. Illustration of the step change in the voltage curve during discharge process.



Energies 2017, 10,2012 7 of 19

Battery RW3
0.11 ‘ ‘ :
&
0.105 | .My
St . Palpt
01t R >
s
0.095 | . oot el
L e ‘,‘%”A.:q)
o 0.09r ..;.-‘% 31
> (J
0.085 | néy *
008t

0.075

0.07

0 100 200 300 400 500 600 700 800 900
Discharge cycle under randomized use

Figure 8. The results of Ry of battery RW3.

2.2.3. Number of Cycles

In the experiment, when we obtained a new group of full discharge cycle and charge cycle,
we increased the cycle counter; the value of the cycle counter is called the number of cycles in the
following part. We notice that the charge capacity and internal resistance showed clear increasing or
decreasing trend as the battery aged; the number of cycles that a battery had been going through also
had the same characteristic. It is natural to consider the number of cycles as an indirect HI, for the
battery degrades as the number of cycles increases. We demonstrate in the following sections that
introducing the number of cycles is necessary to improve the accuracy of the SOH estimation.

2.2.4. HI Refinement

The three indirect Hls extracted for SOH estimation are summarized in Table 2. We notice from
Figures 5 and 7 that the HIs extracted from the data contained many random errors. Thus, we applied
the exponentially weighted moving average (EWMA) method [29] to refine those Hls. Using EWMA,
the value of the current HI is a weighted average of several previous values of the HI. Supposing
Q = {01,Q2..,0n}, R = {Ry,Ry,...,RN}, and T = {Ty, Ty, ..., Tn} are the values of the HIs
obtained up to the Nth cycle, then the refinements of Q and Ry, k € {1,2, ..., N}, are found using the
following equation:

Q= eQ+(1—9)Q;,
Ri = ¢Rc + (1 - @)R;_,

where ¢ is the weight factor, which decays exponentially with k.

4)

Table 2. Three extracted health indicators (HIs) for SOH estimation.

Extracted HI Descriptions
Qk The estimated charge storage for the kth cycle
Ry The estimated internal resistance for the kth cycle
Ty The number of cycles up to the kth cycle

Moreover, in order to eliminate the large value difference between different HIs, we use min-max
normalization [30] to make sure all HIs belong to the same interval, [0, 1]. The transformation function is

% Q¢ —min(Q")

T

z max(kR*)—min(R*) ®)
« _ _ T—min(T)

k max(T)—min(T)
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Using the above refinement, the HIs extracted for battery RW3 for the whole 844 discharge cycles
under randomized use are shown in Figure 9. From Figure 9, we can see that as the battery aged,
Qj decreased, and R} and T} increased, all following a clear trend. These have a specific physical
significance to support that they are closely related to the degradation of the battery, which makes them
qualified for estimating the battery’s SOH. They are based on the voltage, the current and the number
of cycles the battery has been through, which indicates they can be easily obtained and calculated
during the battery’s operation. In the next section, we use these Hls to build the relationship between
the indirect HIs and the battery’s SOH.
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©

Figure 9. The indirect (health indicator) HIs extracted for battery RW3. (a) R}, (b) QZ/ and (c) T,i‘ .

3. State-of-Health Modeling Using Indirect Health Indicators

After the extraction of indirect HIs, a quantitative model that describes the relationship between
these HIs and the battery’s SOH should be developed. We consider that the SOH and these HIs follow
a linear regression model, that is, as follows:

Sc=axQf+bxRi+cxTf+d+e=Fp+e (6)
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where §; is the estimated battery’s SOH for the kth cycle, B = [a,b,c,d]” is the model coefficient vector
we have to estimate, F, = [Q}, R;, T;, 1], and ¢ is the error term. We assume the errors are identically
and independent distributed with a zero mean and finite variance 02, which means ¢ ~ N (0, 02).

Considering possible multi-collinearity among the Hls, we apply the elastic net method to estimate
the model coefficients. Proposed by Zou and Zhang [31], the elastic net is a regularized regression
method that linearly combines the L1 and L2 penalties of the lasso and ridge methods. Compared to
the Lasso, which tends to select one variable from a group of highly correlated variables, the elastic
net tends to distribute different weights to different variables. Therefore, the elastic net removes the
limitation on the number of selected variables and stabilizes the L1 regularization path.

To demonstrate the necessity of using the elastic net to construct our model, we need to prove
the existence of multi-collinearity among the HIs. Firstly, we use Pearson’s correlation coefficient [32]
between two different Hls to find whether these Hls are linearly correlated. The results are shown in
Table 3. Table 3 indicates that there is a remarkable linear correlation between these Hls. Then, we use
the variance inflation factor (VIF) [33] to quantify the severity of multi-collinearity. This indicates high
multi-collinearity when its value is greater than 10. The result of VIF was 100, which is an indicator of
high multi-collinearity. The existence of multi-collinearity forces us to use methods that can alleviate
the influence of multi-collinearity. This is why we chose the elastic net method.

Table 3. Results of Pearson’s correlation coefficient between HIs.

0 R T

Q 1 09845 —0.9872
R —0.9845 1 0.9912
T —09872 0.9912 1

The elastic net loss function defined as

N
L(A1, A2, B) = Y ISk — BxBI* + MBI + A2l Bl @)
k=1

where Sy is the battery’s true SOH at the kth cycle, A and A; are user-defined parameters, and

BP =a® + 0>+ +d?

®)
|Bl1 = la| + [b] +[c| +|d|
We define & = Ay /(A1 + A); then our target is to solve the following optimization problem:
S 2 2
MinL(a, B) =} |S¢ — FieB|* + a|B[* + (1 - ) |B)x ©)
k=1

where the function (1 — «)|B[1 + «|B|? is called the elastic net penalty, which is a convex combination
of the lasso and ridge penalty. When a = 1, the elastic net becomes simple ridge regression, and when
a = (0, the elastic net becomes simple lasso regression. In this paper, we consider 0 < a < 1 to combine
advantages of both regression methods.

The estimates of model coefficients are obtained by

N
l;:argﬁgnz Sk — FxBI* + (1 — )| Bl +a| B (10)
=1

After obtaining the estimate of model coefficient § by the elastic net method, the battery’s SOH
can be estimated using the values of Qy, Ry and T;. We used the dataset described in Section 2.1 to
estimate the model coefficient f for each battery and to demonstrate the effectiveness of the model.
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The estimation results are shown in Table 4. Using these estimates, we were able to estimate the SOH
of each battery at each cycle time. Figures 10-12 show the SOH estimation results for each battery,
accompanied with the true SOH measured in the reference cycle. The results support that the model is
effective to describe the relationship between HIs and the battery’s SOH.

Table 4. Estimates of model coefficients for each battery.

Battery a b c d

RW3 —0.1463 0.1229 —-0.1575 0.8505
RW4 —0.1220 0.1112 —0.1558 0.8638
RW5 —-0.1285 0.1071 —0.1517 0.8800
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Figure 10. (a) The model fit of battery RW3, and (b) the error of the model fit.
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Figure 11. (a) The model fit of battery RW4, and (b) the error of the model fit.
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Figure 12. (a) The model fit of battery RW5, and (b) the error of the model fit.

4. Online State-of-Health Estimation Using Particle Filter

To achieve online SOH estimation of lithium-ion batteries, we use PF to update the model
coefficients. When new measurements of the voltage, current and number of cycles are available,
the PF can automatically update the model coefficient B = [a,b,c,d]T in order to make the SOH
estimation more accurate.

4.1. The Method

The PF is a Monte Carlo-based computational tool that is particularly useful for Bayesian-framed
prognostics of nonlinear and /or non-Gaussian processes [34]. In order to approximate the marginal
distribution, the PF generates a large number of random particles and estimates the posterior density
function (PDF) through accumulating these particles with associated weights.

The PF considers a dynamic system to be represented by a state transition equation and an
observation equation, which are given by

State transition equation: X; = ¢ [Xy_1, Ug]

11
Observation equation: Yy = h [X, Vi (1)

where X is the state vector representing the true state of the system; Y is the measurement vector
documenting the observations acquired by sensors; g and k denote respectively the state transition
function and the observation function, which can be nonlinear; U denotes the progress noise and V
denotes the measurement noise; and k is the time index.

Then, the posterior PDF of X given all available measurements Y, up to time k can be
approximated using a set of weighted particles { (w},X.) : i = 1,..., M}, that is, as follows:

M .
Pr (Xi[Yox) = ¥ wid (Xe — X)
M @2
Y w,=1
i1
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where X;( denotes the ith particle and w]i is its associated importance weight; ¢ is the Dirac
delta function.

However, it is often impossible to sample directly from the true posterior density
Pr (Xi|Yo.x ). Therefore, a simpler distribution is introduced, denoted as the importance distribution,
q (Xk|Xo:k—1, Y1.x)- Then, the weight w};H is updated by

Wi — ot P IXe) Pr (Xe[Xe 1)
ket ¢ q (xk|XO:k—1/Y1:k)

(13)

In the standard PE, q (X;|Xo.x_1, Y1.x) is defined as Pr (Xi|Xy_1), and therefore the weight cu,i< 4118
normalized using the following formula:

W1 = Wiyt / Y W (14)
i=1
In our SOH estimation problem, we consider the model coefficients {a, b, ¢, d} as state variables in
the state transition equation, and they follow a Gaussian RW process. Then, with the empirical model
of Equation (6) we have established for the SOH and indirect HIs, we have the state transition equation:

A = Ag_q + 1,11 ~ N(0,07)
by =br 1 +uz 1241~ N(0,02)
(0,03)

Ck = Ck—1 + Uz 1,31 ~ N(0,03 (15)
d = d1 + Ugp1,Ua )1 ~ N(0,04) i
Sk = a1 X Qf +br1 X R{ +cp1 X T +dg_1 +us gusp ~ N(0,05)
and the observation equation:
S = SAk + Uk, U ~ N(0,0'6) (16)

where uy_1, Upr_1, Uzk—1, Usk—1, and us_; are five independent progress noises, which obey
zero-mean Gaussian distribution; vy is the measurement noise, which also obeys the zero-mean
Gaussian distribution. In this paper, according to the results in Table 4, we notice that the order of the
variables in the state transition is of 0.1. Therefore, the process noise is set as u; ;= 0.0001Vi € [1,5];
and the observation noise is set as v,= 0.0001.

Using the PF, we are able update the value of {ay, by, cx, di} given the latest measured SOH
Sk- Then, the updated {ay, by, ¢k, di} can be used to estimate the battery’s SOH at any future cycle
(the kth cycle, k > k), when the values of these indirect HIs are available. It is given by

g%:akaZ—i—kaRZ—FCkXTg—i—dk (17)

4.2. Result and Analysis

We choose batteries RW3, RW4, and RW5 to demonstrate the effectiveness of our method.
The method of cross-validation was employed, in which we used two batteries to train the model and
used the remaining battery to test the SOH estimation method. For example, in the first experiment,
the batteries RW3 and RW4 were used as the training batteries, and the battery RW5 was used as the
testing battery. In this way, we performed three experiments. The initial model parameters estimated
from the data of training batteries are listed in Table 5.
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Table 5. Initial model parameters.

Training Battery  Testing Battery a b c d
RW4, RW5 RW3 —-0.1202 0.1076 —0.1672 0.8699
RW3, RW5 RW4 —0.0946 0.1400 —0.1694 0.9829
RW3, RW4 RW5 —0.1276 0.1150 —0.1553 0.8606

To quantitatively evaluate the performance of the SOH estimation, two evaluation criteria
were used:

e  The root-mean-square error (RMSE):

1 N
RMSE = N Y (Sk — 5¢)? (18)
k=1
e  The fitness degree:
N
Y (Sk—Sk)?
R2=1— k}l - (19)
r (5= 95)?
k=1

where S, is the true SOH, $; is the estimated SOH, § is the mean value of all S, and N is the
sample size.

The estimation results without PF updating are shown in Figures 13-15. We can observe that
nearly all errors were smaller than 0.05. The results are quite good. To improve the estimation accuracy,
we used the PF to update the estimation results. We suppose that every five cycles we are able to
obtain the true value of the SOH; then the model parameters can be updated by the PF every five
cycles. The estimation results with PF updating are shown in Figures 16-18.

These show that compared to the results without PF updating, the error can be reduced with the
updating of model parameters. The detailed estimation results are shown in Table 6. When there is
no updating, we can still get a very good estimation result: the RMSE was around 0.02, and the R?
value was about 0.95. When the PF is used, a better estimation result can be obtained. The RMSE
was smaller than 0.02, and the R? was about 0.98. From the experimental results, we can expect that
our proposed SOH estimation method will have a good performance in SOH online estimation for
lithium-ion batteries under randomized use.

Table 6. SOH estimation results.

RW3 RW4 RW5
Evaluation Critieria Without = With Without  With Without  With
Update Update Update Update Update Update

RMSE 0.0287 0.0194 0.0194 0.0136 0.0261 0.0123
R? 0.9502 0.9773 0.9773 0.9866 0.9534 0.9896
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Figure 13. (a) State-of-health (SOH) estimation results and (b) estimation errors for battery RW3 using
indirect HIs without particle filter (PF) updating.
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Figure 14. (a) SOH estimation results and (b) estimation errors for battery RW4 using indirect HIs

without PF updating.
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Figure 15. (a) SOH estimation results and (b) estimation errors for battery RW5 using indirect HIs

without PF updating.
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Figure 16. (a) SOH estimation results and (b) estimation errors for battery RW3 using indirect HIs with
PF updating.
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Figure 17. (a) SOH estimation results and (b) estimation errors for battery RW4 using indirect HIs with

PF updating.
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Figure 18. (a) SOH estimation results and (b) estimation errors for battery RW5 using indirect HIs with

PF updating.

5. Conclusions

Timely estimating lithium-ion batteries” SOH is very important for preventing disasters caused
by battery failure. A general idea to estimate the SOH is through the measurement of the battery’s
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capacity. However, direct and simultaneous measurement of the battery’s capacity is not that easy
in practice. Moreover, the battery is always running under randomized loading conditions, which
makes the estimation even more difficult. Motivated by the above difficulties, this paper proposes an
indirect SOH estimation method that relies on three indirect Hls that can be measured easily during
the battery’s operation. The three indicators are extracted from the battery’s voltage, the current and
the number of cycles the battery has been through, which are far easier to measure than the battery’s
capacity. In order to build a quantitative relationship between the SOH and these indirect HIs, we
propose a method based on an elastic net to develop an empirical model between them, considering
the possible multi-collinearity between these HIs. Finally, to further improve the accuracy of SOH
online estimation, we adopt the PF to automatically update the model when new capacity data are
available. The experiment shows that our extracted indirect HIs are quite effective and our proposed
SOH estimation method based on these Hls is accurate enough to support SOH estimation under
randomized use in real practice.

In this paper, we have successfully applied our method to estimate the SOH of batteries under
randomized use. However, there are some limitations, on which we will conduct research in the future.
The data we used was obtained from a constant-temperature environment. Therefore, performing a
validation with temperature consideration is necessary. In this paper, the PF was used to update the
parameters in the model. Comparing the PF with other estimation schemes is necessary.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Adaptive neural network
EWMA  Exponentially weighted moving average

GPR Gaussian process regression
HI Health indicator

PF Particle filter

RMSE Root-mean-square error
RVM Relevance vector machine
RW Random walk

PDF Posterior density function

SOC State-of-charge
SOH State-of-health

SVR Support vector regression
VIF Variance inflation factor
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