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Abstract: Domestic energy modelling is complex, in terms of user input and the approach used
to define the model; therefore, there is an increase in the sources of uncertainties. Previous efforts
to perform sensitivity and uncertainty analyses have focused on national energy models, while in
this research, the objective is to extend traditional sensitivity analysis and use a local framework
combining principal component regression and Monte Carlo Simulation. Therefore, in our method
the total amount of the energy output’s variance is decomposed, in relative terms, according to the
contribution of the different predictor parameters. Our framework provides compelling evidence
that local area characteristics are important in energy modelling and those national and regional
indexes and values may not properly reflect the local conditions, resulting in programmes and
interventions that will be sub-optimal. Furthermore, our uncertainty methodology uses a three
dimensional integrative taxonomy and a concept map. The concept map identified concrete terminal
causes of uncertainty within the taxonomic framework of sources, issues, sub-issues and a further
abstraction of those quantities in terms of accuracy and precision. Understanding uncertainties in
this way provides a possible framework for modellers, policy makers and data collectors to improve
practice in key areas and to reduce uncertainty.

Keywords: concept map; cities; Monte Carlo Simulation; neighbourhood urban energy modelling;
principal component regression; sensitivity analysis; uncertainty taxonomy

1. Introduction

Despite the importance of the domestic energy modelling in sub-city areas, the energy sector
lacks a rigorous analytical framework to account for the uncertainties. The most common practice
is to assign a single uncertainty value to the modelled output. We develop a taxonomy (Taxonomy
comes from the Greek taxis meaning arrangement or order, and monos meaning law/science
(or knowledge)) that shows how uncertainties are propagated through the modelling process
(data—model—refinement—validation) and in the resulting estimates of annual energy consumption.
Furthermore, our concept map lays out all these factors in a common diagram, so that energy modelling
in sub-city areas can be better understood and synchronized in other cities.

In the last ten years, we found interesting research dealing with uncertainty and sensitivity
of energy models, and advanced statistics, examples are: Eisenhower et al. extended traditional
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sensitivity analysis in order to decompose the pathway as uncertainty flows through the dynamics
and identified which internal or intermediate processes transmit the most uncertainty to the final
output [1]; Grömping assigned shares of “relative importance to each of a set of regressors when
applying linear regression” [2] and Nguyen et al. employed several sensitivity analysis methods
commonly used in building simulation to assess the significance of various input parameters in
specific mathematical models and computer building energy models [3]. Summerfield et al. argue
that uncertainty appears in domestic energy modelling as follows: (i) input data, both in terms of the
accuracy of the individual input entry and the range of values associated with a particular building
component; (ii) in assumptions about the energy calculation engine, or inaccuracies in the values
implicitly assumed in the calculation for the weather characteristics surrounding the building, among
other assumptions; (iii) in differences between the measures ‘as modelled’ and the specification ‘as
constructed’; (iv) in differences in the occupancy patterns; and; (v) in issues with post-occupancy
surveying and monitoring of the building [4]. Additionally, Rubin argue that if the individual dwelling
energy results are to be aggregated within the sub-city areas, then all of the dwelling profiles for the
whole area have to be filled; if not, issues of missing data become important [5].

Our paper provides a tri-dimensional taxonomy of uncertainty using a concept map. Our concept
map requires the identification of the sources, issues and sub-issues of the uncertainties in the modelling
process. In addition to the taxonomic structure, due to variations in energy phenomena that need to be
numerically calculated, this paper also considers data distributions reflecting the uncertainty available
to allow the use of numerical simulation methods for uncertainty quantification and propagation.
For this uncertainty analysis, therefore, it is possible to use methods such as those based on Monte
Carlo analysis due to variations in phenomena that can be numerically calculated.

For the sensitivity analysis of the input variables, our paper uses, in Sections 3 and 4, a framework
which combines principal component regression and Monte Carlo Simulation Method. The principle
of Monte Carlo Simulation is the propagation of the input (predictors) probability distributions
through the model. This provides a general probabilistic basis for uncertainty evaluation in the
energy estimation outcome. Monte Carlo Simulation is used as a method to study the uncertainty
propagation through the model. This study uses a dimensional approach opposite to a categorical
approach to synthesis [6]. The advantages of using our framework are to explore many combinations
of energy predictors and analyze all possible outcomes for significantly more accurate results and to
identify the factors with the most impact, i.e., identify the factors in the energy predictors with the
greatest impact on energy consumption. Our framework, see Section 4.2, uses the gas consumption of
bungalows in Castle, a particular district in Newcastle upon Tyne, a city in the north east of England.
Our proposed framework is quite general. Thus, it can be presented as a ‘local energy model’ as an
applicative example.

This paper follows our previous work [7] using the Newcastle upon Tyne Carbon RouteMap
Modelling Framework (NCRF). NCRF inherited the Newcastle Carbon Route Map (NCRM) [8],
which is an early incarnation of a building level data set for Newcastle. The initial phase of this research
involved substantial data management, cleaning, restructuring and additions to this initial data set.
The resultant data set incorporated, in a single database table, a large number of building-related data
sets. NCRF utilises this data set and adds to the energy modelling aspect through linking with the
English House Survey (EHS) as input to the Cambridge Housing Model (CHM). This provides the
means to produce building-level energy consumption estimates which in turn can be analysed both
spatially and aspatially (e.g., by building type).

2. The Uncertainty Characterization

This section introduces the uncertainty characterization, but first introduces the two broad types
of uncertainty: parametric and structural uncertainty; then suggests a relationship between the number
of predictors (and their accuracy) in the accuracy of the model output. These two concepts, types and
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accuracy, are important to understand as this approach is used to frame the uncertainty and sensitivity
in further sections.

Hickman et al. argues that the term uncertainty has been used to describe two different high level
concepts where uncertainty can be found, the parameters and the structure [9]. Parametric (aleatory)
uncertainty is the random variability in some parameter or measurable quantity, and structural (epistemic)
uncertainty is an imprecision in the knowledge about a model, or its estimates. The distinction between
these two concepts indicates that in the case of structural uncertainty, this can be decreased if there is an
effort in data gathering that improves the quality of decision making and therefore reduces the uncertainty,
but this cannot affect the fundamental random variability of the individual parameters.

When modelling sub-city areas, many parameters (or predictors) of the household real characteristics,
the physical dwelling, the energy system and the close environment have to be set. However, when there
is low information (e.g., household behaviour), usually designers choose to set several predictors with
standard parameters in the structure of the model. If these standard parameters do not fit with the local
area characteristics, a discrepancy between the modelled and measured energy consumption is observed.
Therefore, we have to consider the structural uncertainties in the model. In the example, there are
two main user behaviour parameters that influence the energy balance of the building: the indoor air
temperature and the air exchange rate. The air exchange rate is caused by the infiltration, leakages in the
building envelope, and the opening of windows and doors, these two effects are not completely separated
and usually difficult to disaggregate. Consequently, they are presented in models as the total amount
of air exchanged between the inner and the external space. To gain a better insight into this uncertainty,
at least two options are available: either modify the existing model structure or use a systematic variation
of the input predictors. The aim ‘modifying the structure’ is to change the model equations for every
parameter, which is not desirable; therefore, extending, or changing, the original existing model [10]
requires an impressive amount of modelling effort for all the parameters that use a standard definition
and actual data to fill in. For the second option, which is the one used in this paper, it is possible to
use the ‘standard model’ and apply a systematic variation of the input parameters to a Monte Carlo
simulation method. In the Monte Carlo Simulation method (see Section 4), the probability distributions of
the uncertain parameters are derived from measured data. Then, random numbers, for every uncertain
parameter, are drawn from these distributions and combined to ‘one set of parameter inputs’ and applied
trough the model description to gain an increased understanding of the relationships between predictors
and the energy output variables.

Over this increased data gathering effort, Chapman argues that the rate of error in data input
increases linearly with increasing data requirements, i.e., the more data that are measured and entered,
the chances are that they could generate more errors, and the accuracy of a model increases with the
logarithm of the number of data items required, i.e., the benefit of additional data is less than their
linear increment [11]. Accuracy of the model means the degree to which the model could predict the
estimates of energy given perfect data input, i.e., redundant (or dependent) input data do not improve
the linear accuracy of the model. In short, adding more data makes things worse.

Figure 1 provides a Venn diagram [12] to illustrate the organization within the uncertainty
characterization space and lists some of the specific methods for each subset: uncertainty quantification
and uncertainty propagation.

The main terms defined in Figure 1 and in use in this paper are: uncertainty characterization,
uncertainty quantification, and uncertainty propagation. The meaning of each of these terms is as
follows [12]: ‘Uncertainty characterization is any proposition (declaration) that measures, quantitatively
or qualitatively, the degree of uncertainty associated with a parameter and prediction; Uncertainty
quantification is a subset of the uncertainty characterization in which only quantitative measures (in this
research probabilistic density functions) are defined for uncertain parameters and predictions; Uncertainty
propagation means making inferences about the uncertainty characterization in the output predicted
parameters (model results) based on the uncertainty characterization of the input parameters’.
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Figure 1. Uncertainty characterization [12].

The techniques for propagating uncertainties can generally be classified [13] as intrusive or
non-intrusive. Intrusive methods require reformulating the mathematical physical model. Non-intrusive
methods use ensembles of simulations, where simulation ensemble members are created by assigning
a probability density to the uncertain NCRF inputs according to various schemes that match each
input in the sample. The impact of the input uncertainties and the model are analysed for the NCRF
energy outcome, i.e., the annual energy consumption of that individual property type. This paper
uses a non-intrusive uncertainty propagation method, because even though it is possible to modify the
framework equations, this will require an impressive amount of modelling effort for all the predictors that
use standard definitions. In the rest of this section, uncertainty propagation will assume non-intrusive
uncertainty propagation.

The stochastic nature of the NCRF samples makes it necessary to estimate the probability density
function of the output of the model from the statistical distribution for each of the model parameters,
and a technique for propagating uncertainties (the Monte Carlo simulation method). The Monte Carlo
simulation method is a problem-solving technique used to approximate the probability of certain
outcomes (consequences) by running multiple trial runs, called simulations, using random variables.

The next section presents the key uncertainties in the energy model using a particular taxonomy
originally used in the medical field [14]. The taxonomy clarifies the uncertainty by classifying systems
in terms of concepts of knowledge, a graph (for plotting) these concepts and a hierarchy. The hierarchy
links terms of a membership relation and a connectivity arrow joins each of the selected concepts to a
source. This paper uses a hierarchical taxonomy to understand the uncertainty characterization in the
NCRF domestic energy processes.

2.1. A Taxonomy of Key Uncertainties Using High-Level Frameworks

This section proposes a three dimensional integrative taxonomy of uncertainty representing a
conceptual framework that helps to organize our knowledge by drawing our attention to relevant
sources, issues and the nature of uncertainty in the NCRF estimates. This section shows how
uncertainties are propagated through the modelling process (data—model—refinement—validation)
and in the resulting estimates of annual energy consumption.

Figure 2 shows a three dimension integrative taxonomy of the uncertainty adapted from [14] by
identifying the nature (location), the cause (level) and the extent (nature) of the uncertainty. The first
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dimension is the location (source) dimension of uncertainty that relates to where the uncertainty
manifests within the complex energy model; the second dimension is the level (issues) dimension of
uncertainty that relates to where the substantive issues (and from there the sub issues if meaningful) of
uncertainty manifest along the whole spectrum between deterministic knowledge and total ignorance;
and the third dimension is the nature (locus) dimension of uncertainty which relates to whether
the uncertainty is due to the lack of knowledge or is due to the inherent variability of the variable
being described.
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The model outcome uncertainty in Figure 2 is the accumulated uncertainty caused by the
uncertainties in all of the locations (context, model, inputs to the energy model, and refinement)
that are propagated through and are reflected in the resulting estimates of annual energy consumption
(aggregated in geographic boundaries or repeated for the same property type, floor area and year of
construction). This uncertainty outcome could be considered a prediction error, since it is different from
the United Kingdom’s Department of Energy and Climate Change (DECC) median value. As DECC
values for energy consumption are known, a validation exercise was carried out to compare the median
DECC value (as the true value) and NCRF predicted values in order to establish the prediction error.

Figure 2 accounts for the aggregate of uncertainties in all sources. However, it should be noted that
NCRF could be used as an energy policy analysis model and estimate energy at other boundaries where
there is no aggregation (beyond DECC known values), i.e., to estimate annual energy consumption
outcomes for aggregated (or repeated) situations where DECC values are not publicly available.
For those cases, the taxonomy shown in Figure 2 is still valid.

In Figure 2, the uncertainty issues are related to the methodology of the energy estimations.
The first dimension ‘Location’ of uncertainty refers to: analytical approach, domestic energy model,
full SAP (The UK Government’s Standard Assessment Procedure for the Energy Rating of Dwellings
(SAP) was developed by Building Research Establishment (BRE) based on the BRE Domestic Energy
Model (BREDEM) and was published by BRE and the Department of the Environment in 1992) input
and refinement/validation. This section explains the three dimensions associated with the ‘analytical
approach’, leading to Section 2.2 based on the uncertainty in the other sources identified, namely,
the ‘domestic energy model’, ‘full SAP input’ and ‘refinement/validation’.

The analytical approach refers to the conditions and circumstances that underlie the choice of the
boundaries of the system, the framing of the concepts and the terminology of the research question
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to be addressed within those boundaries. In this paper, the term analytical approach refers to the
following issues: (i) the energy model and (ii) the size of the data space occupied by a model [15],
which is related to its complexity. The NCRF energy estimates correspond to an engineering method
which calculates the energy consumption of end-uses for dwellings based on the heat transfer and
thermodynamic properties. Model complexity arises from the fact that NCRF has multiple inputs at
different scales. It has two data sets at a resolution of the individual dwelling, one data set of rough
approximations of household occupancy and three average regional scale landscape and climatic
data sets.

The third dimension of the uncertainty is the nature of uncertainty. An important feature of
uncertainty is the distinction between: (i) epistemic uncertainty (the uncertainty due to the imperfection
of our knowledge), which may be reduced by doing more research and using added empirical efforts;
and (ii) variability uncertainty, which is due to the inherent variability of the data. Between these two
extremes, there is ‘ontological uncertainty’, which can be seen as having a semi-structured uncertainty,
and ‘small area estimation uncertainty’, which can be seen as having a semi-variability uncertainty,
as shown in columns of Figure 2.

The arrows in Figure 2 associate the NCRF outcome uncertainty with the first dimension sources,
and in turn associate each source with its issues. The figure also presents the outer left source analytical
approach having a structural (epistemic) uncertainty in the locus third dimension and from there an
increasing parametric uncertainty, at the far right, with the refinement, i.e., the validation source.

CHM uses standard parameters that do not fit with the local area characteristics, then a
discrepancy between the modelled and measured energy consumption can be observed. This means
that this paper has to consider the structural uncertainties in the taxonomy of Figure 2. Also, the ‘CHM
model’ is an idealized model of the domestic stock, and there is the possibility of an undetected error
in the design that introduces ‘ontological uncertainty’. As an example, CHM does not consider some
energy saving/generation technologies like the small-scale hydro-electric generator which is being
considered in SAP 2009. The introduction of technologies that might be unfamiliar to the CHM model
may carry a higher degree of ontological uncertainty.

The input data to CHM correspond to a full SAP data set. The cross-study analysis,
spatial interpolation methods for asserting parameters, and the record augmentation strategy show
how this paper performs indirect estimates from secondary sources (EHS, UK Census) in a city sample.
The output estimation is the underlying expected value for any area given the independent variables
included in the NCRF estimates and not the real value for the ‘small area’ in question. For this reason,
as this is not a direct measure of the constructed SAP record for each dwelling in the city, but rather an
estimation for each building, it can be considered as numeric uncertainty, i.e., towards the righthand
side in Figure 2.

2.2. The NCRF Outcome Parametric Uncertainty Using a Concept Map

This section explains the second dimension (issues) for the sources of parametric uncertainty
using a concept map. The idea is to show the key issues that connect and relate to the main sources
of uncertainty and rank them with the most general, with inclusive issues coming first, and then
links to smaller, more specific concepts until it reaches the quantification of the uncertainty in
terms of an inaccuracy or imprecision. The concept map (CM) is proposed as a human friendly
knowledge-representation of uncertainties, and is a tool especially defined for application in the
learning process. It is easy to create, and is flexible and intuitive for people to understand [16–18].

The formalization in a CM of the quantified parametric uncertainties in the NCRF outcome is
presented in Figure 3. Figure 3 is an extension of a previous work published on the uncertainties
of the CHM [19] (see [19] for the uncertainties in this source model). This paper uses the CHM
uncertainty model as a starting point for an emerging spatial, area-based urban, domestic energy
model of uncertainties. Figure 3 shows the CM section derived from [19] plus the additional CM
sections describing uncertainty sources from NCRF: ‘Full SAP input’ and ‘refinement/validation’.
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In Figure 3, the green colour corresponds to the sources of uncertainties, and orange represents
the issues (activities and disagreements) causing the uncertainties in the corresponding sources. Purple
represents the sub-issues (a logically visible subdivision of an issue) and finally the terminal slots in
green represent a further abstraction of those quantities that cause uncertainty in terms of accuracy and
precision. The accuracy is the degree of closeness of measurements (of a quantity) to that quantity's
actual true value and the precision (also called the reproducibility or repeatability) is the degree to
which repeated measurements under unchanged conditions show the same results.

From Sections 2.1 and 2.2, the uncertainty taxonomy can be summarized according to few dominant
factors: (i) the underlying assumptions about processes exogenous to the model (e.g., climate variables).
This will reflect in regional average parameters to be entered into the model; (ii) the underlying
assumptions about endogenous processes in the model (e.g., spatial interpolation). Because none of the
district zones in Newcastle upon Tyne are homogeneous, the resulting algorithm produces different
surface structures in complex areas; (iii) the assumption in judgements, such as the ontology of the CHM
model, e.g., in the building occupant behaviour, cannot only be a function of the usable floor area as
in the SAP; (iv) the simplifying assumptions in the structure, e.g., the sum of meter points or domestic
energy consumption at the Lower Layer Super Output Area (LLSOA) level does not always equal the
sum of meter points of domestic energy consumption at the associated Middle Layer Super Output Area
(MLSOA) level due to unallocated meters; and, finally (v) different weather correction methodologies
in Department of Energy and Climate Change (DECC)/National Energy Efficiency Data-Framework
(NEED) and CHM lead to some discrepancies (inaccuracy), which probably vary somewhat from year to
year, because the exact methodology for weather correction for NEED/DECC is not fully disclosed.

3. Framework Combining Principal Component Regression and Monte Carlo Simulation

Cullen and Frey argue that probabilistic sensitivity analysis explores two potentially important
outcomes: first, the shift in the central tendency of a model results due to the shape in the distribution
for the model inputs [20]. Comparing the results of the analysis, it is possible to identify subsets
of input that have a profound influence on the central tendency of the output. Second, when
principal components have been used to identity inputs which are significant contributions to output
variance, the output variance may change, and, therefore, the relative importance of different sources
of variability needs to be assessed.

Examples of Monte Carlo simulations for probabilistic modelling are being used in the field of
nutrition; an example is the Office of Food Additive Safety (OFAS) (OFAS is in the Office of Food and
Drug Administration (FDA) in the United States) that uses the Monte Carlo simulation to calculate
percentile intakes for substances [21]. These simulations generate results for models in which several
inputs can be defined by a distribution of values. Rather than using a single value for an input,
the simulation selects a value at random from the distribution of possible values for that input, and
uses that value to calculate an outcome for the model; also, Matthys et al. uses a probabilistic modelling
of dietary exposure to micronutrients [22].

The probabilistic sensitivity analysis is used in this paper to assess the relative importance of
model input predictors in the variance and central tendency of the energy consumption in a sample.
The output from the Monte Carlo simulation is a range of possible outcomes from which a probability
distribution function is prepared. The rest of the paper deals with a ‘what if scenario’ sensitivity
framework. In this framework, the importance is in how the uncertainty of the NCRF gas consumption
of bungalows can be explained in terms of the different sources of uncertainties.

For the energy consumption estimates (y), two types of different although related questions can be
asked: (i) what is the uncertainty in the y(x) given the uncertainty in the n predictors x? And (ii) how
important are the individual elements of x with respect to the uncertainty in y(x)? The goal of uncertainty
analysis is to answer the first question, and the goal of sensitivity analysis is to answer the second question.
However, the analysis of both is very closely connected. Helton et al. argue that the basic components
that underlie the implementation of a sampling-based uncertainty and sensitivity analysis are: [23] (i) the



Energies 2017, 10, 1986 9 of 22

definition of distributions D1, D2, . . . , Dn that characterize the elements x1, x2, . . . , xn of x; (ii) the sample x1,
x2, . . . , xn, obtained from the x in consistency with the distributions D1, D2, . . . , Dn; (iii) propagation of the
sample through the analysis to produce a mapping [xi, y(xi)], for i between 1 and n; (iv) the presentation of
uncertainty analysis results (i.e., approximations to the distributions of the elements of y constructed from
the corresponding elements of y(xi); and (v) the determination of sensitivity analysis results (i.e., exploration
of the mapping [xi, y(xi)], for i between 1 and n). In this paper only probabilistic characterizations of
uncertainty are considered. Alternative uncertainty representations [24] are outside the scope of this paper.

For the definition of the distributions D1, D2, . . . , Dn, this is typically done through an expert
review process [25] and is shown in Section 4. For the sample, the control of correlations is an important
aspect of sample generation; specifically, correlated variables should have correlations close to their
specified values, and uncorrelated variables should have correlations close to zero: in this paper a
random sample was chosen from the NCRF and the correlations found in the principal component
analysis. The propagation of the sample through the analysis to produce the mapping [xi, y(xi)], for i
between 1 and n, is often the most computationally demanding part of a sampling based uncertainty
and sensitivity analysis. This paper uses regression analysis [23] to provide an algebraic representation
of the relationships between y and one or more of the xi. Regression analysis is usually assumed
to involve the construction of linear models of the form ŷ = b0 + bixi. For purposes of sensitivity
analysis, there is usually no reason to construct a regression model containing all the uncertain
variables; rather, a more appropriate procedure is to construct regression models with the most
influential variables [23] (i.e., in our paper usable floor area, dwelling type, construction date, cavity
wall insulation, primary heating system—type of system, and boiler group as shown in Section 4.2)
i.e., the principal component result for an NCRF subset. A similar procedure is also used in [26],
who argue that good practices for sensitivity analysis include regression and correlation analysis
among the input variables and model outcomes to allow the determination of which of the input
variables is most sensitive. The sensitivity analysis is important in energy modelling. The International
Energy Agency [27] considers that ‘the key purpose of sensitivity analysis is to identify and focus on
key data and assumptions that have most influence on a result’.

Hughes et al. performed a Monte Carlo analysis of the CHM using a random sample of selected
inputs, but perhaps the caveat of their approach was that uniform distributions were assumed for the
majority of parameters because of the lack of reliable data [19]. This paper uses the fitted distribution
for every predictor in the NCRF sample.

3.1. Variables Used in the Monte Carlo Analysis

This section explains the reduced variables used to the Monte Carlo analysis and Section 4 shows
the Monte Carlo analysis results. A Monte Carlo uncertainty analysis is then undertaken to provide an
indication of the impact of multiple uncertainties on model outputs (see Section 2). The concept map was
developed to outline a number of potential sources of uncertainty in the absence of reliable information [19].
The model for the Monte Carlo analysis is for individual property types. The model is represented using
only survey data (not interpolated data) in the detailed model. The detailed model energy profile has ten
variables: usable floor area (floorarea), dwelling type (dwtype7x), construction date (fodconst), number of
floors above ground (storeyx), predominant type of wall structure (typewstr), cavity wall insulation (felcavff ),
main heating fuel (finmhfue), primary heating system (Finchtyp), boiler group (finmhboi) and tenure (tenure8x).
The gas consumption in terms of the variables is shown in the Equation (1):

Gasi = ui + β1 + β2 f loorareai + β3 dwtype7xi + β4 f odconsti + β5 storeyxi
+ β6 typewstri + β7 f elcav f fi + β8 f inmh f uei + β9 Finchtypi
+ β10 f inmhboii + β11 tenure8xi

(1)

where Gasi, the value of the dependent variable in observation i has two components: (i) the disturbance
term, ui; and (ii) the non-random components, each being described as the explanatory (or independent)
variables and the fixed quantities β1, . . . , β11 as the parameters of the equation.
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A regression analysis was performed and the results found that the following variables are
constants or have missing correlations: number of floors above ground (storeyx), predominant type
of wall structure (typewstr), main heating fuel (finmhfue) and tenure (tenure8x). This is the reason are
being deleted from the analysis. Therefore the final fitted regression is given by Equation (2).

Gas1i = b1 + b2 f loorareai + b3 dwtype7xi + b4 f odconsti + b5 f elcav f fi
+ b6 Finchtypi + b7 f inmhboii

(2)

where the Gas1 indicates that it is the fitted value of annual heating gas consumption, not the actual
value; the explanatory variables are: (i) usable floor area (floorarea); (ii) dwelling type (dwtype7x);
(iii) construction date (fodconst); (iv) cavity wall insulation (felcavff ); (v) primary heating system—type
of system (Finchtyp); and (vi) boiler group (finmhboi). There is also a continuing assumption that
the explanatory variables (each one) are a ‘no stochastic exogenous variable’, and b1, . . . , b7 are the
regression estimates of the coefficients.

However, there is an issue underpinning this method that has to be considered. The unit distance
of measure in categorical attributes is diverse. The notion of similarity or distance for categorical data
is not as straightforward as for continuous data. The key characteristic of categorical data is that the
different values that a categorical attribute takes are not inherently ordered. Thus, it is not possible to
directly compare two different categorical values [28]. Additionally, the magnitude (or distance) between
the full categorical score values (the range) is different and has no origin. For example, the categorical
range in the heating variable is 16, i.e., the different combinations of fuel type and heating systems, while
the categorical range of wall construction variable is six, i.e., the different combinations of wall type and
wall insulation, and a categorical value of 15 in the variable heating system is not necessarily fifteen times
more efficient than a categorical value of one, so the same applies for wall construction. Last, categorical
scores have no origin; a score of zero in wall construction does not necessarily imply an absence of
the wall. However, for numerical attributes, distance measures are a natural concept. In NCRM a unit
distance could mean using a different type of boiler or being in a range in a dwelling size or dwelling age.
The impact on the energy consumption is bigger in a unit distance pertaining to dwelling size compared
with any other unit distance.

3.2. Principal Component Regression

Probabilistic sensitivity analysis [20] explores two potentially important outcomes: first, the shift
in the central tendency of the model results due to the shape in the distribution for the model inputs.
Comparing the results of the analysis, it is possible to identify subsets of input that have a profound
influence on the central tendency of the output. Second, when principal components have been used
to identity inputs which are significant contributions to output variance, the output variance may
change and therefore the relative importance of different sources of variability must be assessed.

Our framework uses principal component regression and the Monte Carlo simulation; therefore, in
this method, the total amount of the output’s variance is decomposed, in relative terms, according to the
contribution of the different predictor parameters as shown in Figure 4. We argue that for purposes of
sensitivity analysis, there is usually no reason to construct a regression model containing all the uncertain
variables, rather, a more appropriate procedure is to construct regression models with the most influential
variables [23] (i.e., in our study usable floor area, dwelling type, construction date, cavity wall insulation,
primary heating system—type of system, and boiler group), i.e., the principal component result for an
NCRM subset. A similar procedure is also in Manache and Melching [26], who argue that good practices
for sensitivity analysis include regression and correlation analysis among the input variables and model
outcomes to allow the determination of which of the input variables is most sensitive.

In Figure 4, the variability, or uncertainty, associated with an important input parameter is
propagated through the model, resulting in a large contribution to the overall output variability.
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The principal component analysis confirms the regression results. The component matrix in
the principal component analysis shows a systematic correlation (association) between dwelling
size, built form and number of floors (principal component one PC1), and between age and wall
construction (principal component two PC2) (see Table 1). Principal components (from principal
components analysis) reflect both common and unique variance of the variables and may be seen as a
variance-focused approach seeking to reproduce both the total variable variance with all components
and to reproduce the correlations. Additionally, PC1 and PC2 satisfy the criterion of explaining 60% or
more of the total variance (see Table 2). The reason is because of the bungalow sample: the predictor
number of storeys (all bungalows have just one storey) and the wall type (mostly are cavity) are both
constants. Therefore, for the bungalow sample, the predictors in the principal component PC1 are
dwelling size, building form, heat fuel and heating systems, the last two now are included in the
variability of the bungalow subset, and the variables in the principal component PC2 are dwelling
age and wall insulation. Equation (2) represents the fitted regression equation and also a regression
of the principal component variables. Jolliffe argues that the use of the principal component analysis
approach is to “overcome the problem of multicollinearity, namely, the use of biased regression
estimators” [29].

Table 1. Principal component analysis component matrix.

Total Variance Explained

Component Initial Eigenvalues

Total % of Variance Cumulative %

1 2217 37 37
2 1369 23 60

Table 2. Principal component analysis total variance explained.

Component Matrix a

Component

1 2

age −0.156 0.823
number of floors 0.879 −0.006

dwelling size −0.693 −0.073
wall construction 0.193 0.824

building form 0.888 −0.080
heating 0.337 −0.015

Extraction Method: Principal Component Analysis. a 2 components extracted.

The sample chosen for the Monte Carlo analysis is the 55 observations of Castle bungalows with
construction date from 1965 to 1982 and usable floor area from 76 to 100 sqm. The choice of this sample
is arbitrary in a way and could be any other sample; however, Castle bungalows are bigger than North
East England bungalows, and in broad terms, we would like to confirm that the usable floor area is a
sensitive energy parameter in the sub-city areas.
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The properties of the regression estimates of the coefficients depend crucially on the validity of
the specification of the model. The consequences of misspecification of the variables in a relationship
are: (i) if this study leaves out a variable that has to be included, the regression estimates are in general
biased. The standard errors of the coefficients and the corresponding t test are in general invalid;
and (ii) if this study includes a variable that is not in the equation, the regression coefficients are in
general inefficient but not biased. The standard errors are in general valid, but, because the regression
estimation is inefficient, they will be needlessly large [30]. Therefore, because of (ii), this paper will
use, for the Monte Carlo Simulation, the fitted model (Equation (2)).

Table 3 describes the variables and distributions used for Monte Carlo analysis, which were
obtained by counting the occurrences of values within a Castle bungalow group (or sample). In this
way, Table 3 summarizes the distribution of values and Table 4 the distribution variables.

Table 3. Distribution values of variables used in the Monte Carlo analysis.

Statistics Dwelling Type Construction Date Cavity Wall Insulation Primary Heating Systems Boiler Type

Mean 3.35 6.47 1.55 1.33 3.2
Mode 3 5 2 1 3

Standard
Deviation 0.480 0.920 0.503 0.747 1.580

Variance 0.230 0.846 0.253 0.558 2.496
Range 1 4 1 2 5

Minimum 3 4 1 1 1
Maximum 3 4 2 3 6

Sum 184 356 85 73 176
Percentile 25 3 6 1 1 3
Percentile 50 3 6 2 1 3
Percentile 75 4 7 2 1 3

Table 4. Probability distribution function used in the Monte Carlo analysis.

Variable Distribution Mean Standard Deviation

Dwelling type Normal 3.35 0.480
Construction date Normal 6.47 0.920

Cavity wall insulation Normal 1.55 0.503
Primary heating

system—type of system Normal 1.33 0.747

Boiler type Normal 3.20 1.580
- - Minimum Maximum

Usable floor area Uniform 76 100

From Table 3, a formal probability density function can be superimposed for each of the variables,
i.e., a normal probability distribution with mean and standard deviation based in the Castle bungalow
sample. An alternative approach could be to use the observed data to generate a probability density
function; this procedure may produce probability densities that are symmetrical, asymmetrical or
multimodal depending on the sample; the most common method is to use kernel estimation [31].
The computation of the kernel estimation method is tedious and requires a large sample to reliably fit
a probability density function [32]. The Castle bungalow sample is small, so this research will assign a
normal probability distribution to all explanatory variables except usable floor area.

For the usable floor area, it follows that an increase in the usable floor area increases the demand
for heating gas (to keep a desired temperature in the dwelling). Interestingly, 48 of the bungalows (87%
of the sample) have two rooms and the expected value for the floor area of the sample (88 m2) is equal
to the expected value to that of the uniform distribution ((100 m2 + 76 m2)/2 = 88 m2). This means
a uniform probability density function is the better fit for the usable floor area probability density
function; also, since a uniform distribution is shaped like a rectangle, the probabilities will be easy
to determine.
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Table 4 shows the normal probability density function for the explanatory variables in the fitted
model of annual gas consumption (Equation (2)).

In Table 4, the mean is the expected value, and the standard deviation measures the amount of
variation or dispersion from the mean (average). For instance, the bungalow dwelling type is either
detached or semi-detached in the sample (a low value of standard deviation) whereas the bungalow
boiler type is spread out over a large range of values: warm air, standard boiler, combinational boiler
or combinational condensing boiler in the sample (a high standard deviation).

In summary, this section has assigned a probability density function for each of the six explanatory
variables of the fitted model used in the Monte Carlo simulation described in Section 4. The probability
density functions were assigned by superimposing the assigned probability density function on the
sample histogram. The Monte Carlo simulation will propagate the probability density functions of the
explanatory variables through the NCRF model and the output (the annual energy consumption) of
the Castle bungalows.

4. Monte Carlo Simulation and Sensitivity Analysis for Sub-City Samples

This section introduces in Section 4.1 the framework of the NCRF sensitivity analysis and in
Section 4.2 the actual Monte Carlo simulation analysis results.

4.1. Sensitivity Analysis Framework

The key purpose of sensitivity analysis is to identify (and focus) on key data and assumptions
that have most influence in the NCRF energy model output estimates.

Hughes et al. performed a local sensitivity analysis and a linearity test for the 31 most sensitive
parameters of the CHM England’s (national) housing energy model [19]. This paper extends the
Hughes sensitivity results to sub-city areas. This section reflects on the innovative approach taken to
model the uncertainty in both the inputs and the pathway as uncertainty flows through the model.

Sensitivity analysis in [19] describes the sensitivity of 102 parameters, including housing data,
climate data, demand temperature, heating regimens and a number of SAP parameters. The Hughes
study assumes a One-at-a-time (OAT) sensitivity analysis, or changing input parameters individually,
while holding the others constant, and assessing the effect on the output. In simple terms, the sensitivity
analysis considers the impact due to parameters varied in isolation [33], which this research improves
by considering the correlation of the explanatory variables found in the principal component analysis
in the sensitivity model.

Other authors also reflect on OAT sensitivity analysis, e.g., Saltelli et al. argue that OAT use is
“predicated on assumptions of model linearity which appear unjustified in the cases reviewed” [34].
Good practices for sensitivity analysis are also increasingly seen based on regression analysis [26],
variance based methods [35] and meta-modelling [36]. All these treat the model as a black box.
When information is available, as is the case on this research, on the sample and the characteristics
of the model, an innovative solution (other than OAT) can be designed for the sensitivity analysis.
This research approach uses a regression analysis approach.

4.2. Monte Carlo Simulation and Sensitivity Analysis

Monte Carlo simulation is typically characterized by a large number of explanatory variables.
This paper uses a parameter sensitivity analysis to quantify the effect of the explanatory variables
(parameters) in the energy model output (annual heating gas consumption in dwellings). This information
is then used to decide which explanatory variable should be optimized (or determined more accurately)
through further survey or passed to a careful refined data process.

This section performs first a Monte Carlo by simulating the explanatory variables of the model
(or the predictors) scoring the output of interest (in this research the DECC median value) as a base
line. We then ‘tweak’ different predictor parameters of the model in a ‘what if’ and sensitivity analysis,
i.e., using the NCRF estimated model sample results as a starting point and then change parameters
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from this base line. The Monte Carlo simulation results are analysed over a sample of 57 NCRF Castle
bungalow dwellings age 1965 to 1962 and floor area 76 to 100 sqm.

The experimental framework uses the Monte Carlo simulation in the following roadmap: (i) a
deterministic relation between annual heating gas consumption as the output (Y) and the predictors
(X1, ... X6) are found (see fitted model Equation (2)); (ii) the probability density functions of X1, ..., X6

are fitted from sampled data along with the parameters (see Table 4); (iii) the correlations of existing
inputs X1, ..., X6 are inputted to the Monte Carlo simulation; (iv) for each independent variable X1,
..., X6, 57 random numbers (57 Castle bungalows) are simulated that follow the probability density
function properties of the previous step. As a result, a (57 rows × 6 columns) matrix of simulated
independent data is then available; (v) the deterministic relation between Y and (X1, ..., X6) is applied
to the previous matrix. As a result, 57 simulated values for Y are generated; and (vi) the resulting
distribution for Y is finally examined for reasonable assumptions about the nature of uncertainty
expected from the model and source data (see Section 2).

In summary, the NCRF sensitivity analysis is interested in what is the likelihood of achieving the
2009 DECC energy gas consumption (median value) for a new bungalow dwelling. The dependant
variable is annual heating gas consumption and the predictors are: (i) usable floor area; (ii) dwelling
type; (iii) construction date; (iv) cavity wall insulation; (v) primary heating fuel—type of system;
and (vi) boiler group. The coefficients of the regression analysis are shown in Table 5.

Table 5. Coefficients of the regression analysis a.

Model

Unstandardized Coefficients Standardized Coefficients
Inferential

Statistical t-Test
Significance
ProbabiltyBeta

Coefficients
Standard

Error
Beta

Coefficients

(Constant) −2972.591 8527.128 - −0.349 0.729
Floor area 249.533 68.817 0.452 3.626 0.001

Dwelling type 683.926 856.747 0.092 0.798 0.429
Dwelling age −719.608 495.683 −0.186 −1.452 0.153
Cavity wall
insulation 1379.358 789.407 0.195 1.747 0.087

Primary
heating fuel 889.723 862.686 0.187 1.031 0.308

Boiler type −1192.025 406.517 −0.530 −2.932 0.005
a Coefficients considering the dependent variable the heating gas consumption.

Table 5 shows in the column ‘unstandardized coefficients’, the value of the constant, which is the
intercept or the predictors (X1, ..., X6) if Y is ‘0’, in other words, if the predictors are ‘0’ the annual
heating gas consumption is −2972.591. It also gives the predictor coefficients, i.e., the value that Y
would change by if the corresponding predictors (X1, ..., X6) would change by 1 unit. Those values are
249.533, 683.926, −719.608, 1379.358, 889.723 and −1192.025, respectively, e.g., if the usable floor area
goes up by 1, the annual heating gas consumption is predicted (see Equation (3)) to go up by 249.533.
The standardized coefficient can be interpreted like the Pearson coefficient in bivariate associative
analysis, i.e., a 0–1 scale with 1 being perfect correlate. Table 5 also shows the t-test and significance
level (the probability of observing such an extreme value by chance).

Gasi = −2972.591 + 249.533 f loorareai + 683.926 dwtype7xi
− 719.608 f odconsti + 1379.358 f elcav f fi + 889.723 Finchtypi
−1192.025 f inmhboii

(3)

Figure 5 shows the base line scenario analysis results for the probability of a new bungalow
dwelling matching the median DECC value (see step vi in the roadmap above in this section).
Figure 5 shows the likelihood (5.61%) of making the DECC median value in the Monte Carlo base
line. The Statistical Package for the Social Sciences (SPSS) was used to create the probabilities density
functions in this section and the output shows the NCRF estimates on the x axis. A peculiarity of
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SPSS is that it provides y axes showing the probability on the left and the frequency on the right.
However, the shape of the curve and its position relative to the median DECC value is the key aspect
of Figure 5.
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Figure 5. Typical Castle bungalow age: 1965 to 1962 and floor area: 76 to 100 sqm.

Figure 5 shows the base line scenario analysis results for the probability of a new bungalow
dwelling matching the median DECC value. There are two kinds of information in Figure 5:
the dark-yellow graph, and the vertical line (with the associated table below the graph).

The vertical line represents the Median of the NEED values for heating gas consumption in
bungalows in the study area. The dark yellow graph represents the heating gas consumption data
for all bungalows in the study area from NCRF estimates. The small table below Figure 5 shows the
percentage of the area below the curve to the left and right of the median DECC value. This means
that based on our NCRM data, the likelihood of a new bungalow having an energy consumption less
that the median value is 6% and greater than the DECC median value is 94%.

The black line on the top dark yellow graph is the probability density function (PDF) of the annual
heating gas consumption (gas101) of the Castle bungalows. The PDF describes the relative likelihood
for this random variable to take on the DECC median value. The horizontal axis shows the values
of the annual heating gas consumption and the vertical axis shows the probability (on the left) and
the relative frequency of occurrence (on the right). The likelihood (probability) of a new bungalow
in Castle to have annual energy consumption less than 12,557 kWh (the DECC medium value) is the
integral of the probability density function (is 0.0561 or 5.61%) up to 12,557 kWh. Other information
in Figure 5 include: the probability of having an NCRF bungalow with a consumption less than
10,000 kWh is cero and the probability of having a bungalow with a consumption less than 22,000 kWh
is almost one (100%).

In summary, the vertical line represents the annual energy consumption DECC (median value)
(12,557 kWh) and the likelihood of a new bungalow having this value is 5.65% (almost 6%). In other
words, the probability for a new bungalow having annual energy consumption less than 12,557 kWh is
less than 5.65% and the probability for a new bungalow to have annual energy consumption more than
12,557 kWh is greater than 94.35%. The same type of representation is used in the ‘what if’ analysis.

The ‘what if’ analysis of changing parameters on the model and the effect on the likelihood of
meeting the DECC median value are shown in Figures 6–11. The sensitivity analysis modifies three
predictors: Figure 6 is the year of construction estimator fitted by a normal probability distribution;
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Figures 7–9, show changes in the usable floor area fitted by a uniform distribution, and Figures 10 and 11
show changes boiler type fitted again by a normal probability distribution.

In Figures 6–11 for all scenarios, the dark blue shows the base line, the green a small variation, the
dark-yellow a medium variation and the purple colour a large variation of the estimator. The vertical
line inside the graph shows the likelihood for a bungalow to have the DECC median value for the base
scenario in the particular test.
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In Figure 6, a decrease in the expected (mean) value of the year of construction of new bungalows
drives the graph away from the DECC median value (decreases the likelihood to meet the median
DECC value), i.e., a decrease in the year of construction increases the annual heating gas consumption,
presumably as the older bungalows have inferior insulation. Even if they have improved insulation,
it is unusual to retrofit underfloor insulation or the like and the building regulations were not as
restrictive as current ones.

In Figure 7, an increase in the minimum value of the floor area (being a uniform distribution)
decreases the likelihood of meeting the median DECC value. An increase in the minimum value floor
area also increases the energy consumption (because only bigger bungalows remain in the sample)
or decreases the availability of local bungalows with smaller areas. Note also that the likelihood of
finding bungalows in the range of 90 to 100 sqm, in the North East of England (NEE) is zero.

In Figure 8, a decrease in the maximum value of the floor area increases the likelihood of meeting
the median DECC value. This produces the opposite to Figure 7 as the bungalows that remain in the
sample are of small area, so the annual heating gas consumption is small. Also, the graph seems to
suggest that the representative bungalow in NEE is smaller than in the Castle bungalow sample (the
likelihood is close to 20%).

In Figure 9, a decrease in the minimum value of floor area (or increasing the range) results in the
probability density almost matching the median DECC value. An interesting case is when the minimum
value is changed from 76 sqm (dark-blue) to 50 sqm (purple). In this case, the NCRF median annual
heating gas consumption almost matches the median DECC value. This confirms the fact that the Castle
bungalows (local area bungalows) are of bigger floor area than the NEE (regional bungalows).

In summary, the usable floor area is a very sensitive parameter. For bungalows, if the range
of usable floor area is towards the higher end then the likelihood of matching the DECC median
decreases. If the range is in the lower values then the likelihood increases of matching the DECC
median. This seems to confirm that NEE bungalows are smaller than Castle and, in broad terms,
the usable floor area is the most sensitive parameter in the sub-city areas. This confirms that local area
characteristics differ from regional medians.

In Figure 10, there is an increase in the mean of the boiler type towards more inefficient boiler types,
and in Figure 11, a decrease in the mean of the boiler type towards more efficient boilers. A change
in the boiler type to a more efficient one increases the likelihood of reaching the median DECC value.
This suggests that the Castle boilers are not efficient (or that there are opportunities to implement energy
efficiency measures in terms of replacing the boiler with an efficient one in Castle bungalows) compared
to the NEE median dwelling, i.e., local area characteristics are important in energy planning.

5. Summary and Discussion

This paper characterized (and quantified where possible) the uncertainty in creating the domestic
energy estimates.

There are a considerable number of uncertainties in the model, input, refinement and validation.
This paper has proposed a three dimensional taxonomy to characterize the uncertainty: in the source,
the issues (and the sub-issues) causing the uncertainty and whether that issue is due to the lack of
knowledge or is due to the inherent variability of the variable being described. In order to provide a
human friendly understanding of uncertainty, a Concept Map was proposed which identified concrete
terminal causes of uncertainty within the taxonomic framework. Understanding uncertainty in this
way provides a possible framework for modellers, policy makers and data collectors to improve
practice in key areas and reduce uncertainty.

A Monte Carlo type analysis was carried out to understand the sensitivity of key energy
parameters. Although this has been carried out on only one sample of data, it provides compelling
evidence that local area characteristics are important in energy modelling and that national and
regional indices and values may not properly reflect the local conditions resulting in programmes and
interventions that will be sub-optimal.
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In addition, it seems there is potential for this type of analysis to investigate and corroborate
interventions within geographical or building age/type bounds through developing what-if scenarios
for particular interventions (e.g., it is more important to increase the efficiency of boilers in bungalows
in Castle because their footprint is larger than the regional estimates).

The core idea of our framework is to learn about a system by simulating it with random sampling.
That approach is powerful, flexible and very direct. It is the simplest way to solve a problem, and the
only feasible way. In our paper, the emphasis is on drawing a picture to gain qualitative insight.
Such visualization is a very common use of Monte Carlo simulation methods where sometimes the
picture is the goal in itself.

Finally, in this research the emphasis was on two (in a way) separate streams. First, the emphasis
was on getting policy makers to understand how it is possible to model a ‘what if’ question scenario,
realizing that uncertainty has to be taken into account in the model estimates. Second, the identification
of the policy makers’ and stakeholders’ needs is not an easy task, and sometimes this is a process
of negotiation (and is not really written in a project call specification), recognizing that there is
a high degree of politics involved. However, what is important is the quality assurance in the
conceptualization, structure and validation of both the model and output data estimates so they can be
trusted by the decision makers.
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Nomenclature

BRE Building Research Establishment
CHM Cambridge Housing Model
CM Concep Map
DECC Department of Energy and Climate Change
EHS English House Survey
LLSOA Lower Layer Super Output Area
MLSOA Middle Layer Super Output Area
NCRF Newcastle upon Tyne Carbon RouteMap Modelling Framework
NCRM Newcastle Carbon Route Map
NEE North East of England
NEED National Energy Efficiency Data-Framework
OAT One-at-time
OFAS Office of Food Additive Safety
PDF Probability Density Function
SAP Standard Assessment Procedure
SPSS Statistical Package for the Social Sciences
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