
 

Energies 2017, 10, 1914; doi:10.3390/en10111914 www.mdpi.com/journal/energies 

Article 

An Interval Fuzzy-Stochastic Chance-Constrained 
Programming Based Energy-Water Nexus Model for 
Planning Electric Power Systems 
Jing Liu 1, Yongping Li 1,2,3,*, Guohe Huang 1,2,3, Cai Suo 4 and Shuo Yin 5 

1 Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China; 
zyljing@126.com 

2 School of Environment, Beijing Normal University, Beijing 100875, China; guohe.huang@outlook.com 
3 Institute for Energy, Environment and Sustainability Research, University of Regina, Regina, SK S4S 0A2, 

Canada 
4 Sino-Canada Energy and Environmental Research Center, North China Electric Power University, Beijing 

102206, China; sc7481823@163.com 
5 State Grid Henan Economic Research Institute; No. 87 South Songshan Road, Zhengzhou 450052, China; 

yinshuo1111@163.com 
* Correspondence: yongping.li@iseis.org; Tel.: +86-010-58800156 

Received: 1 October 2017; Accepted: 13 November 2017; Published: 20 November 2017 

Abstract: In this study, an interval fuzzy-stochastic chance-constrained programming based 
energy-water nexus (IFSCP-WEN) model is developed for planning electric power system (EPS). 
The IFSCP-WEN model can tackle uncertainties expressed as possibility and probability 
distributions, as well as interval values. Different credibility (i.e. γ) levels and probability (i.e. qi) 
levels are set to reflect relationships among water supply, electricity generation, system cost, and 
constraint-violation risk. Results reveal that different γ and qi levels can lead to a changed system 
cost, imported electricity, electricity generation, and water supply. Results also disclose that the 
study EPS would tend to the transition from coal-dominated into clean energy-dominated. 
Gas-fired would be the main electric utility to supply electricity at the end of the planning horizon, 
occupying [28.47, 30.34]% (where 28.47% and 30.34% present the lower bound and the upper 
bound of interval value, respectively) of the total electricity generation. Correspondingly, water 
allocated to gas-fired would reach the highest, occupying [33.92, 34.72]% of total water supply. 
Surface water would be the main water source, accounting for more than [40.96, 43.44]% of the total 
water supply. The ratio of recycled water to total water supply would increase by about [11.37, 
14.85]%. Results of the IFSCP-WEN model present its potential for sustainable EPS planning by 
co-optimizing energy and water resources. 

Keywords: decision making; optimization; sustainability; uncertainty; energy-water nexus 
 

1. Introduction 

It is predicted that the electricity demand will increase about 34.51% in 2035 due to population 
growth, economic development, industrialization, and urbanization throughout the world [1,2]. It is 
essential to consume more energy resources to satisfy the rising electricity demand. In fact, energy 
security is highly dependent on water availability since the processes of extracting and refining fossil 
fuels, electricity generation, transportation, and storage demand vast amounts of water; in turn, 
water extraction, conveyance, treatment, and disposal require high energy use [3,4]. The 
interdependence between energy and water resources is commonly defined as the energy-water 
nexus. For electric power systems (EPS), water is supplied to produce hydro power and cool systems 
(open-loop, closed-loop and dry) in thermoelectric power plants (e.g., coal, natural gas, and nuclear), 
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representing a significant branch of the energy-water nexus [5]. It is of great significance to 
effectively plan EPS based on the energy-water nexus due to the increased energy and water 
demands as well as the decreased energy and water availabilities [6]. 

Many researchers have studied analyzing the energy-water nexus to involve energy and water 
in the same systematic management problem. In 1994, Gleick used a full-scale Life cycle assessment 
(LCA) to explain and quantify the water intensity of energy resource extraction in the processes of 
power generation as well as the energy intensity of the water extraction during conveyance, 
treatment, distribution, and end use [7,8]. Recently, more researchers attempted to explore the 
energy-water nexus based on optimization techniques from a system point of view [9–12]. For 
example, Bazilian et al. [13] presented a modeling framework that specifically addressed the 
energy-water nexus from a developing country perspective, and could thus serve to inform more 
effective national policies and regulations. Dubreuil et al. [14] advanced an energy optimization 
model by incorporating a dedicated water module to joint optimize water and energy allocations, to 
assess the chances of reused water and nonconventional water resources in water scarce regions, as 
well as to analyze the variations in electricity demand when taking water into account. Van et al. 
[15] explored the impact of climate change on the European electricity generation, in which water 
availability for hydropower generation and cooling water usage for thermoelectric power 
production were analyzed. Liu et al. [16] employed an integrated model to assess future electricity 
generation and consumption as well as the related water withdrawals and consumption in the U.S 
under different scenarios (associated with the generation fuel portfolio, cooling technology mix, 
and their associated water use intensities). Lubega and Farid [17] developed a quantitative 
engineering system model to optimize the energy-water nexus systems, including electricity 
generation, engineered water supply, and wastewater management. Santhosh et al. [18] contributed 
a production cost co-optimization method for assessing the impact of storage facility capacity and 
ramping capabilities on the supply side economic dispatch of the energy-water nexus. Yang and 
Chen [8] proposed an energy-water nexus analysis framework for wind power generation systems, 
where energy for water supply and water for electricity generation were investigated. Gjorgiev and 
Giovanni [19] focused on the effects of water policy constraints on electric power generation in 
changing climate conditions, in which severe drought conditions leading to small river flows and 
high water temperatures were analyzed, and the limitations on the energy conversion at the thermal 
plant stemming from the water policies were quantified. 

In fact, various uncertainties (e.g., electricity demand/supply, conversion efficiency, resources 
availability, and economic data) and their interactions are unavoidable to be taken into account since 
they may intensify the complexities in the planning procedures [20]. Conventional research efforts 
have difficulties in addressing uncertainties and their interactions. Previously, a number of inexact 
optimization models were developed for handling uncertainties and their interactions (in water 
management and EPS planning problems) through fuzzy, stochastic, and interval programming 
approaches [21–30]. Among them, the interval fuzzy credibility-constrained programming (IFCP) 
method is a computationally efficient hybrid approach that can tackle epistemic uncertainties 
presented in the form of fuzzy membership functions and intervals. It has been applied to water 
management to demonstrate its capability [22,31]; no applications of it to reflect and address the 
uncertainties associated with EPS management have been reported. On the other hand, the IFCP 
method is not effective for problems where uncertainties can only be expressed as random variables 
with known probability distributions. Chance-constrained programming (CCP) can handle 
randomness by allowing a set of related constraints to have finite probability of being violated [32]. 
By introducing the CCP into the IFCP framework, an interval fuzzy-stochastic chance-constrained 
programming (IFSCP) method can be formulated to cope with multiple uncertainties. 

Therefore, this study aims to develop an interval fuzzy-stochastic chance-constrained 
programming based energy-water nexus (IFSCP-WEN) model for planning an electric power 
system. The detailed tasks entail: (1) integrating the CCP into the IFCP framework to formulate the 
IFSCP method; (2) dealing with uncertainties expressed in terms of possibility distributions, interval 
values, and probability distributions; (3) analyzing optimization results of electricity generation, 
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water supply, capacity expansion, and pollution control under a variety of constraint-violation 
levels. The results can be helpful for decision makers to gain insight into the tradeoffs between water 
supply and electricity generation as well as the system cost and the constraint-violation risk. 

2. Study System 

2.1. Problem Statement 

In this study, five main components are considered in an EPS. These include (i) the energy 
supply sector, which provides energy resources with different diverse resources; (ii) the electricity 
generation sector, which contains various electricity generation technologies as well as capacity 
expansion and imported electricity options with varied economic, environmental, and technological 
performance; (iii) the water supply sector, which supplies water to produce hydro power and cool 
systems (open-loop, closed-loop and dry); (iv) the electricity demand sector, which involves certain 
kinds of demand side technologies to fulfill the demand of many end users and is determined by 
varying socio-economic, geographical, technological, and environmental conditions; (v) the 
pollution mitigation sector, which regulates pollution mitigation policies [33]. Decision makers are 
often responsible for allocating electricity from multiple electric utilities to multiple end users over 
a planning horizon. 

The decision maker can formulate the problem as minimizing the system cost by identifying 
sound schedules of imported electricity, electricity generation, water supply, and capacity 
expansion. A range of constraints are presented as a set of linear inequalities for defining the 
relationship between electricity and water supplies, resources availabilities, electricity and water 
demands, and environmental restrictions. In fact, such a system is complicated due to the following: 
(1) management of energy and water sources has complex interactions with many other 
components, such as environment, ecosystem, and socio-economy; (2) complex relationships 
between different activities/services (e.g., imported electricity, electricity generation, capacity 
expansion, water supply, and pollution reduction) and their related economic and environmental 
implications. In addition, inherent uncertainties and intensive interactions (which are subject to 
temporal and spatial variations) exist among various factors [34]. They need to be effectively 
incorporated into the planning processes and the obtained decision alternatives. For example, 
energy demands may be affected by a number of factors such as population growth rate, economy 
development strategy, electricity demand, and supply policy; electricity generation may change 
with varied resource availabilities; costs which are related to the facilities/techniques may fluctuate 
with market conditions. Effective EPS planning should take these complications and uncertainties 
into account 

2.2. System Description 

Consider a representative EPS where electricity is supplied to multiple end users over a 
six-year planning horizon (with each having two years). Multiple energy resources include coal, 
natural gas, water, nuclear fuel, wind, and solar energies are supplied, thus six electric utilities  
(i.e., coal-fired, gas-fired, hydro, nuclear, wind, and solar power) are available for installation to 
meet the electricity demand in each period. Surface water, groundwater, and recycled water are 
identified as water supply sources since the process of generating electricity needs a large amount of 
water. They supply water to coal-fired, gas-fired, hydropower, and nuclear power utilities (wind 
and solar power are not considered due to their low water demands). Generally, electricity demand 
rises with time due to economy development and population growth; therefore, the decision makers 
are forced to expand the existing electric power utilities or import electricity to fulfil the increasing 
demand. The expansions are restrained by water and energy availabilities, cost of technologies, 
conversion efficiencies, capital investments, operation costs, and environmental concerns, while 
imported electricity is mainly determined by the importing cost. Moreover, the interrelationship 
between energy and water can greatly affect the decision making processes. For example, different 
electricity generation technologies have diverse water demands and costs of supplying electricity 
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(for extracting, treating, and delivering water); different water sources correspond to different 
electricity demands and costs of allocating water (to different electric utilities). It is necessary to 
consider the energy-water nexus when planning the EPS. 

3. Development of IFSCP-WEN 

3.1. IFSCP Method 

First, an interval fuzzy credibility-constraint programming (IFCP) method is formulated 
through coupling fuzzy credibility-constrained programming (FCP) with interval-parameter 
programming (IPP). The IFCP method is effective in handling uncertainties expressed as interval 
values and possibility distributions, which can be presented as follows [31]: 

1
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The main limitation of IFCP lies in its difficulty in reflecting random features of constraints. 
Consequently, the chance-constrained programming (CCP) technique can be incorporated within 
the IFCP framework, leading to an interval fuzzy-stochastic chance-constrained programming 
(IFSCP) method as follows: 

1 2 3 4
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where  (0 1)i iq q≤ ≤  is the probability of violating constraint i. The IFSCP can be solved based on 
an interactive algorithm [37]. The detailed solution method is listed in Appendix A. 

3.2. IFSCP-WEN Modeling Formulation 

Based on the IFSCP method, an interval fuzzy-stochastic chance-constrained programming 
based energy-water nexus (IFSCP-WEN) model can be developed for planning the EPS. Figure 1 
describes the framework of the IFSCP-WEN model. The objective of the IFSCP-WEN model is to 
minimize the system cost, including the cost for purchasing energy resources, the cost for importing 
electricity, the cost of electricity generation, the cost for capacity expansion, the cost of water supply, 
and the cost of pollution mitigation. In detail, the proposed IFSCP-WEN model can be formulated as 
follows: 
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Figure 1. Framework of the IFSCP-WEN model. 
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In this study, it is assumed that credibility level γ = λ and six levels are taken into account (i.e., 
0.55, 0.65, 0.75, 0.85, 0.95, and 0.99). Appendix B presents the nomenclatures for the parameters and 
variables. 

3.3. Data Analysis 

In this study, the imprecise inputs are presented as possibility distributions, probability 
distributions, and interval numbers. Table 1 provides the costs of electricity generation (including 
fixed and variable costs) which are presented as possibility distributions [37]. The costs are subjected 
to a range of factors (i.e., energy price and quality, labor fee, and operation condition); furthermore, 
activities for electricity generation may contain numerous capitals from multiple sources, resulting 
in varied interest rates. Summarily, coal and natural gas-fired electricity utilities correspond to lower 
operation cost; hydro, wind, and solar electricity utilities are associated with higher cost since their 
availability and stability concerns the authorities; nuclear electricity is also produced at a high cost 
partly due to the high investment for guaranteeing safety. Table 2 lists energy-water nexus related 
data [38]. Summarily, energy-water nexus includes: (i) water for electricity generation (mainly for 
cooling systems); (ii) groundwater and surface water extractions, bulk water (surface water 
groundwater, and recycled water) transfers, retail water distribution, wastewater collection, and 
wastewater treatment all need a certain amount of electricity [39]. The related data are expressed as 
possibility distributions due to imprecise information and subjective estimations. Besides, various 
factors could affect electricity demand (i.e., annual- and peak-demand) such as population growth, 
socio-economic development, changing weather condition, and the stochastic individual usage, resulting 
in the presentation of the electricity demand being a probability distribution [40]. Table 3 shows the 
electricity demand under three iq  levels of violating electricity demand ( iq = 0.01, 0.05, and 0.10) [41]. 

  



Energies 2017, 10, 1914 9 of 23 

 

Table 1. Costs for electricity generation. 

Technology 
Period

t = 1 t = 2 t = 3 
Fixed cost for electricity generation (106 $/GW) 

Coal-fired 
[(22.45, 23.38, 25.24), 
(28.06, 30.12, 33.07)] 

[(21.24, 22.91, 24.43), 
(27.17, 28.38, 32.11)] 

[(20.98, 22.44, 23.68),  
(25.83, 26.92, 31.54)] 

Gas-fired 
[(33.16, 35.68, 37.75), 
(40.32, 42.81, 44.93)] 

[(30.23, 33.17, 35.22), 
(37.44, 39.81,41.75)] 

[(29.23, 31.23,33.74),  
(35.78, 37.47, 39.87)] 

Hydro 
[(71.47, 73.36, 75.13), 
(86.71, 88.03, 89.94)] 

[(67.34, 69.38, 71.03), 
(81.54, 83.26,85.76)] 

[(63.35, 65.43, 67.76),  
(75.87, 78.51, 80.65)] 

Nuclear 
[(115.33, 119.21, 121.74), 
(140.27, 143.04, 145.84)] 

[(111.74, 113.17, 115.83), 
(133.23, 135.81, 137.34)] 

[(104.34, 107.39, 110.54),  
(126.43, 128.87, 131.43)] 

Solar 
[(67.43, 70.26, 72.54), 
(81.74, 84.31, 86.47)] 

[(63.54, 66.71, 68.95), 
(77.98, 80.06, 82.97)] 

[(60.76, 63.36, 66.02),  
(72.43, 75.96, 78.42)] 

Wind 
[(55.54, 59.25, 62.54), 
(68.43, 71.21, 74.04)] 

[(52.54, 56.26, 59.75), 
(63.03, 67.51, 71.75)] 

[(51.17, 53.38, 55.93),  
(61.42, 64.06, 66.84)] 

Variable cost for electricity generation (103 $/GWh) 

Coal-fired 
[(1.34, 1.59, 1.84),  
(1.72, 1.91, 2.11)] 

[(1.31, 1.56, 1.59),  
(1.85, 1.88, 1.91)] 

[(1.49, 1.52, 1.55),  
(1.81, 1.84, 1.87)] 

Gas-fired 
[(2.14, 2.19, 2.24),  
(2.58, 2.63, 2.68)] 

[(2.03, 2.08, 2.13),  
(2.46, 2.51, 2.55)] 

[(1.92, 1.97, 2.02),  
(2.31, 2.36, 2.41)] 

Hydro 
[(7.21, 7.25, 7.29),  
(8.63, 8.67, 8.71)] 

[(6.81, 6.85, 6.89),  
(8.17, 8.21, 8.25)] 

[(6.44, 6.48, 6.52),  
(7.71, 7.75, 7.79)] 

Nuclear 
[(7.17, 7.21, 7.25),  
(8.53, 8.57, 8.61)] 

[(6.83, 6.87, 6.91),  
(8.18, 8.22, 8.26)] 

[(6.45, 6.49, 6.53),  
(7.74, 7.79, 7.83)] 

Solar 
[(7.74, 7.79, 7.83),  
(9.32, 9.36, 9.40)] 

[(7.55, 7.59, 7.63),  
(9.26, 9.30, 9.34)] 

[(7.43, 7.47, 7.51),  
(9.11, 9.15, 9.19)] 

Wind 
[(9.42, 9.47, 9.52),  

(11.29, 11.34, 11.39)] 
[(9.01, 9.06, 9.11),  

(10.81, 10.86, 10.91)] 
[(8.61, 8.66, 8.71),  

(10.33, 10.38, 10.43)] 

Table 2. Energy-water nexus related data. 

Technology 
Period

t = 1 t = 2 t = 3
Unit Water Demand of Electricity Generation (103 m3/GWh) 

Coal-fired 
[(1.22, 1.26.1.32), 
(1.48, 1.53, 1.58)] 

[(1.14, 1.21, 1.27), 
(1.41, 1.46, 1.52)] 

[(1.07, 1.14, 1.19),  
(1.32, 1.37, 143)] 

Gas-fired 
[(1.71, 1.76, 1.82), 
(2.14, 2.23, 2.29)] 

[(1.62, 1.69, 1.74), 
(2.03, 2.14, 2.22)] 

[(1.52, 1.59, 1.65),  
(1.85, 1.94, 2.03)] 

Hydro 
[(2.78, 2.84, 2.93), 
(3.21, 3.53, 3.71)] 

[(2.21, 2.47, 2.63), 
(3.13, 3.26, 3.45)] 

[(2.24, 2.48, 2.75),  
(2.85, 2.94, 3.12)] 

Nuclear 
[(1.84, 1.89, 1.93), 
(2.29, 2.37, 2.45)] 

[(1.63, 1.72, 1.79), 
(2.07, 2.15, 2.21)] 

[(1.57, 1.62, 1.68),  
(1.83, 1.95, 2.03)] 

Unit Amount of Electricity for Extracting Water (10-6 GWh/m3) 

Surface water 
[(0.76, 0.81, 0.86), 
(0.89, 0.94, 0.99)] 

[(0.71, 0.78, 0.83), 
(0.84, 0.89, 0.94)] 

[(0.63, 0.75, 0.79),  
(0.81, 0.85, 0.89)] 

Groundwater 
[(0.36, 0.42, 0.48), 
(0.51, 0.57, 0.63)] 

[(0.32, 0.38, 0.44), 
(0.47, 0.53, 0.59)] 

[(0.27, 0.33, 0.39),  
(0.42, 0.48, 0.54)] 

Unit Amount of Electricity for Delivering Water (10-6 GWh/m3) 

Surface water 
[(1.21 1.23, 1.25), 
(1.31, 1.33, 1.35)] 

[(1.17, 1.19, 1.21), 
(1.25, 1.27, 1.29)] 

[(1.14, 1.16, 1.18),  
(1.22, 1.24, 1.26)] 

Groundwater 
[(1.21 1.23, 1.25), 
(1.31, 1.33, 1.35)] 

[(1.17, 1.19, 1.21), 
(1.25, 1.27, 1.29)] 

[(1.14, 1.16, 1.18),  
(1.22, 1.24, 1.26)] 

Recycled water 
[(0.23, 0.26, 0.29), 
(0.31, 0.34, 0.37)] 

[(0.19, 0.22, 0.25), 
(0.27, 0.30, 0.33)] 

[(0.14, 0.17, 0.20),  
(0.23, 0.26, 0.29)] 

Unit Amount of Electricity for Treating Water(10-6 GWh/m3) 

Recycled water 
[(0.12, 0.13, 0.14), 
(0.16, 0.17, 0.18)] 

[(0.10, 0.11, 0.12), 
(0.14, 0.15, 0.16)] 

[(0.09, 0.10, 0.11),  
(0.13, 0.14, 0.15)] 
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Table 3. Electricity demand under different iq levels. 

Technology 
Period

t = 1 t = 2 t = 3
Annual Electricity Demand (103 GWh) 

iq = 0.01 [69.84, 74.34] [76.39, 79.03] [81.42, 85.03] 

iq = 0.05 [65.38,67.43] [71.34, 75.23] [76.27, 79.49] 

iq = 0.10 [55.73,63.69] [65.84, 69.32] [71.43, 74.43] 
Electricity Demand in Summer (103 GWh) 

iq = 0.10 [28.94, 32.48] [34.18, 37.49] [39.43, 42.55] 

iq = 0.05 [24.04, 27.03] [29.75, 33.07] [35.94, 38.94] 

iq = 0.01 [19.43, 23.57] [24.43, 27.03] [29.74, 34.43] 
Electricity Demand in Winter (103 GWh) 

iq = 0.01 [22.53, 27.84] [28.39, 31.38] [35.57, 38.15] 

iq = 0.05 [19.37, 21.33] [23.03, 26.14 ] [31.28, 34.47] 

iq = 0.10 [15.46, 18.47] [20.03, 24.07] [26.54, 30.74] 

4. Result Analysis and Discussion 

4.1. System Cost 

Figure 2 shows the system cost under each credibility (i.e., γ) level and probability (i.e., iq ) level, 
where the system costs would increase with raised γ levels and decrease with raised iq levels. For 
example, when iq = 0.01, the system cost would be $[28.26, 38.89] × 109 under γ = 0.55; in comparison, 
it would be $[40.30, 54.74] × 109 under γ = 0.99. This is because higher γ levels correspond to a stricter 
allowable magnitude of violating fuzzy constraints, leading to higher costs to alleviate the 
constraint-violation risks. When γ = 0.65, the system cost would be $[21.74, 30.65] × 109 under  
iq = 0.05, while it would be $[16.38, 23.12] × 109 under iq = 0.10. This is due to the fact that higher iq

levels are related to lower electricity demands and thus result in lower system costs. In summary, 
the decision associated with a higher γ level and a lower iq level would carry increased reliability in 
fulfilling the system requirements and a higher system cost; a strong desire to reduce the system cost 
would entail a raised risk of violating the credibility- and chance-constraints. 
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Figure 2. System cost under each iq level and γ level. (a) iq = 0.01; (b) iq = 0.05; (c) iq = 0.10. 

4.2. Electricity and Water Supply Patterns 

The effects on the electricity (i.e., imported electricity and electricity generation) and water 
supply patterns under each iq and γ levels are shown in Figure 3. It is demonstrated that the 
imported electricity, electricity generation, and water supply would vary with γ and iq levels. 
Generally, imported electricity would ascend with raised γ levels and descend with raised iq levels; 
electricity generation and water supply would decrease with raised γ and iq levels. For example, 
when γ = 0.55, the amounts of imported electricity, electricity generation, and water supply would 
respectively be [9.95, 12.45] × 103 GWh, [60.06, 63.53] × 103 GWh, and [134.98, 189.81] × 103 m3 in 
period 1 under iq = 0.01, while they would respectively be [7.21, 11.27] × 103 GWh, [47.21, 52.29] × 103 
GWh, and [129.15, 165.63] × 103 m3 under iq = 0.10. When iq = 0.05, the amounts of imported 
electricity, electricity generation, and water supply would be [18.74, 20.01] × 103 GWh, [54.14, 56.11] × 
103 GWh, and [149.28, 196.49] × 103 m3 in period 2 under γ = 0.65; in comparison, they would 
respectively be [21.04, 22.94] × 103 GWh, [51.57, 53.73] × 103 GWh, and [139.03, 157.17] × 103 m3 under 
γ = 0.95. This is because decision makers with a lower γ level possess a risk-neutral attitude (with a 
loose allowable magnitude of violating available resources and allowable pollutant emission related 
constraints); contrarily, decision makers with a higher γ level own a risk-averse attitude (leading to 
less electricity generation and water supply). Thus, more electricity would be imported to 
compensate for the growth of electricity shortage. Moreover, higher iq levels are associated with 
lower electricity demands and thus result in a decline in imported electricity, electricity generation, 
and water supply. 
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Figure 3. Electricity and water supply patterns under each iq level and γ level: (a) imported 

electricity; (b) electricity generation; (c) water supply. 

4.3. Distribution of Electricity Generation 

Figure 4 displays the distribution of electricity generation in each period. It is obvious that 
coal-fired and gas-fired would be the dominant electricity conversion technologies in the EPS. 
Specifically, the ratio of coal-fired power to total generation would drop with time and gas-fired 
power would increase with time. For example, coal-fired and gas-fired power would respectively 
account for [47.13, 54.32]% and [16.34, 20.03]% of the total electricity generation in period 1, while 
coal-fired and gas-fired power would respectively occupy [22.54, 24.32]% and [28.47, 30.34]% of the 
total electricity generation in period 3. The decreased use of raw material for coal-fired power would 
be ascribed to its high pollutant emission rate and resource shortage; in comparison, gas-fired is a 
technology with high electricity generation efficiency and low emission rate. Generally, the energy 
supply structure would tend to the transition from coal-dominated into clean energy-dominated due 
to the aim of sustainable development (i.e., clean burning, energy saving and emission reduction). In 
addition, hydro would also account for a high proportion of electricity generation due to the 
superiority of large capacity and highly available water resources. It would occupy [12.27, 14.25]%, 
[14.32, 16.93]% and [16.38, 17.35]% of the total electricity generation in periods 1–3, respectively. In 
terms of other energy sources (i.e., nuclear, solar, and wind), they would have small contributions to 
electricity generation due to their limited available resources (including water resources), low 
service time and/or small capacity. Under such a generation pattern, the capacity expansion of clean 
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energy would be inevitable to meet a rapid increment. It is indicated that capacity expansion is 
focused on gas-fired. Other electric utilities are too small, so that this is neglected in the results 
analysis. 

Figure 4. Distribution of electricity generation in each period: (a) period 1 (t = 1); (b) period 2 (t = 2); 
(c) period 3 (t = 3). 

4.4. Water Allocation for Electricity Generation 

Figure 5 depicts water allocation patterns for electricity generation under different iq ( iq = 0.01, 
0.05, 0.10) and γ levels (γ = 0.55, 0.99). Symbols “CF”, “GF”, “HY”, and “NC” mean “Coal-fired”, 
“Gas-fired”, “Hydro”, and “Nuclear” electric power utilities, respectively. It is shown that water 
allocated to coal-fired power would decrease with time, while other electric power utilities would 
vary with time. For example, under iq = 0.01 and γ = 0.55, the amount of water allocated to coal-fired 
power would be [45.89, 58.71] × 103 m3 in period 1 and [42.21, 54.70] × 103 m3 in period 2. The amount 
of water allocated to gas-fired power would be [36.41, 48.02] × 103 m3 in period 1 and [55.33, 64.23] × 
103 m3 in period 2. Moreover, in periods 2 and 3, gas-fired power would be the main water 
consumption utility (approximately occupying [31.65, 33.49]% and [33.92, 34.72]% of the total water 
supply, respectively). Such a change would be attributed to the increased electricity generation, 
purpose of pollution control (less electricity generated by coal-fired power), and high water 
consumption rate (gas-fired, hydro, and nuclear electric power utilities). On the other hand, the 
results show that the water allocation would be as follows: surface water > groundwater > recycled 
water. Figure 6 summarizes the distribution of water allocation in each period. In period 1, surface 
water and groundwater would respectively occupy [49.18, 52.77]% and [32.35, 37.98]% of the total 
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water supply, while recycled water would contribute [12.84, 14.88]%. Since the surface water and 
groundwater allocations are constrained by resource shortage and cost pressure, their share would 
keep decreasing with time (resulting in a drop of around [5.74, 11.81]% and [3.48, 5.19]% in period 3 
compared to period 1). On the contrary, the share of recycled water would keep increasing with time 
based on the aim of resources conservation. 
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Figure 5. Water allocation patterns for electricity generation under different iq  and γ levels. (Note: 

“CF” denotes “Coal-fired”; “GF” denotes “Gas-fired”; “HY” denotes “Hydro”; “NC” denotes 
“Nuclear”). 

 
Figure 6. Distribution of water allocation in each period: (a) period 1 (t = 1); (b) period 2 (t = 2); (c) 
period 3 (t = 3). 
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Figure 7 shows the proportion of electricity generation (including gas-fired, coal-fired, hydro, 
and nuclear power) and water supply in each season. It is indicated that different seasons would 
correspond to varied electricity generation and water supply patterns. For example, in period 1, the 
electricity generation and water supply would contribute [19.34, 21.45]% and [20.34, 21.45]% in 
spring (s = 1), while they would respectively account for [33.54, 31.45]% and [25.13, 28.32]% of the 
total electricity generation and water allocation in summer (s = 2). Generally, the electricity demand 
in summer and winter would be higher than that in spring and autumn due to air-conditioning 
operations (in summer) and heating (in winter). Thus, the share of water supply in winter would 
reach the highest, while the ratio of water allocation in summer would be less than that in winter due 
to the contribution of solar power. 

 

 

 

Figure 7. Proportion of electricity generation and water supply in each season: (a) period 1 (t = 1); (b) 
period 2 (t = 2); (c) period 3 (t = 3). 

4.5. Pollutant Emissions 

In this study, SO2, NOx, and PM10 are selected as the air pollutants that decision makers want to 
mitigate due to their harmful impacts on human health and the atmospheric environment. Figure 8 
displays the pollutant emissions under each qi level. Results indicate a downtrend of pollutant 
emissions from period 1 to period 3. Under qi = 0.01, the pollutant emissions (SO2, NOx, and PM10) 
would decrease by [23.51, 26.34]%, [17.71, 21.34]%, and [23.23, 24.69]% from period 1 to period 3. The 
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downtrend would mainly be associated with the strict emission regulations and enhanced pollutant 
treatment technology. More technologies which can not only satisfy seasonal peak-electricity 
demand but also be helpful to promote sustainable development should be selected, such as biomass 
power generation (e.g., waste incineration, biogas power generation, and landfill gas power 
generation). 

 

 

 

Figure 8. Pollutant emissions under each iq level: (a) SO2 emission; (b) NOx emission; (c) PM10 

emission. 

5. Conclusions 

In this study, an interval fuzzy-stochastic chance-constrained programming (IFSCP) method 
was developed by integrating the chance-constrained programming (CCP) method into an interval 
fuzzy credibility-constrained programming (IFCP) framework. The IFSCP method can tackle 
multiple uncertainties expressed as possibility distributions, probability distributions, and interval 
values. Generally speaking, IFCP can deal with possibility distributions and interval values when 
this type of uncertainty exists in objective and constraints, while CCP has advantages in handling 
probability distributions. Moreover, whether a particular facility development or expansion option 
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needs to be undertaken, is indicated by the use of integer variables. As a new optimization method, 
IFSCP integrated the advantages of the above methods, without inheriting the disadvantages of 
these methods. Then, it can be applied to electric power system (EPS) planning where the 
energy-water nexus is taken into account, leading to an interval fuzzy-stochastic chance-constrained 
programming based energy-water nexus (IFSCP-WEN) model. Different credibility (i.e., γ) levels 
and probability (i.e., iq ) levels are set to reflect the tradeoffs between water and electricity generation 
as well as system cost and the constraint-violation risk. Results reveal that: (i) system costs would 
increase with raised γ levels and decrease with raised iq levels; (ii) electricity and water supplies 
would decrease with raised γ and iq levels due to the changed risk attitudes of decision makers (from 
risk-neutral attitude to risk-averse attitude) and decreased electricity demand; (iii) imported 
electricity would vary with the changed electricity generation since the system's electricity 
generation cannot satisfy its electricity demand. 

In terms of the energy-water nexus, results disclose that the energy supply structure would 
tend to the transition from coal-dominated into clean energy-dominated (especially natural gas). The 
ratio of clean energy related power to total electricity generation would respectively be [45.68, 
52.87]%, [60.96, 62.68]%, and [71.53, 73.66]% from period 1 to period 3. Correspondingly, water 
allocated to coal-fired power would decrease with time, while other electric power utilities would 
vary with time. There would be a drop of approximately [11.37, 17.53]% of water allocation to 
coal-fired power from period 1 to period 3. Surface water would be the main water source, 
accounting for [49.18, 52.77]%, [43.64, 47.81]%, and [40.96, 43.44]% of the total water supply. The 
ratio of recycled water to total water supply would increase by about [11.37, 14.85]%. Besides, the 
share of water supply in winter would reach the highest level (due to the high electricity demand for 
heating), while the ratio of water supply in summer (high electricity demand for operating 
air-conditions) would be less than that in winter due to the contribution of solar power. The pollutant 
emissions (SO2, NOx, and PM10) would decrease with time due to the strict emission regulations and 
enhanced pollutant treatment technology. 

The first attempt to employ the IFSCP-WEN model to support EPS planning under multiple 
uncertainties demonstrates its applicability. However, the IFSCP method still has space for further 
improvement. Actually, with many EPS planning problems, the electricity which is produced by 
coal combustion can emit large amounts of greenhouse gas (GHG). In such a context, it is also 
desired to incorporate the energy-GHG nexus into EPS planning, leading to energy-water-GHG 
based EPS. Moreover, the probability distributions are determined based on the decision makers’ 
subjective estimation (according to the historical data) and the sensitivity of the solution may be 
questioned. Support vector regression (SVR) and Monte Carlo simulation can be used to deal with 
such a concern. On the other hand, a hypothetical but representative study system has been 
developed for illustrating the applicability of the proposed model based on representative costs and 
technical data from EPS literature. However, in real-world problems, the extension of power capacity is 
done together with the transmission and distribution (T&D) lines and the capacity expansion should be 
analyzed. Meanwhile, the planning horizon is typically 10 or even more years. 
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Appendix A. Solution Method 

Submodel (1) for f −  (i.e., lower bound of objective function) can be first formulated when the 

system objective is to be minimized, while submodel (2) corresponding to f +  (i.e., upper bound of 
objective function) can then be formulated based on the solution of submodel (1): 

Submodel (1): 
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j j k

a a x a a x

a a x a a x e r m

γ

γ

+ −± ± − ± ± +

= = +

+ −± ± − ± ± + +

= = +

 
− + 

 
 

+ − + ≤ = 
 

 

 
 (A4) 

0,   1,  2,  ...,  jx j k− ≥ =  (A5) 

0,   1,  k+2,  ...,  jx j k n+ ≥ = +   

Submodel (2): 

1 2 3 4 1 2 3 4
1 1

1 1Min (  ) (  )
4 4

k n

j j j j j j j j j j
j j k

f c c c c x c c c c x+ + + + + + + + + + −

= = +

= + + + + + + +   (A6) 

subject to: 

( ) ( ) 1
1 1

sign sign ( ) ,   1,  2,  ...,  i

k n
q

rj rj j rj rj j i
j j k

a a x a a x b t r m
− +± ± + ± ± − +

= = +

+ ≥ =   (A7) 

( ) ( ) ( )

( ) ( ) ( )
1 1

1 1

2 1 sign sign

2 1 sign sign ,   1,  2,  ...,  

k n

i rj rj j rj rj j
j j k

k n

i rj rj j rj rj j r
j j k

a a x a a x

a a x a a x d r m

γ

γ

− +± ± + ± ± −

= = +

− +± ± + ± ± − +

= = +

 
− + 

 
 

+ − + ≥ = 
 

 

 
 (A8) 

( ) ( ) ( )

( ) ( ) ( )
1 1

1 1

2 1 sign sign

2 1 sign sign ,   1,  2,  ...,  

k n

i rj rj j rj rj j
j j k

k n

i rj rj j rj rj j r
j j k

a a x a a x

a a x a a x e r m

γ

γ

− +± ± + ± ± −

= = +

− +± ± + ± ± − −

= = +

 
− + 

 
 

+ − + ≤ = 
 

 

 
 (A9) 

opt ,   1,  2,  ...,  j jx x j k+ −≥ =  (A10) 
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opt ,   1,  k+2,  ...,  j jx x j k n+ −≥ = +  (A11) 

where   ( 1,  2,  ...,  )jx j k± =  decision variables with positive coefficients in the objective function, 

and   ( 1,  2,  ...,  )jx j k n± = +  with negative coefficients. By solving the two submodels, interval 

solutions with probability and possibility information can be obtained and be used for generating a 
range of decision options. 

Appendix B. Nomenclatures for Parameters and Variables 

f ±  system cost over the planning horizon ($) 

N 
type of generating facility; n = 1 (coal-fired); n = 2 (natural gas-fired); n =3 (hydro); n = 4 (nuclear); n 
= 5 (solar); n = 6 (wind) 

T time period; t = 1, 2, 3 
S season; s = 1 (spring); s = 2 (summer); s = 3 (autumn); s = 4 (winter) 

 ,n tPER
±

 unit cost for purchasing energy resource n in period t ($/TJ) 

, ,n t sEG±  amount of electricity generation via utility n in season s of period t (GWh) 

 ,n tEC
±

 consumption rate of utility n (TJ/GWh) 

tsCIE±  cost for importing electricity in season s of period t ($/GWh) 

,t sIE±  imported electricity in season s of period t (GWh) 

 ,n tFCE
±

 fixed cost for electricity generation by utility n in period t ($/GW) 

ntECE±  expanded capacity for utility n in period t (GW) 

ntY  0–1 variables for identifying whether or not utility n needs to be expanded in period t 

 ,n tVCE
±

 variable cost for generating electricity via utility n in period t ($/GWh) 

ntsSH±  service time of utility n in season s of period t (h) 

 ,n tFCC
±

 fixed cost for expanding capacity for utility n in period t ($) 

 ,n tVCC
±

 variable cost for expanding capacity for utility n in period t ($/GW) 


tCFS
±

 environmental facilities cost for SO2 emission in period t ($/GW) 


tCES
±

 cost for emission of SO2 in period t ($/GWh) 


tCFN
±

 environmental facilities cost for NOx emission in period t ($/GW) 


tCEN
±

 cost for emission of NOx in period t ($/GWh) 


tCFP
±

 environmental facilities cost for PM10 emission in period t ($/GW) 


tCEP
±

 cost for emission of PM10 in period t ($/GWh) 


tFSG
±

 financial subsidy in period t ($/GWh) 

,n tAER±  available resource for utility n in period t (TJ) 

 ,n tCGW
±

 unit cost of groundwater for electricity generation ($/m3) 

, ,sn tGW ±  groundwater for electricity generation by utility n in season s of period t (m3) 

,t sAGW ±  available groundwater in season s of period t (m3) 

 ,n tCSW
±

 unit cost of surface water for electricity generation ($/m3) 

, ,n t sSW ±  surface water for electricity generation by utility n in season s of period t (m3) 



Energies 2017, 10, 1914 21 of 23 

 

,t sASW ±  available surface water in season s of period t (m3) 

 ,n tCRW
±

 unit cost of recycled water for electricity generation ($/m3) 

, ,n t sRW ±  recycled water for electricity generation by utility n in season s of period t (m3) 

,t sARW ±  available recycled water in season s of period t (m3) 

nRC±  residual capacity for utility n (GW) 

tBLE  base-load electricity demand in period t (GWh) 

,t sPEAK  peak-electricity demand in season s of period t (GWh) 

 ,t sUEC
±

 unit amount of electricity for pumping groundwater in season s of period t (GWh/m3) 

 ,t sUSC
±

 unit amount of electricity for extracting surface water in season s of period t (GWh/m3) 

 ,t sUED
±

 unit amount of electricity for delivering water in season s of period t (GWh/m3) 

,t sAER±  available electricity for extracting and delivering water in season s of period t (GWh) 

 ,t sUET
±

 unit amount of electricity for treating wastewater in season s of period t (GWh/m3) 

 ,t sUER
±

 unit amount of electricity for recycling water in season s of period t (GWh/m3) 

,t sARR±  available electricity for recycled water in season s of period t (GWh) 

 ,t sθ
±

 consumption rate of electricity for collecting, treating and delivering water (%) 

,n tUWE±  unit water demand per unit of electricity generation (m3/GWh) 

 , ,n t sPER
±

 emission amount of SO2 in utility n in period t (tonne/GWh) 

 , ,n t sPEN
±

 emission amount of NOX in utility n in period t (tonne/GWh) 

 , ,n t sPEP
±

 emission amount of PM10 in facility n in period t (tonne/GWh) 

tAES±  allowed amount of SO2 in period t (tonne) 

tAEN ±  allowed amount of NOX in period t (tonne) 

tAEP±  allowed amount of PM10 in period t (tonne) 

nCAPM ±  maximum capacity for electricity generation facility n (GW) 
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