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Abstract: To mitigate the microgrid instability despite the presence of dense Constant Power Load
(CPL) loads in the system, a number of compensation techniques have already been gone through
extensive research, proposed, and implemented around the world. In this paper, a storage based
load side compensation technique is used to enhance stability of microgrids. Besides adopting this
technique here, Sliding Mode Controller (SMC) and Lyapunov Redesign Controller (LRC), two of the
most prominent nonlinear control techniques, are individually implemented to control microgrid
system stability with desired robustness. CPL power is then varied to compare robustness of these two
control techniques. This investigation revealed the better performance of the LRC system compared
to SMC to retain stability in microgrid with dense CPL load. All the necessary results are simulated
in Matlab/Simulink platform for authentic verification. Reasons behind inferior SMC performance
and ways to mitigate that are also discussed. Finally, the effectiveness of SMC and LRC systems to
attain stability in real microgrids is verified by numerical analysis.

Keywords: sliding mode control; Lyapunov redesign control; constant power load; robustness
analysis; variation of CPL power; microgrid stability

1. Introduction

Since the beginning of the 21st century, the conventional utility grid system has started to be
replaced by the newly adopted microgrid system due to several reasons. Microgrid systems offer
environment-friendly distributed generation by local renewable energy resources [1–10]. From an
economic aspect, it reduces the overall cost (combining the generation, transmission, and distribution)
considerably. Apart from that, it is a great tool to distribute electricity to those areas where the
utility grid-based electricity cannot be reached. However, though a microgrid is easy to construct and
implement, the stability maintenance of the microgrid system is a matter of concern to system engineers,
professionals, and researchers globally. The stability of the microgrid system is basically hampered
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due to the CPL (constant power load) based load in the system. The CPL exhibits negative incremental
load characteristics (shown in Figure 1) and easily creates exponential and random oscillation in the
system, thus instability is forming in the system [2,11–13]. For compensating the instabilities caused
by CPL, a lot of research has been conducted. Research regarding instabilities in microgrids started
during 1998–1999, but as the electrification industry and microgrid technology grew gradually, this
issue drew attention of researchers all over the world. Research timeline on CPL compensation is
shown in Figure 2. The increase in research on microgrid is easily noticeable from this figure. Figure 3
shows the research work done on CPL compensations techniques in different countries. The United
States of America is currently in the lead, but China, Norway, France, as well as India are churning up
significant contributions.
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Several investigations have been conducted by researchers and system engineers all over the globe
to ameliorate the stability scenario of microgrids. For direct current (DC) microgrid, several researches
are reviewed at [14–17]. Sliding Mode Control (SMC) and Lyapunov Redesign Control (LRC) techniques
are two of the most prominent nonlinear control techniques used to improve microgrid stability [18,19].
Prior to this, several studies have been carried out on the SMC technique. The stability characteristics
become harder to establish in large systems. Sliding mode control has been applied in direct current
(DC) microgrids to use the actual nonlinear models [20,21]. It has been accomplished by discovering
a sliding surface and employing a sliding mode controller, which is discontinuous, for making the
system voltage more stable. Later on, in [22], Vinicius Stramosk and Daniel J. Pagano presented a novel
Sliding Mode Controller for precise governing of DC bus voltage. In like manner, a non-linear sliding
surface is put forward by the two Indian Institute of Technology Jodhpur researchers: Suresh Singh and
Deepak Fulwani in [23–25] to moderate CPL instability. The non-linear surface that they had proposed
confirmed maintaining the constant power by the converter in practice. In this way, the proposed
controller succeeded in mitigating the oscillating effect of the CPL of Point of Loads (POL) which are
tightly regulated, and assured that the DC microgrids will operate stably under several disturbance
conditions. Researchers Aditya R. Gautam et al. demonstrated, in [23], a robust sliding mode control
technique to examine CPL instability. In like manner, in the case of alternating current (AC) microgrid,
several researches have been reviewed in [12,26–31].

To achieve better controlled performance for polynomial nonlinear systems, the Lyapunov
redesign of adaptive controller has been implemented by Qian Zheng and Fen Wu in [32]. Apart from
the microgrid system, Wen-Ching Chung et al has implemented the Lyapunov redesign technique in
vehicle dynamics to experience better steering control [33]. Then, Attaullah Y. Memon et al, in [34],
used conditional servomotor to experiment with output control of a nonlinear system. In this course,
they have implemented the Lyapunov redesign control technique. There are three basic compensation
techniques to handle the microgrid instability: (i) feeder side compensation technique, (ii) intermediate
circuitry based compensation technique, and (iii) load side compensation technique. In this paper,
the storage-based load side compensation technique is adopted due to superior robustness and cost
effectiveness among these techniques [35–42]. Adopting storage-based load side compensation in this
paper, a comparative performance analysis will be presented for SMC and LRC techniques with the
variation of the CPL power. The following are the contributions of this paper: besides modeling of the
storage-based load side compensation technique (Section 2), SMC and LRC theories will be presented
(Section 3), the robustness of the SMC and the LRC technique will be presented with the variation of
CPL power load (Section 4). Then, the comparative performance analysis will be presented between
SMC and LRC technique (Section 5) that will justify why the Lyapunov Redesign Control technique
shows better robustness than the former one in microgrid application with dense CPL loaded condition.
Reasons behind inferior SMC performance and ways to mitigate them will be discussed in Section 6.
Section 7 will present numerical analysis of the control systems in real microgrid situations which
verifies their effectiveness. Finally, the conclusion will be drawn in Section 8.

2. Modeling Microgrid with CPL

To mitigate purturbation caused by CPL loads, a compensation technique at the load side is the
rational choice rather than compensating at the feeder side or using the intermediate circuitry approach.
The load side compensation technique does required manipulation at the load side of the system to
shield it from experiencing the effects caused by constant power loads. To elucidate this method,
schematic models of storage-based real power compensation and reactive power compensation
techniques (load side) are presented below in Figures 4 and 5 [18].
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3. Introduction to SMC and LRC

Sliding Mode Control (SMC) is a type of Variable Structure Control (VSC) in control theory. It gets
switched from one continuous structure to a different one, based on the current state-space location.
That makes SMC a variable structure control method. Its various control structures are configured
to move the trajectories to a switching condition all the time, and therefore, the final trajectory will
not be wholly within a single control structure. Instead of that, the final trajectory will slide along the
control structure boundaries. The system’s motion while sliding along such boundaries is known as a
Sliding Mode. The geometrical locus involving the boundaries is known as the sliding (hyper) surface.
The sliding surface is defined by σ = 0, and after the limited time when the trajectories of the system
have reached the surface, the sliding mode along the surface begins.
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3.1. Sliding Mode Controller (SMC)

3.1.1. Control Statement of Sliding Mode

Considering a nonlinear dynamic system affine in control:

.
x (t) = f (x, t) + B (x) u (t), (2)

x(t) ∈ <n, u(t) ∈ <m, f (x, t) ∈ <n, B(x) ∈ <nxm (3)

The components of the discontinuous feedback are given by:

ui (t) =

{
u+

i (x, t)i f σi(x) > 0
u−i (x, t)i f σi(x) < 0

i = 1, 2, · · · , m, (4)

where σi(x) = 0 is the i-th component of the sliding surface, and σ(x) = [σ1(x), σ2(x), · · · , σm(x)]T = 0
is the (n − m) dimensional sliding manifold. The sliding mode control structure includes selecting a
manifold or a hypersurface (i.e., the sliding surface) so that the system trajectory demonstrates desired
performance when restricted within this manifold, and finding discontinuous feedback gains to make
the trajectory of the system intersect and stay on the manifold. Vicinity of the switching surface can be
viewed from Figure 6.
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A sliding mode exists, given that in the environs of the switching surface, σ(x) = 0, the state
trajectory’s velocity vector,

.
x (t), is always directed toward the switching surface. The control laws of

the sliding mode not being continuous, it is able of driving trajectories to the sliding mode in finite time
(i.e., the sliding surface’s stability is superior to asymptotic). Nevertheless, the character of the sliding
mode is taken on by the system (e.g., on this surface, the origin x = 0 can only possess asymptotic
stability) once the trajectories reach the sliding surface.

3.1.2. Chattering

Due to the presence of external disturbance—noise and inertia of the sensors and actuators—the
switching around the sliding surface occurs at a very high (but finite) frequency. The main consequence
is that the sliding mode occurs in a small vicinity of the sliding manifold, which is called boundary
layer, and which has a dimension that is inversely proportional to the control switching frequency.
The effect of high frequency switching is known as chattering (shown in Figure 7).
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The high-frequency switching propagate through the system exciting the fast dynamics and
undesired oscillations that affect the system output. To prevent the chattering effect different techniques
are used. One of the techniques is the use of continuous approximations of sign(.) using sat(.) or tanh(.)
function in the implementation of the control law. A consequence of this method is that the invariance
property is lost.

3.1.3. Chattering Reduction

Nowadays, typical approaches have been developed to reduce the amount of chattering.
Slotine [43–45] based their original proposal on the generalized event of the nth-order single input variant
of nonlinear system: x(n) = f (x, t) + B (x, t) u ; here x is the state variable; x = [x,

.
x,

..
x, . . . , x(n−1)]; x(n) is

the x’s nth-order derivative; B is the gain; f is a nonlinear function and u is the control input. Furthermore,
a formula for the switching manifold of the above system and the distance between the state trajectory: s,

is stated as: s(t) = ( d
dt + λ)

(n−1)
x̃; while λ > 0 is a design constant, and x̃ is the tracking error defined

as: x̃ = x− xd; whereas xd is the state variable for the desired trajectory. Henceforth the corresponding
switching manifold is: s(t) = 0. Meanwhile, Slotine also proposed to smooth the previously mentioned
discontinuity via a thin boundary layer closely surrounding the switching manifold. In such case
continuous control within this boundary layer was attained by changing the switching term in the
control law to a saturation function. Although the system would be driven to the boundary layer, yet
the trajectory would not be staying on the switching manifold and thus the sliding mode would not
exist [46]. Later Hung and Gao [47] offered the technique of reaching mode and reaching law, which
was based upon nth-order m-input systems. To guarantee the state trajectory’s attraction towards
the switching manifold within the reaching mode, their suggestion was to control the reaching speed
by applying certain reaching law. They put forward three certain kinds of reaching laws besides the
general form. Among these types they claimed that the power rate reaching law would eliminate
chattering and provide fast reaching as well:

•
si = −ki|si|αsgn(si). The reaching time Ti was deduced

to: Ti =
|si(0)|1−α

(1− α)ki
, i = 1, 2, . . . , m; where

•
si was the reaching speed;

•
si was defined as according to

Equations (6) and (7);
•
si (0) was the initial value of

•
si; ki >0 was the switching gain (in the i-th dimension),

and 0 < α < 1. Yet typically it has been found that chattering cannot be totally eliminated by such method.
The above approaches are bounded by defects. Besides, Luo & Feng’s switching zone [48] appears
mainly theoretical, whereas the Ground Validation System (GVS) of Hamerlan et al will have minimal
effect on speed and position of the controlled subject [49].
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3.2. Lyapunov Redesign Controller (LRC)

Unlike sliding mode controller (SMC), Lyapunov redesign controller, or LRC, is based only on
Lyapunov function [50,51]. Consider a nonlinear system that is described by:

.
x = f (x) + G(x)u, (5)

where x ∈ <n is the state and u ∈ <m is the controlled input. Assuming the matrix G(x) and the vector
field ƒ(x) each has two components: an unknown part and a known nominal part. Therefore,

f (x) = f0(x) + f ∗(x), (6)

G(x) = G0(x) + G∗(x), (7)

where ƒ0 and G0 represent the known nominal plant, and ƒ*, G* characterize the uncertainty. Later let
us assume the unknown portion to conform to a certain bounding condition. Additionally, it is
assumed that the uncertainty fulfills a so-called matching condition:

f ∗(x) = G0(x)∆ .
f
(x), (8)

G∗(x) = G0(x)∆ .
G
(x), (9)

The matching condition suggests that terms of uncertainty are present in the same equations with
the control inputs u, and consequently, it will be possible to control them by controller. By replacing
(6)−(9) in (5) we obtain:

.
x = f0(x) + G0(x)(u + η(x, u)), (10)

which includes all of the uncertainty terms, and is defined by:

η(x, u) = ∆∗
f
+ ∆ ∗

G
u, (11)

The Lyapunov redesign method works on the ensuing problem: supposing the equilibrium of
the nominal model

.
x = f (x) + G(x)u been made asymptotically stable uniformly by employing a

feedback control law u = p0(x), the goal is to devise a control function p*(x), which is corrective in nature,
so that the enhanced control law u = p0(x) + p*(x) can stabilize the system (defined by Equation (10))
faced by the uncertainty (x, u) getting constrained by a known function.

Then, let us think about the specifics of the Lyapunov redesign technique, that is comprehensively
offered for a more common case. Let us assume a control law: u = p0(x) to exist so that x = 0 becomes
a stable equilibrium point which is uniformly asymptotically of the closed-loop nominal system
.
x = f (x) + G0(x)p0(x). We also assume to know a Lyapunov function V0(x) that fulfills:

α1(||x||) ≤ V0(x) ≤ α2(||x||), (12)

∂V0

∂x
[ f (x) + G0(x)p0(x)] ≤ −α3(‖x‖), (13)

where α1, α2, α3 : <+ → <1 are stringently increasing functions that satisfy αi(0) = 0 and αi(r)→ ∞ as
r→ ∞. These types of functions are sometimes called as class K∞ functions. The term of uncertainty is
presumed to satisfy the bound

||η(x, u)||∞ ≤
_
η(t, x), (14)

where the bounding function
_
η is presumed to be known ‘a priori’, or accessible for measurement.

At this point, let us proceed to designing the corrective “control component” p*(x) so that the system
classes described by (10) and conforming to (14) are stabilized by u = p0 + p*. An approach adhering
to the nominal Lyapunov function V0 is used as the base to design the corrective control term, thus
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the name ‘Lyapunov redesign method’ is justified. Considering the exact same Lyapunov function
V0 guaranteeing the nominal closed-loop system’s asymptotic stability, let us think about the time
derivative of V0 which is alongside the solutions of the full system (10). We have:

.
V0 =

∂V0

∂x
[ f0(x) + G0(x)(u + η(x, u))]

=
∂V0

∂x
[ f0(x) + G0(x)p0(x)] +

∂V0

∂x
G0(x)p∗(x) + η(x, u)) ≤ −α3(‖x‖) + ω(x)T p∗(x) + ω(x)Tη(x, u)

(15)

where,

ω(x) = [
∂V0

∂x
G0(x)]

T
∈ <m, (16)

which is a recognized function. We obtain by taking limits:

.
V0 ≤ −α3(‖x‖) +

m
∑

i=1
ωi(x)p∗i (x) + ‖ω(x)‖1

.
||η(x, u)||∞

= −α3(‖x‖) +
m
∑

i=1
ωi(x)p∗i (x) +

_
η(x, t)|ωi(x)|)

(17)

The second term at the right-hand side of (17) can be made equal to zero if p∗i (x) is taken as:

p∗i (x) = −_
η(x, t)sgn(ωi(x)), (18)

Every term of the corrective control vector p*(x) is chosen to be of the form p*(x) = ±_
η(x, t), where

the sign of p*(x) is contingent on the sign of i(x) and changes as i(x) changes its sign. Substituting
Equation (18) in Equation (17), the desired "stability" property is obtained.

.
V0 ≤ −α3(||x||); which infers that the closed-loop system is stable asymptotically. The augmented

control law u = p0(x) + p*(x) is discontinuous since each element p∗i (x) is discontinuous at i(x) = 0.
Moreover, the discontinuity jump

_
η(x, t)→ −_

η(x, t) can have great magnitude if the bound of
uncertainty

_
η is large. As demonstrated earlier, chattering can be caused by discontinuities in the

control law; hence smoothing the discontinuity is desirable and is expected to retain some degree the
nice stability properties at the same time from the original discontinuous control law. It is achievable
by replacing Equation (18) with

p∗i (x) = −_
η(x, t)tanh(

ωi(x)
ε

), (19)

where ε > 0 is a small design constant. It can be noted with ε approaching zero, the function tanh(ωi
ε )

gets converged to the sgn(i) function, which is discontinuous. By substituting Equation (19) in
Equation (17) we obtain:

.
V0 ≤ −α3(||x||) +

_
η(x, t)

m

∑
i=1

(|ωi(x)| −ωi(x)tanh(
ωi(x)

ε
)), (20)

Using Lemma:
.

V0 ≤ −α3(||x||) + εmk
_
η(x, t), (21)

α3 being a strictly increasing class k∞ function, for all r > 0 and any uniformly bounded function
_
η, there can exist a sufficiently small ε, so that

.
V0 ≤ 0 for x outside of a region Dε = {x V(x) ≤ r}.

Consequently, the trajectory becomes convergent to the invariant set Dε. A Lyapunov function’s level
surfaces are shown in Figure 8. It demonstrates the Lyapunov surfaces for increasing values of k.
The condition

.
V0 ≤ 0 suggests that the a trajectory moves within the set Ωk = {x ∈ <n|V(x) ≤ k}

when it crosses the Lyapunov surface V(x) = k, and it cannot ever come out. The trajectory moves to an
inner Lyapunov surface with smaller values of k when V < 0. The Lyapunov surface V(x) = k reduces
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back to the origin as k decreases, which shows that the approach of the trajectory to the origin with
progressing time.
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4. Implementation and Robustness Analysis of SMC and LRC

The intended outputs, or control objectives of the proposed controllers (each of SMC and LRC
controller) is:
Y1 = VdC ≈ Vd ≈ 480 Volt
Y2 = VqC ≈ Vq ≈ (the lowest possible) Volt

Equation (22) gives the general system form affined within the control(s):

.
x = f (x) + g(x)u, (22)

4.1. Implementation and Robustness Analysis of Sliding Mode Controller against Parametric Uncertainties
Including Uncertainties in Power of CPL

Sliding mode control, or SMC, is an advanced non-linear control technique featuring prominent
characteristics of accuracy, robustness, and ease of tuning. By using the discontinuous control signal
that forces the output of the system to ‘slide’ along with sliding surface or a distinct cross-section of
the minimal behavior of the system, it can adjust the dynamics of the system in a way [47]. The state
feedback control law is a discontinuous time function here, and can shift from one structure to the
next depending on the prevailing location in space in a continuous manner. Hence, sliding mode
control can be described as a control technique with variable structures. As the system’s certain
operation mode slides along the predetermined control structure boundaries, it is called the sliding
mode. The geometrical locus, which consists of the boundaries, is called the system’s sliding surface.
To implement the sliding mode controller, the state space model equation below can be rewritten as
Equation (23). In this section, the robustness will be enhanced by considering the uncertainties in
active power of CPL (P0) and reactive power of CPL (Q0). When P0 is unknown in case of designing
u1, we will also consider x3 as unknown to avoid any complexity. Similarly, in case of u2, we will also
consider x4 as unknown.



.
x1
.

x2
.

x3
.

x4
.

x5
.

x6


=



ωx2 − R1
L1

x1 − x3
L1

−ωx1 − R1
L1

x2 − x4
L1

ωx4 + 1
C x1 − 1

C
P0
x3
− 1

C x5

−ωx3 + 1
C x2 − 1

C
Q0
x4
− 1

C x6

ωx6 + 1
L x3 − R

L x5

−ωx5 + 1
L x4 − R

L x6


+



0
0

− 1
C u1

− 1
C u2

0
0


+



r1
L1
r2
L1

0
0
0
0


, (23)
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Although P0 and Q0 are unknown, they satisfy P0 ≤ δP and Q0 ≤ δQ for some known bounds δP
and δQ. The variation on CPL power can be summarized as:

dP = ∆P/ ∆x3, (24)

dQ = ∆Q/ ∆x4, (25)

where dP represents the uncertainties of P0, dQ represents the uncertainties of Q0, ∆x3 is the
uncertainties in x3, and ∆x4 is the uncertainties in x4. As x3 and x4 are in the denominator, we
need lower bounds of these parameters. Power uncertainty is expressed in term of current. We know
that x3 is the voltage of “d-axis” and it satisfies ∆x3 ≤ δx3 for some known, stringently positive bound
δx3. Similarly, x4 is the “q-axis” voltage. It satisfies ∆x4 ≤ δx4 for some known, stringently positive
bound δx4. Overall, there are six unknowns with known bounds. The Sliding Mode Control input, u1

will be designed first, with the similar method adopted to design u2, the other control input. Using the
similar method as discussed in the previous section, let

e1 =
∫
(x3 − x3d)dt, (26)

e2 =
.
e1 = x3 − x3d, (27)

.
e2 =

.
x3 −

.
x3d = f3(x) + g3(x)u1 −

.
x3d, (28)

Expanding f3(x) and g3(x)

.
e2 = ωx4 +

1
c

x1 −
1
c

P0

x3
− 1

c
x5 −

1
c

u1 −
.
x3d, (29)

Let, the sliding surface be
s = e1 + e2, (30)

After differentiating and considering the uncertainties:

.
s =

.
e1 +

.
e2, (31)

.
s = e2 + (ω(x̂4 + ∆x4) +

1
c
(x̂1 + ∆x1)−

1
c
(

P0

x3
+ dP)−

1
c

x5 −
1
c

u1 −
.
x3d), (32)

where x4 = x̂4 + ∆x4. Then the total parametric uncertainty including uncertainty of CPL power can
be represented as:

d =
1
c

∆x1 + ω∆x4 −
1
c

dP; ‖d‖ ≤ dmax, (33)

here dmax is the limit of the total disturbance d.

dmax =
1
c

δx1 + ωδx4 −
1
c

δP/ δx3, (34)

Then,
.
s = e2 −

1
c

x5 −
.
x3d + ωx̂4 +

1
c

x̂1 −
1
c

P0

x3
− 1

c
u1 + d, (35)

Let it be considered as the Lyapunov candidate function.

V =
1
2

s2, (36)

.
V = s

.
s = s(e2 −

1
c

x5 −
.
x3d + ωx̂4 +

1
c

x̂1 −
1
c

P0

x3
− 1

c
u1 + d), (37)
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We use u1.

u1 = −c
[
−e2 +

1
c

x5 +
.
x3d −ωx̂4 −

1
c

x̂1 +
1
c

P0

x3
+ v
]

, (38)

Now, we can obtain: .
V = s(d + v), (39)

‖d‖ ≤ dmax, put into consideration,
.

V will be made negative by the subsequent discontinuous
control, v. Consequently, it will guarantee stability.

v = −dmax ∗ sat
( s

ε

)
; ε > 0, (40)

In total, the control input is:

u1 = −c
[
−e2 +

1
c

x5 +
.
x3d +

1
c

P0

x3
−ωx̂4 −

1
c

x̂1 − dmax ∗ sat
( s

ε

) ]
, (41)

Such an analysis is also presented here for u2, let,

e3 =
∫
(x4 − x4d)dt, (42)

e4 =
.
e3 = x4 − x4d, (43)

.
e4 =

.
x4 −

.
x4d = f4(x) + g4(x)u2 −

.
x4d, (44)

Taking the sliding surface as:
s = e3 + e4, (45)

After differentiation and considering the uncertainties:

.
s = e4 +

(
−ω(x̂3 + ∆x3) +

1
c
(x̂2 + ∆x2)−

1
c
(

Q0

x4
+ dQ)−

1
c

x6 −
1
c

u2 −
.
x4d

)
, (46)

where x3 = x̂3 + ∆x3. Then the total parametric uncertainty including uncertainty of CPL power can
be represented as:

d =
1
c

∆x2 −ω∆x3 −
1
c

dQ; ‖d‖ ≤ dmax, (47)

where dmax is the limit for d, the total disturbance.

dmax =
1
c

δx2 −ωδx3 − δQ/δx4, (48)

Then,
.
s = e3 −

1
c

x6 −
.
x4d + ωx̂3 +

1
c

x̂2 −
1
c

Q0

x4
− 1

c
u2 + d, (49)

Considering this as the Lyapunov candidate function:

V =
1
2

s2, (50)

.
V = s

.
s = s(e3 −

1
c

x6 −
.
x4d + ωx̂3 +

1
c

x̂2 −
1
c

Q0

x4
− 1

c
u2 + d), (51)

We then use u2.

u2 = −c
[
−e3 +

1
c

x6 +
.
x4d −ωx̂3 −

1
c

x̂2 +
1
c

Q0

x4
+ v
]

, (52)
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Then, we can obtain: .
V = s(d + v), (53)

Considering ‖d‖ ≤ dmax,
.

V will be made negative by the subsequent discontinuous control, v.
Consequently, it will guarantee stability.

v = −dmax ∗ sat
( s

ε

)
; ε > 0, (54)

In total, the control input is:

u2 = −c
[
−e3 +

1
c

x6 +
.
x4d −ωx̂3 −

1
c

x̂2 +
1
c

Q0

x4
− dmax ∗ sat

( s
ε

)]
, (55)

4.2. Implementation and Robustness Analysis of Lyapunov Redesign Controller against Parametric
Uncertainties Including Uncertainties in Power of CPL

The LRC is based only on Lyapunov function. Its nominal controller is designed to ensure the
nominal system or disturbance-free system to be stable by forcing the Lyapunov function derivative
of the nominal system to be negative. If there is disturbance in the system, the discontinuous
control is used alone to handle the disturbance. The discontinuous controller is formulated by
redesigning the Lyapunov function of the nominal system. In the redesigning process, the disturbance
is introduced to the Lyapunov function of the nominal system and then solved for the discontinuous
control to overcome that disturbance and force the new derivative Lyapunov function or be negative
and consequently, the system to be globally stable. It has some chattering issues because of the
discontinuous controller. The chattering magnitude is dependent on the magnitude of dmax.
Having large dmax makes the system stable against large disturbance but it can cause larger chattering
if it is set as a very large value. If the disturbance happens to be greater than the set dmax, the system
can become unstable. But, the LRC has greater margin for stability because its nominal system is also
ensured to be stable, thus provides better performance for large disturbance.

First of all, the Lyapunov Redesign Control input, u1 will be designed, with the same approach
followed next to design the other control input, u2. Using the similar method as discussed in last
section, we introduce new state variables:

e1 =
∫
(x3 − x3d)dt, (56)

e2 =
.
e1 = x3 − x3d, (57)

.
e2 =

.
x3 −

.
x3d = f3(x) + g3(x)u1 −

.
x3d, (58)

Expanding f3(x) and g3(x):

.
e2 = ωx4 +

1
c

x1 −
1
c

P0

x3
− 1

c
x5 −

1
c

u1 −
.
x3d, (59)

Considering the uncertainties:

.
e2 = ω(x̂4 + ∆x4) +

1
c
(x̂1 + ∆x1)−

1
c

(
P0

x3
+ dP

)
− 1

c
x5 −

1
c

u1 −
.
x3d, (60)

Then the total parametric uncertainty including uncertainty of CPL power can be represented as:

d =
1
c

∆x1 + ω∆x4 −
1
c

dP; ‖d‖ ≤ dmax, (61)

here dmax is the limit of d, the total disturbance.



Energies 2017, 10, 1959 13 of 24

dmax =
1
c

δx1 + ωδx4 −
1
c

δP/ δx3, (62)

Following the methodology of Lyapunov redesign, the over-all input is u1 = u0 + v; where u0 is
the nominal stabilizing controller and v is to handle the disturbances. We get the linear state space of
error as in Equation (63):

.
e =

[
0 1
−k1 −k2

]
e, (63)

Now, we define the desired Eigen values for the linearized system. Desired Eigen values would
be −10.

Let, Equation (63) be written as
.
e = Ae and A =

[
0 1
−k1 −k2

]
Generalized Eigen values of matrix “A”:

sI − A =

[
s −1

k1 s + k2

]
, (64)

|sI − A| = s2 + k2s + k1, (65)

Characteristic polynomial (desired):

(s + 10)(s + 10) = s2 + 20s + 100, (66)

Comparing Equations (65) and (66):

k2 = 20, k1 = 100

So, the values of k1 and k2 will become +100 and +20 respectively.

.
e =

[
0 1
−100 −20

]
e, (67)

A =

[
0 1
−100 −20

]
, (68)

PA + AT P = −I, (69)

P =

[ 21
8

1
200

1
200

101
4000

]
, (70)

V(e) = eT Pe, (71)

w = 2eT PG = 2
[

e1 e2

][ 21
8

1
200

1
200

101
4000

][
0
1

]
, (72)

w =
1

100
e1 +

101
2000

e2, (73)

Then, we can choose the Lyapunov function for the nominal system or disturbance-free system
to be:

V =
1
2

e2
2, (74)

.
V = e2

.
e2 = e2

(
ωx̂4 +

1
c

x1 −
1
c

P0

x3
− 1

c
x5 −

1
c

u0 −
.
x3d

)
, (75)
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If we choose,

u0 = −c
[

1
c

P0

x3
−ωx̂4 +

1
c

x5 +
.
x3d − k1e1 − k2e2

]
, (76)

then,
.

V < 0. The terms [−k1e1 − k2e2] guarantee the global stability of the nominal system which is
absent in SMC method. The overall system is stabilized using the discontinuous control in the presence
of disturbances. Redesigning the Lyapunov function considering disturbances,

V =
1
2

e2
2, (77)

.
V = e2

.
e2 = e2(

(
ωx̂4 +

1
c

x1 −
1
c

P0

x3
− 1

c
x5 −

1
c

u0 −
.
x3d

)
+

(
1
c

v + d
)
), (78)[

ωx̂4 +
1
c x1 − 1

c
P0
x3
− 1

c x5 − 1
c u0 −

.
x3d

]
is assured to be negative, then the discontinuous control can

be designed as:

v = −c ∗ dmax ∗ sat(
dmax ∗ω

µ
), (79)

Then, the overall input is:

u1 = −c

 1
C

P0

x3
−ωx̂4 +

1
C

x5 +
.
x3d − 100e1 − 20e2 − dmax ∗ sat

dmax
(

1
100 e1 +

101
2000 e2

)
µ

, (80)

Therefore, there is µ > 0 so that for µ < µ∗, the closed-loop system’s origin is asymptotically
stable globally according to absolute stability theorem. Similarly, we have Equation (81), when we
design a controller for u2 with same desired points.

u2 = −c

 1
C

Q0

x4
+ ωx̂3 +

1
C

x6 +
.
x4d − 100e3 − 20e4 − dmax ∗ sat

dmax
(

1
100 e3 +

101
2000 e4

)
µ

, (81)

where,
e3 =

∫
(x4 − x4d)dt, (82)

e4 =
.
e3 = x4 − x4d, (83)

d =
1
c

∆x2 −ω∆x3 −
1
c

dQ; ‖d‖ ≤ dmax =
1
c

δx2 −ωδx3 − δQ/ δx4, (84)

5. Results

Here, the parameters and the parametric values regarding the simulation done for comparative
analysis by varying the CPL power have been shown in Table 1.

Table 1. Table of Parameters.

Parameter Value Parameter Value

Ω 60 Hz δx4 100 V
X3 600 V δP 30 kW
X4 50 V δQ 2 kVar
dP 50 A ρx3 200 V
dQ 20 A ε 100
δx3 1000 A Req 0.25 Ohm
Leq 0.5 × 10−3 H Ceq 10 × 10−6 F

RCVL 15 Ohm LCVL 5 × 10−3 H
RB 10 Ohm CB 1 × 10−6 F
LB 1 × 10−3 H
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In Figure 9a,b, performance comparisons have been illustrated between SMC (colored in blue)
and LRC (colored in green) for d-axis output voltage and q-axis output voltage respectively. The control
objective for d-axis output voltage has been considered as 480 Volt, for normal conditions—where
the variance value has been set as 10% to simulate noise. From Figure 9a, it is evident that the
LRC controller shows considerably superior performance than that of the SMC controller, as its
output stayed closer to the control objective. For q-axis output voltage, the control objective has
been considered as low as possible and negligible in practice. In Figure 9b, the q-axis output voltage
fluctuates more in the case of the SMC controller than that of the LRC controller. To determine
the controller behaviors in a very noisy environment, more noise is added by setting the variance
value as 100%, and noise rejection capabilities of SMC and LRC are tested. The results are shown in
Figure 10a,b, which demonstrate LRC’s superior capability to stick to the reference value with close
proximity, whereas SMC has fluctuations of great magnitudes. For nonlinearity, LRC is capable of
attaining the reference d-axis value with negligible time-delay, but SMC needs some time to reach
that (Figure 11a). However, for q-axis, both controllers exhibit a similar performance (Figure 11b).
In case of parametric uncertainties, LRC again proves to be the better suited one, displaying less
fluctuations than SMC to maintain the control objective (Figure 12a,b). Hence, LRC offers appreciable
stability considering CPL power variation and parametric uncertainties. In Figure 13a,b, performance
comparisons have been presented between SMC (blue colored) and LRC (green colored) in the case of
d-axis control input current, Id (u1) and q-axis control input current, Iq (u2) respectably considering CPL
power variation and parametric uncertainties. Here, the more the fluctuation in control input current,
the more the stress will be imposed on the storage system to compensate, consequently degrading
the storage performance and overall life time. This situation, in practice, makes it harder to retain
microgrid stability. The mean squared errors (MSE) obtained from these analyses for both SMC and
LRC controllers are presented in Table 2. It is obvious from the presented values that LRC is the
better controller, and in a noisy environment, SMC is no match for LRC, as the former displays error
significantly greater than LRC. This observation also leads to believe that, for practical applications,
LRC can provide better performance than LRC. Therefore, from the comparative analysis presented
here, the Lyapunov Redesign Controller shows better performance to retain system stability in face of
CPL power variation. Hence, the LRC controller is preferred to be adopted for storage-based load side
compensation technique for microgrid stability improvement with dense CPL loads present.
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Figure 9. Comparison of performance between SMC (blue colored) and LRC (green colored) for 
normal condition in case of (a) d-axis output voltage; (b) q-axis output voltage considering CPL 
power variation and parametric uncertainties. LRC controller shows considerably better 
performance than SMC by staying closer to the reference voltage. 

Figure 9. Comparison of performance between SMC (blue colored) and LRC (green colored) for normal
condition in case of (a) d-axis output voltage; (b) q-axis output voltage considering CPL power variation
and parametric uncertainties. LRC controller shows considerably better performance than SMC by
staying closer to the reference voltage.
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Figure 10. Comparison of performance between SMC (blue colored) and LRC (green colored) for 
very noisy environment in case of (a) d-axis output voltage; (b) q-axis output voltage considering 
CPL power variation and parametric uncertainties. LRC controller shows far better performance than 
SMC, as the latter shows high fluctuations from the reference voltage, while LRC stays close to it. 
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Figure 11. Comparison of performance between SMC (colored in blue) and LRC (colored in green) 
for nonlinearity in case of (a) d-axis output voltage, (b) q-axis output voltage. Unlike SMC, LRC is 
capable of attaining the reference d-axis value with negligible time-delay. 
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Figure 10. Comparison of performance between SMC (blue colored) and LRC (green colored) for very
noisy environment in case of (a) d-axis output voltage; (b) q-axis output voltage considering CPL power
variation and parametric uncertainties. LRC controller shows far better performance than SMC, as the
latter shows high fluctuations from the reference voltage, while LRC stays close to it.
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Figure 11. Comparison of performance between SMC (colored in blue) and LRC (colored in green) for
nonlinearity in case of (a) d-axis output voltage, (b) q-axis output voltage. Unlike SMC, LRC is capable
of attaining the reference d-axis value with negligible time-delay.
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Figure 12. Comparison of performance between SMC (colored in blue) and LRC (colored in green) in case
of (a) d-axis output voltage, (b) q-axis output voltage considering parametric uncertainties. LRC controller
shows considerably better performance than SMC by staying closer to the reference voltage.
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Figure 13. Comparison of performance among SMC (colored in blue) and LRC (colored in green) in
case of (a) d-axis control input current, Id (u1); (b) q-axis control input current, Iq (u2) considering CPL
power variation and parametric uncertainties. LRC fluctuated less than SMC, causing less stress on the
system and thus providing a longer lifetime.

Table 2. Mean squared error (MSE) values of SMC and LRC controllers for the different conditions.

Conditions Parameter
Mean Squared Error

Relative Error (SMC-LRC)
SMC LRC

Noise Rejection (normal condition) X3, d-axis voltage 0.00270320 0.00139074 1.31246 × 10−3

X4, q-axis voltage 0.00138790 0.00113038 2.5752 × 10−4

Noise Rejection (very noisy condition) X3, d-axis voltage 0.03661991 0.00139411 3.52258 × 10−2

X4, q-axis voltage 0.00818637 0.00112001 7.06636 × 10−3

Nonlinearity X3, d-axis voltage 0.00321589 0.00002730 3.18859 × 10−3

X4, q-axis voltage 0.00942499 0.00924679 1.782 × 10−4

Parameter Uncertainty X3, d-axis voltage 0.00116666 0.00011259 1.04076 × 10−3

X4, q-axis voltage 0.00126333 0.00017554 1.08779 × 10−3

6. Reason behind Inferior SMC Performance and Solutions

Sliding Mode Control presents many fascinating challenges to the mathematicians. It is also
extensively used in engineering applications because of the comparatively easy implementation
which does not require a deep understanding of the complex mathematical background. These two
reasons put it in a unique position among control theories. There are three main stages of designing
a Sliding Mode Controller: designing the sliding surface, selecting the control law that will hold
the system trajectory on the sliding surface, and implementing in a chatter-free setup—which is
the most important one of these three. Although in theory, Sliding Mode Control is a robust one,
experiments show otherwise—SMC has some serious shortcomings. The most prominent one of
them is chattering—the high frequency oscillation around the sliding surface. It reduces the control
performance significantly. As an example, the following second-order system can be considered:

.
x1 = x2, (85)

.
x2 = ax1 + bx2 + csinx1 + du, (86)
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a and b are negative constant values here whereas c and d are positive constants. For c > |a|, the system
is known to be unstable. For the actuator, existence of fast dynamics is posited, and it is stable.
These are not considered in the ideal model. The equations governing them are:

w1 = w, (87)

.
w1 = w2, (88)

.
w2 = − 1

µ2 w1 −
2
µ

w2 +
1

µ2 u, (89)

µ is a constant, considered to have a positive, sufficiently small value. As demonstrated in Figure 14,
with actuator unmodeled dynamics present, w(t) is the actual input of the system, not u(t) directly
from the sliding mode controller. The sliding mode surface and the control input is chosen as:

u = −Msign(σ), (90)

σ = λx1 + x2, (91)

where λ and M are positive constants, with M is required to be large enough to enforce sliding mode
into the ideal model (

.
σσ > 0).

.
x becomes a continuous time function in real system, thus making the

expectation of sliding mode to occur invalid; and causes chatter.
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Figure 14. An example system demonstrating sliding mode control for systems as described in
Equations (85) and (86). There are actuator dynamics that are not included in the ideal system.
Chattering is caused from the excitation of these unmodeled dynamics by the high frequency
switching action.

According to theory, the unmodeled dynamics present in the system causes the chattering effect.
A sliding mode control, which is “chattering free”, is not attainable as the model used in designing the
controller can never capture all the system dynamics. But, the chattering can be curtailed. The sliding
mode is normally implemented with a relay—which represents the sign function. It creates a common
problem with relative degree equal to one. An alternative to this approach is using approximations of
the sign function, which is widely used. Sigmoids, saturation, and hysteresis functions are used often
too, providing a continuous or smooth control signal, but also losing the invariance property of the
sliding mode control along the way. Table 3 shows some methods to improve the effectiveness of SMC.
Fuzzy Sliding Mode Control (FSMC)—which uses a low pass filter, and estimates the sliding variable
through a disturbance estimator—is the one with the least effectiveness. Integral Sliding Mode Control
(ISMC), High Order Sliding Mode (HOSM), and Sliding Mode Extended State Observer (SMESO)
offers better effectiveness. However, Type-2 Fuzzy-Neural Network Indirect Adaptive Sliding Mode
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Control (T2FNNAS) is the way to achieve the best performance, which is based on the synthesis
approach of Lyapunov [52,53].

Table 3. Methods to improve SMC technique.

Technique Name Base of the Technique Working Principle Effectiveness

ISMC Has a equal dimension to the state space
Control signal composed by a linear
term with a continuous low excitation
of the unmodeled dynamics

**

HOSM

High-gain control with saturations used
for overcoming the effect of chattering
by approximation of the sign function
within a boundary layer around the
switching manifold

The order of the mode is determined by
the smoothness of tangency of the
sliding manifold

**

T2FNNAS Type-2 Fuzzy Neural Network
Based on the synthesis method
Lyapunov, the adaptive FNN’s free
parameters are tuned on-line

***

SMESO Extended state observer with active
disturbance rejection control

Dramatically reduced chattering
phenomenon on the control input
channel with respect to Linear
Extended State Observer

**

FSMC Low pass filter Estimation of the sliding variable via a
disturbance estimator *

*** = Excellent, ** = Satisfactory, * = Acceptable.

7. Numerical Verification of Results for Microgrid Application

The results obtained so far demonstrate the capabilities of both SMC and LRC to maintain
microgrid stability. To ascertain the effectiveness of these methods in real-life conditions, both of them
are simulated numerically with data obtained from physical microgrids. These simulations confirm
the efficacy of these control systems to sustain stability in real microgrids.

7.1. SMC Technique

To verify the global stability, we have to calculate the equation below:

.
V = s(d + v), (92)

where,

d =
1
c

∆x1 + ω∆x4 −
1
c

dP, (93)

v = −dmax ∗ sat
( s

ε

)
; ε > 0, (94)

So,
.

V = s
(

1
c

∆x1 + ω∆x4 −
1
c

dP − dmax ∗ sat
( s

ε

))
, (95)

where,

dmax =
1
c

δx1 + ωδx4 −
1
c

δP/ δx3, (96)

Putting these all together,

.
V = s

(
1
c

∆x1 + ω∆x4 −
1
c

dp −
(

1
c

δx1 + ωδx4 −
1
c

δP/ δx3

)
∗ sat

( s
ε

))
, (97)

Now let,

ω = 60 Hz, ∆x1 = 200 A, ∆x4 = 50 V, dP = 50 A, δx1 = 4000 A, δx3 = 100 A, δx4 = 100 V,
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δP = 30 kW, ε = 100, c = 10 µF

Putting these values, we get:

.
V = s

(
1

10µ (200) + (60)(50)− 1
10µ (50)−

(
1

10µ (4000) + (60)(100)− 1
10µ

(
30k
100

))
∗ sat

( s
100
))

, (98)

.
V = s

[
15.003 × 106 − [370.006 × 106

]
sat
( s

100

)]
, (99)

Now, if s is either positive or negative, we will obtain
.

V ≤ 0, which guarantees global stability.

7.2. LRC Technique

We have, .
V = e2

.
e2, (100)

where,
.
e2 =

(
ωx4 +

1
c

x1 −
1
c

P0

x3
− 1

c
x5 −

1
c

u0 −
.
x3d

)
+

(
1
c

v + d
)

, (101)

And here,

v = −c ∗ dmax ∗ sat(
dmax ∗ w

µ
), (102)

d = ∆ωn4 + ∆ωx4 + ωn4 +
1
c

∆x1 −
1
c
(n5 + ∆x5)−

1
c

dP , (103)

And,

dmax =
1
c

δx1 + δωδn4 + δωδx4 + ωδn4 −
1
c

δ5 −
1
c

δP/ δx3, (104)

If we choose

u0 = −c
[

1
c

P0

x3
−ωx̂4 +

1
c

x5 +
.
x3d − k1e1 − k2e2

]
, (105)

Putting it all together,

.
V = e2

((
ωx4 +

1
c x1 − 1

c
P0
x3
− 1

c x5 − 1
c u0 −

.
x3d

)
+
(

1
c

(
−c ∗ dmax ∗ sat( dmax∗w

µ )
)

+ (∆ωn4 + ∆ωx4 + ωn4 +
1
c ∆x1 − 1

c (n5 + ∆x5)− 1
c dP)

))
,

(106)

.
V = e2

((
ωx4 +

1
c

x1 −
1
c

P0

x3
− 1

c
x5 −

1
c

(
−c
[

1
c

P0

x3
−ωx̂4 +

1
c

x5 +
.
x3d − k1e1 − k2e2

])
− .

x3d
)

+

(
1
c

(
−c ∗

(
1
c

δx1 + δωδn4 + δωδx4 + ωδn4 −
1
c

δ5 −
1
c

δP/ δx3

)

∗sat


(

1
c

δx1 + δωδn4 + δωδx4 + ωδn4 −
1
c

δ5 −
1
c

δP/ δx3

)
∗ w

µ




+(∆ωn4 + ∆ωx4 + ωn4 +
1
c

∆x1 −
1
c
(n5 + ∆x5)−

1
c

dP)

))
(107)

Now let,
ω = 60 Hz, x3 = 600 V, x4 = 10 V, ∆x1 = 200 A, ∆x2 = 200 A, ∆x5 = 10 A, n3 = 50 V, n4 = 50 V,

n5 = 30 A, n6 = 30 A, ∆ω = 10 Hz, dP = 50 A, dQ = 20 A, δx1 = 4000 A, δx3 = 200 A, δx4 = 100 V,
δω = 70 Hz, δP = 30 kW, δQ = 20 Var, δn3 = δn4 = δn5 = δn6 = 100 A, ρx3 = 200 V, and µ = 100,
δx5 = 50 A, δx6 = 3 A, δ5 = 150 A and δ6 = 13 A, c = 10 µF.
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Putting the values, we get:

.
V = e2((−(100)(600− 480)− (20)(0)) +

(
1

10µ (−10µ∗
(

1
10µ (4000) + (70)(100)

+(70)(100) + (60)(100) − 1
10µ (150)− 1

10µ

(
30k
200

))
∗sat(

(
1

10µ (4000)+(70)(100)+(70)(100)+(60)(100) − 1
10µ (150)− 1

10µ (
30k
200 )

)
∗(60)

100

))
+((10)(50) + (10)(10) + (60)(50) + 1

10µ (100)− 1
10µ (30 + 10)− 1

10µ (50))
))

,

(108)

.
V = e2[988900− [370.02× 106] ∗ sat(222.012× 106)] (109)

As we are getting
.

V ≤ 0 from this equation, the system is globally stable.

8. Conclusions

A microgrid system has several advantages over the conventional utility grid system, such as
unlimited renewable fuel resources, environment-friendly power generation, easy implementation,
cost effectiveness, and so on. However, the maintenance of the microgrid electrification has been
confronted by the challenge of continually increasing instability issues due to the growth of modern
electronic devices. For improving the stability scenario of the microgrid system despite the presence of
dense CPL loads, a storage-based load side compensation technique has been adopted in this paper.
Besides that, Sliding Mode Controller (SMC) and Lyapunov Redesign Controller (LRC), two of the
most prominent nonlinear control techniques, have been implemented individually to retain microgrid
system stability. After that, SMC and LRC controller robustness analysis have been presented with
the variation of CPL power. Next, the comparative analysis between the SMC controller and the
LRC controller robustness has been illustrated which ascertains that Lyapunov Redesign Controller
has a superior performance than the former one to retain microgrid stability in dense CPL-loaded
conditions. Reasons for inferior SMC performance and ways to overcome them have been discussed
afterwards, followed by numerical analysis of both of the control techniques to verify their performance
in real microgrids. All the necessary results have been simulated in Matlab/Simulink platform with
appreciable aftermath.
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