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Abstract: The continual accumulation of power grid failure logs provides a valuable but rarely used
source for data mining. Sequential analysis, aiming at exploiting the temporal evolution and exploring
the future trend in power grid failures, is an increasingly promising alternative for predictive scheduling
and decision-making. In this paper, a temporal Latent Dirichlet Allocation (TLDA) framework is
proposed to proactively reduce the cardinality of the event categories and estimate the future failure
distributions by automatically uncovering the hidden patterns. The aim was to model the failure
sequence as a mixture of several failure patterns, each of which was characterized by an infinite mixture
of failures with certain probabilities. This state space dependency was captured by a hierarchical
Bayesian framework. The model was temporally extended by establishing the long-term dependency
with new co-occurrence patterns. Evaluation of the high voltage circuit breakers (HVCBs) demonstrated
that the TLDA model had higher fidelities of 51.13%, 73.86%, and 92.93% in the Top-1, Top-5, and Top-10
failure prediction tasks over the baselines, respectively. In addition to the quantitative results, we showed
that the TLDA can be successfully used for extracting the time-varying failure patterns and capture the
failure association with a cluster coalition method.

Keywords: failure prognosis; Latent Dirichlet Allocation; high voltage circuit breakers

1. Introduction

With the increasing and unprecedented scale and complexity of power grids, component failures
are becoming the norm instead of exceptions [1–3]. High voltage circuit breakers (HVCBs) are directly
linked to the reliability of the electricity supply, and a failure or a small problem with them may lead to
the collapse of a power network through chain reactions. Previous studies have shown that traditional
breakdown maintenance and periodic checks are not effective for handling emergency situations [4].
Therefore, condition-based maintenance (CBM) is proposed as a more efficient maintenance approach
for scheduling action and allocating resources [5–7].

CBM attempts to limit consequences by performing maintenance actions only when evidence is
present of abnormal behaviors of a physical asset. Selection of the monitoring parameters is critical to
its success. Degradation of the HVCB is caused by several types of stress and aging, such as mechanical
maladjustment, switching arcs erosion, and insulation level decline. The existing literature covers a
wide range of specific countermeasures, including mechanism dynamic features [8–10], dynamic contact
resistance [11], partial discharge signal [12,13], decomposition gas [14], vibration [15], and spectroscopic
monitoring [16]. Furthermore, numerous studies applied neural networks [8], support vector machine
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(SVM) [17], fuzzy logic [18], and other methods [19], to introduce more automation and intelligence into
the signal analysis. However, these efforts were often limited to one specific aspect in their diagnosis of the
failure conditions. In addition, the requirements for dedicated devices and expertise restrict their ability
to be implemented on a larger scale. Outside laboratory settings, field recordings, including execution
traces, failures, and warning messages, offer another easily accessible data source with broad failure
category coverage. The International Council on Large Electric Systems (CIGRE) recognizes the value of
event data and has conducted three world-wide surveys on the reliability data of circuit breakers since
the 1970s [20–22]. Survival analysis, aiming at reliability evaluation and end-of-life assessment, also relies
on the failure records [2,23].

Traditionally, the event log is not considered as an independent component in the CBM framework,
as the statistical methodologies were thought to be useful only for average behavior predictions or
comparative analysis. In contrast, Salfner [24] viewed failure tracking as being of equal importance to
symptom monitoring in online prediction. In other fields, such as transactional data [25], large distributed
computer systems [26], healthcare [27], and educational systems [28], the event that occurs first is identified
as an important predictor of the future dynamics of the system. The classic Apriori-based sequence mining
methods [29], and new developments in nonlinear machine learning [27,30] have had great success in
their respective fields. However, directly applying these predictive algorithms is not appropriate for
HVCB logs for three unique reasons: weak correlation, complexity, and sparsity.

(1) Weak correlation. The underlying hypothesis behind association-based sequence mining,
especially for the rule-based methods, is the strong correlation between events. In contrast,
the dependency of the failures on HVCBs is much weaker and probabilistic.

(2) Complexity. The primary objective of most existing applications is a binary decision: whether a failure
will happen or not. However, accurate life-cycle management requires information about which
failure might occur. The increasing complexity of encoding categories into sequential values can
impose serious challenges on the analysis method design, which is called the “curse of cardinality”.

(3) Sparsity. Despite the cardinality problem, the types of failure occurring on an individual basis is
relatively small. Some events in a single case may have never been observed before, which makes
establishing a statistical significance challenging. The inevitable truncation also aggravates the
sparsity problem to a higher degree.

The attempts to construct semantic features of events, by transforming categorical events into
numerical vectors, provide a fresh perspective for understanding event data [31,32]. Among the latent
space methods, the Latent Dirichlet Allocation (LDA) method [33], which represents each document
as mixtures of topics that ejects each word with certain probabilities, offers a scalable and effective
alternative to standard latent space methods. In our preliminary work, we introduced the LDA
into failure distribution prediction [34]. In this paper, we further extended the LDA model with a
temporal association by establishing new time-attenuation co-occurrence patterns, and developed a
temporal Latent Dirichlet Allocation (TLDA) framework. The techniques were validated against the
data collected in a large regional power grid with regular records over a period of 10 years. The Top-N
recalls and failure pattern visualization were used to assess the effectiveness. To the best of our
knowledge, we are the first to introduce the advanced sequential mining technique into the area of
HVCB log data analysis.

The rest of this paper is organized as follows. The necessary process to transfer raw text data into
chronological sequences is introduced in Section 2. Section 3 provides details of the proposed TLDA
model. The criteria presented in Section 4 are not only for performance evaluation but also show the
potential applications of the framework. Section 5 describes the experimental results in the real failure
histories of the HVCBs. Finally, Section 6 concludes the paper.
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2. Data Preprocessing

2.1. Description of the HVCB Event Logs

To provide necessary context, the format of the collected data is described below. The HVCBs’ failure
dataset was derived from 149 different types of HVCBs from 219 transformer substations in a regional
power grid in South China. The voltage grades of the HVCBs were 110 kV, 220 kV, and 500 kV, and the
operation time ranged from 1 to 30 years. Most of the logs were retained for 10 years, aligned with the use
of the computer management system. Detailed attributes of each entry are listed in Table 1. In addition to
the device identity information, the failure description, failure reason, and processing measures fields
contain key information about the failure.

Table 1. Attributes of the failure logs.

Attribute Content

ID Numerical order of a failure entry
Voltage grade 110 kV, 220 kV, or 550 kV

Substation Location of the equipment failure, e.g., ShenZhen station
Product model Specified model number, e.g., JWG1-126

Equipment type A board taxonomy, e.g., high-voltage isolator, gas insulated switchgear (GIS)
Failure description Detailed description of the phenomena observed

Failure reason Cause of the failure
Failure time Time when a failure was recorded

Processing measures Performed operation to repair the high voltage circuit breaker (HVCB)
Processing result Performance report after repair

Repair time Time when a failure was removed
Installing time Time when a HVCB was first put into production

Others Including the person responsible, mechanism type, a rough classification, manufacturers, etc.

2.2. Failure Classification

One primary task of pre-processing is to reduce the unavoidable subjectivity and compress the
redundant information. Compared to the automatically generated logs, the failure descriptions of
HVCBs are created manually by administrators containing an enormous amount of text information.
Therefore, the skill of the administrators significantly influences the results. Underreporting or
misreporting the root cause may reduce the credibility of the logs. Only by consolidating multiple
information sources can a convincing failure classification be generated. An illustrating example is
presented in Table 2. The useful information is hidden in the last part and can be classified as an
electromotor failure. Completing this task manually is time-consuming and is highly prone to error.
Automatic text classification has traditionally been a challenging task. Straightforward procedures,
including keyword searches or regular expression, cannot meet the requirements.

Table 2. A typical manual log entry sample.

Failure Description Failure Reason Processing Measures

Circuit breakers connected with the high voltage side
of the main transformer cannot close or open.
The power supply runs faultlessly during inspection

Bad manufacturing quality Replace the electromotor

Due to progress in deep learning technology, establishing an end-to-end text categorization
model has become easier. In this study, the Google seq2seq [35] neural network was adopted by
replacing the decoder part with a SVM. The text processing procedure was as follows: (1) An expert
administrator manually annotated a small set of the examples with concatenated texts, including the
failure description, failure reason, and processing measures; (2) After tokenization and conjunction
removal, the labeled texts were used to train a neural network; (3) Another small set of failure texts
were predicted by the neural network. Wrong labels were corrected and added to the training set;
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(4) Steps (2) and (3) were repeated until the classification accuracy reached 90%; (5) The trained
network was used to replace manual work. The preferential classification taxonomy was the accurate
component location that broke the operation. The failure phenomenon was recorded when no failure
location was available. Finally, 36 kinds of failures were extracted from the man-machine interaction.

The numbers of different failures were ranked in descending order and plotted in a log-log axis
shown in Figure 1. The failure numbers satisfy a long-tail distribution [36], making it hard to recall the
failures with a lower occurrence frequency.
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2.3. Sequence Aligning and Spatial Compression

The target outputs of the sequence pre-processing are event chains in chronological order.
As mentioned earlier, the accessibility to the failure data was limited to the last 10 years. Therefore, the
visible sequences were bilaterally truncated, creating new difficulties for comparing different sequences.
Instead of using the actual failure times, the times of origin of the HVCBs were changed to their installation
time to align different sequences. To mitigate the sparsity problem, spatial compression was used by
clustering failure events from the same substation of the same machine type, as they often occur in
bursts. Finally, of the 43,738 raw logs, 7637 items were HVCB-related. After sequence aligning and
spatial compression, 844 independent failure sequences were extracted, with an average length of nine.
A sequence example can be found in Figure 2. Different failures that break the device operation continually
occurred along the time axis.
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3. Proposed Method

The key idea behind all failure tracking predictions is to obtain the probability estimations using
the occurrence of previous failures. The problem is unique because both the training sets and the test
sets are categorical failure data. A detailed expression of the sequential mining problem studied in
this paper can be summarized as follows: the HVCB failure prognosis problem is a topic of sequential
mining concerned with estimating the future failure distribution of a HVCB, based on the failure
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history of itself, and the failure sequences of all the other HVCBs, under the limitations of short
sequences and multiple categories.

This section will present how the TLDA provides a possible solution to this problem by embedding
the temporal association into the LDA model.

3.1. Latent Dirichlet Allocation Model

LDA is a three-level hierarchical Bayesian model originally used in natural language process.
It posits that each document is modeled as a mixture of several topics, and each topic is characterized
by an infinite mixture of words with certain probabilities. A LDA example is shown in Figure 3.
A document consists not only of words but also the topics assigned to the words, and the topic
distribution provides a sketch of the document subject. LDA introduces topics as a fuzzy skeleton
to combine the discrete words into a document. Meanwhile, the shared topics provide a convenient
indicator to compare the similarity between different documents. LDA has had success in a variety
of areas by extending the concepts of document, topic, and word. For example, a document can be
a gene [37], an image [38], or a piece of code [39], with a word being a feature term, a patch, or a
programming word. Likewise, a failure sequence can be treated as a document, and a failure can be
recognized as a word. The topics in LDA can be analogous to failure patterns that represent the kinds
of failures that cluster together and how they develop with equipment aging. Two foundations of LDA
are the Dirichlet distribution and the idea of latent layer.
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3.1.1. Dirichlet Distribution

Among the distribution families, the multinomial distribution is the most intuitive for modeling a
discrete probability estimation problem. The formulation of the multinomial distribution is described as:

f (x1, . . . xk; n; p1, . . . , pk) =
Γ(∑i xi + 1)
∏i Γ(xi + 1)

k

∏
i=1

pxi
i (1)

which satisfies ∑
i

xi = n and ∑
i

pi = 1. Multinomial distribution represents the probability of k different

events for n experiments, with each category having a fixed probability pi happening xi times. Γ is the
gamma function. Furthermore, the Maximum Likelihood Estimation (MLE) of pi is:

p̂ =
xi

∑i xi
(2)

which implies that the theoretical basis of the statistic method is MLE estimation of a multinomial
distribution. Effective failure prognosis methods must balance the accuracy and details of the adequate
grain information. However, we supposed that the dataset has M sequences and N kinds of failures.
Modeling a multinomial distribution for each HVCB will result in a parameter matrix with the shape of
M × N. These statistics for individuals will cause most elements to be zero. Taking the failure sequence
in Figure 1 as an example, among the 36 kinds of failure, only 7 have been seen, making providing a
reasonable probability estimation for the other failures impossible. This is why much of the statistical
analysis relies on a special classifying standard to reduce types of failure, or ignores the independence
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of the HVCBs. Two solutions are feasible for alleviating the disparities: introduce a priori knowledge
or mine associations among different failures and different HVCBs.

One possible way to introduce a priori knowledge is based on Bayes’ theorem. Bayesian inference is
a widely used method of statistical inference to estimate the probability of a hypothesis when insufficient
information is available. By introducing a prior probability on the parameters, Bayesian inference acts as
a smoothing filter. Conjugate prior is a special case where the prior and posterior distribution have the
same formulation. The conjugate prior distribution of multinomial distribution is Dirichlet distribution,
which is:

Dir
(→

p
∣∣∣→α) = f (p1, . . . , pk; α1, . . . αk) =

1

∆
→
α

k

∏
i=1

pαi−1
i (3)

with the normalization coefficient being:

∆
→
α =

∏k
i=1 Γ(αi)

Γ
(

∑k
i=1 αi

) (4)

similar to the multinomial distribution. Due to the Bayesian rule, the posterior distribution of
→
p with

new observations
→
x can be proven as:

p
(→

p
∣∣∣→α ,
→
x
)
= Dir

(→
p
∣∣∣→α +

→
x
)

(5)

with the mean being:
→
p i =

xi + αi

∑i(xi + αi)
(6)

From Equation (6), even the failures with no observations are assigned to a prior probability
associated with αi. The conjugate relation can be described as a generative process shown in Figure 4a:

(1) Choose
→
θ i ∼ Dir

(→
α
)

, where i ∈ {1, 2, 3, , M};

(2) Choose a failure fij ∼ Multinominal(
→
θ i), where j ∈ {1, 2, 3, , Ni}.
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3.1.2. Latent Layer

Matrix completion is another option for solving the sparsity problem that establishes global
correlation among units. The basic task of matrix completion is to fill the missing entries of a partially
observed matrix. In sequential prediction with limited observations, predicting the probabilities of
failures that have never appeared is a problem Using the recommend system as an example, for a
sparse user-item rating matrix R with m users and f items, each user had only rated several items.
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To fill the unknown space, R is first decomposed as two low dimensional matrices P ∈ Rm× f and
Q ∈ Rn× f satisfying:

R ≈ PQT = R̂ (7)

with the aim of making R̂ as close to R as possible. Then, the rating of user u to item R̂(u, i) = r̂ui,
can be inferred as:

r̂ui = ∑
f

pu f qi f (8)

Many different realizations of Equation (7) can be created by adopting different criteria to
determine whether the given matrices are similar. The spectral norm or the Frobenius norm creates the
classical singular value decomposition (SVD) [40], and the root-mean-square error (RMSE) creates the
latent factor model (LFM) [41] model. In addition, regularization terms are useful options to increase
the generalization of the model.

Analogously, a latent layer with L elements can be introduced between the HVCB sequences
and the failures. For M sequences with N kinds of failures, instead of M N-parameter multinomial
distributions described above, M L-parameter multinomial models, and L N-parameter multinomial
models are preferred, where L failure patterns are extracted. A schematic diagram of the comparison
is shown in Figure 5. No direct observations exist to fill the gap between s1 and f 3; the connection of
s1-z1-f 3, s1-z2-f 3, s1-z3-f 3 will provides a reasonable suggestion.
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3.1.3. Latent Dirichlet Allocation

The combination of Bayesian inference and matrix completion creates the LDA. Two Dirichlet
priors are assigned to the two-layer multinomial distributions. A similar idea is shared by LFM,
where the regularization items can be theoretically deduced from the assumption of Gaussian priors.
The major difficulties in realizing LDA lie in the model inference. In LDA, it is assumed that the
jth failure in sequence m fmj comes from a failure pattern zmj, making fmj satisfying a multinomial

distribution parameterized with
→
ϕzmj

. In addition, the failure pattern zmj also originates from a

multinomial distribution whose parameters are
→
θ m. Finally, from the perspective of Bayesian statistics,

both
→
ϕzmj

and
→
θ m are sampled from two Dirichlet priors with parameters

→
α and

→
β . The original

Dirichlet-multinomial process can evolve to a three-layer sampling process as follows:

(1) Choose
→
θ m ∼ Dir(

→
α ), where m ∈ {1, 2, 3, , M};

(2) Choose
→
ϕk ∼ Dir(

→
β ), where k ∈ {1, 2, 3, , K};

For each failure fmj,
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(3) Choose a latent value zmj ∼ Multinominal(
→
θ m);

(4) Choose a failure fmj ∼ Multinominal(
→
ϕzmj

).

where m ∈ {1, 2, 3, , M}, and j ∈ {1, 2, 3, , Nm}. Nm is the failure number in sequence m, and M is
the total sequence number.

The probabilistic graphic of LDA is shown in Figure 4b, and the joint probability distribution of
all the failures under this model is given by:

p(
→
f ,
→
z ) =

M

∏
m=1

Nm

∏
j=1

K

∑
k=1

p
(

fmj
∣∣zmj = k

)
p
(
zmj = k

)
(9)

The learning targets of LDA include
→
θ m and

→
ϕk. They can both be inferred from the topic

assigning
→
z . The posterior distribution of

→
z cannot be directly solved. Gibbs sampling is one possible

solution. First, the joint probability distribution can be reformulated as:

p(
→
f ,
→
z
∣∣∣∣→α ,
→
β ) =

K

∏
k=1

∆(
→
n k +

→
β )

∆(
→
β )

M

∏
m=1

∆
(→

n m +
→
α
)

∆
(→

α
) (10)

where
→
n k =

{
nw

k
}

w=1:V , and
→
n m =

{
nk

m

}
k=1:K

are the statistics of the failures count under topic k, and
topic count under failure sequence m. V is the number of failure types. The conditional distribution of
the Gibbs sampling can be obtained as:

p( zmj = k
∣∣∣∣→z −mj,

→
α ,
→
β ) =

n
fmj
k − 1 + β fmj

∑V
i=1 (n

i
k,−mj − 1 + βi)

· nk
m − 1 + αk

∑K
i=1 (n

i
m,−mj + αi)

(11)

where ni
k,−mj is the number of failures with the index i assigned to topic k, excluding the failure fmj,

and ni
m,−mj is the number of failures in sequence m with topic i, excluding the failure fmj. After certain

iterations, the posterior estimation of
→
θ m and

→
ϕk can be inferred with:

θmk =
nk

m + αk

∑K
i=1
(
ni

m + αi
) (12)

ϕkw =
nw

k + βw

∑V
i=1
(
ni

k + βi
) (13)

Finally, the posterior failure distribution of the ith HVCB can be predicted with:

→
p m =

K

∑
k=1

p(zk)p
(→

w
∣∣∣zk

)
=

K

∑
k=1

θmk
→
ϕk (14)

3.2. Introducing the Temporal Association into LDA

Even with the promising advantage of finding patterns in the categorical data, directly borrowing
LDA to solve the sequence prediction problem has some difficulties. LDA assumes that data samples
are fully exchangeable. The failures are assumed to be independently drawn from a mixture of
multinomial distributions independently, which is not true. In the real world, failure data are naturally
collected in time order, and different failure patterns evolve. So, it is important to exploit the temporal
characteristics of the failure sequences.

To introduce the time attributes in LDA, we first assumed that the future failure was most related
to the other failures within a time slice. Instead of using the failure sequences of the full life circle,
the long sequences were divided into several sub-sequences by a sliding time window with width W.
The sub-sequences may overlap with each other. Under this assumption, a simple way to use LDA in a

time series is to directly exploit the pattern distributions
→
θ m in different time-slices. However, this
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approach does not consider the dependence among different slices. In the LDA model, the dependence
among different sub-sequences can be represented by the dependency among the pattern distributions.
A modified probabilistic graph is shown in Figure 6, where ums represents the topic distribution of a
specified sub-sequence, and

→
w are the prior parameters, with the joint distribution being:

p(
→
f ,
→
z
∣∣∣∣→w ) =

∫ ∫
p
(→

u m0

∣∣∣→w) Jm

∏
s=1

p
(→

u ms

∣∣∣→u m0,
→
u m1, . . . ,

→
u m,s−1,

→
w
) Nms

∏
j=1

p
(

zmsj

∣∣∣→u ms

)
d
→
u msd

→
u m0 (15)

where Jm is the number of sub-sequences in sequence m, Nms is the number of failures in the
sub-sequence s, and

→
u ms is the topic distribution of a specified sub-sequence.
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Due to the lack of conjugacy between Dirichlet distributions, the posterior inference of
Equation (15) can be intractable. Simplifications, such as the Markov assumption and specified
conditional distributions, can elucidate the posterior distribution out [42,43]. However, the formulation
does not need to be Markovian, and the time dependency can still be complicated. To overcome
this problem, an alternative method of creating a new co-occurrence mode is proposed to establish
the long-term dependency among different sub-sequences. Specifically, form Equations (12) and (13),
the failures that occur together are likely to have the same failure pattern. In other words, co-occurrence
is still the foundation for deeper pattern mining in LDA. Therefore, instead of specifying the
dependency among the topic distributions, as shown by the dotted line in Figure 6, a direct link
was constructed between the current and earlier failures by adding the past failures into current
sub-sequence with certain probabilities. Additionally, the adding operation should embed the temporal
information by assigning a higher probability to the closer ones. Based on the requirements, a sampling
rate comforting exponential decay is implemented as follows:

p(x) =

{
exp
(
− x

∆
)
, 0 ≤ x < T

0, otherwise
(16)

where the attenuation coefficient ∆ controls the decreasing speed of p(x) along the time interval x.
T is the time at the left edge of the current time window. Figure 7 shows the schematic diagram of
the process for constructing new co-occurrence patterns. To predict the future failure distribution,
the failures ahead of the current time window are also included. Each iteration generates new data
combinations to argument the data. An outline of the Gibbs sampling procedure with the new data
generation method is shown in Algorithm 1.
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Algorithm 1 Gibbs sampling with the new co-occurrence patterns

Input: Sequences, MaxIteration,
→
α ,
→
β , ∆, W

Output: posterior inference of
→
θ and

→
ϕ

1: Initialization: randomly assign failure patterns and make sub-sequences by W;

2: Compute the statistics n
fmj

k , nk
m, ni

k,−mj, nk
i,−mj in Equation (11) for each sub-sequence;

3: for iter in 1 to MaxIteration do
4: Foreach sequence in Sequences do
5: Foreach sub-sequence in sequence do
6: Add new failures in the current sub-sequence based on Equation (16);
7: Foreach failure in the new sub-sequence do
8: Draw new zmj from Equation (11);
9: Update the statistics in Equation (11);
10: End for
11: End for
12: End for

13: Compute the posterior mean of
→
θ and

→
ϕ based on Equations (12) and (13)

14: End for

15: Compute the mean of
→
θ and

→
ϕ of last several iterations

Based on the above premise, the TLDA framework for extracting the semantic characteristics
and predicting the failure distribution is shown in Figure 8. After preprocessing and generating the
sub-sequences, an alternating renewal process was implemented between the new co-occurrence
pattern construction and the Gibbs sampling. The final average output reflects the time decrease
presented in Equation (16) due to the multi-sampling process. Finally, Equation (14) provides the
future distribution prognosis using the learned parameters of the last sub-sequence of each HVCB.
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4. Evaluation Criteria

The output of the proposed system is the personalized failure distribution for each HVCB.
However, directly verifying the prediction result is impossible due to the sparsity of the failure
sequences. Therefore, several indirectly quantitative and qualitative criteria are proposed as follows.

4.1. Quantitative Criteria

Instead of verifying the entire distribution, the prognosis ability of the model was testified by
predicting the upcoming one failure. Several evaluation criteria are developed as follows.

4.1.1. Top-N Recall

The Top-N prediction is originally used in the recommend system to check if the recommended N
items satisfy the customers. Precision and recall are the most popular metrics for evaluating the Top-N
performance [44]. With only one target behavior, the recall becomes proportional to the precision,
which can be simplified as:

Recall = ∑h∈H |RN(h) ∩ T(h)|
|H| (17)

where RN(h) is the failure set with the Top-N highest prediction probabilities for HVCB h, T(h) is the
failure that subsequently occurred, and |H| is the sum of HVCBs to be predicted. The recall indicates
whether the failure that subsequently occurred is included in the Top-N predictions. Considering the
diversity of the different failure categories, Top-1, Top-5 and Top-10 recalls were used.

4.1.2. Overlapping Probability

The overlapping probability Po is proposed as an aided index to the Top-1 recall, which is defined
as the probability the model assigns for T(h). For instance, assuming a model concludes that the next
failure probabilities for a, b, c are 50%, 40%, and 10%, respectively, after a while, failure b actually
occurs. Then, the overlapping probability is 40%. This index provides an outline of how much the
probability distribution overlaps with the real one-hot distribution, which can also be understood
as the confidence. With similar Top-1 recall, higher mean overlapping probability represents a more
reliable result.

These two kinds of quantitative criteria are suitable for different maintenance strategies,
considering the limitation of the maintainers’ rigor. The Top-N recall corresponds to the strategy of
focusing on the Top-N rank failure types, whereas the overlapping probability is another possible
strategy of monitoring on the probabilities of the failure types that exceed the threshold.

4.2. Qualitative Criteria

The TLDA can provide explicit semantic characteristics. The results of our algorithm offer a deep
new perspective for understanding the failure modes and their variation trends. For example, different

failure patterns can be extracted by examining the failures with high proportions. By considering
→
θ as

a function of time, investigating rise and fall of different failures and how they interact is easy, either
from a global perspective or when focusing on one sample. In addition, by introducing the angle
cosine distance as a measurement, the similarity between failure p and failure q can be calculated as:

Ipq =
∑K

i=1 ϕip ϕiq√
∑K

i=1 ϕ2
ip

√
∑K

i=1 ϕ2
iq

(18)

Figure 9 depicts the cosine distance computing method. Only the angle between the two vectors
affects this indicator. A higher cosine distance often indicates more similar failure reasons.
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5. Case Study

The experimental dataset was based on the real-world failure records described in Section 2.
After data processing, the failure history of each HVCB was listed as a failure sequence in chronological
order. A cross-validation test was used to assess the performance with the following process. Firstly, the
last failure of each sequence was separated as the test set. Then, the remaining instances were used to
train the TLDA model based on Algorithm 1. For each validation round, the tail part of each failure
sequences was randomly abandoned to obtain the new test sets.

5.1. Quantitative Analysis

5.1.1. Parameter Analysis

Hyper-parameters of the proposed method include the number of the failure patterns K, the width
of the time window W, and the attenuation coefficient ∆. For all runs of the algorithm, the Dirichlet

parameters
→
α and

→
β were assigned with symmetric priors of 1/K and 0.01, respectively, which were

slightly different from the common setting [45]. Gibbs sampling of 300 iterations was sufficient for the
algorithm to converge. For each Gibbs sampling chain, the first 200 iterations were discarded, and the
average results of the last 100 iterations were taken as the final output. The first set of experiments
was conducted to analyze the model performance with respect to K among {25, 30, 35, 40, 45, 50}.
Figure 10 shows the results of Top-1, Top-5, Top-10 recalls, and the overlapping probability under fixed
W and ∆ of six years and 10,000 days, respectively. These evaluation indexes do not appear to be much
affected by the number of failure patterns. The failure pattern of 40 surpasses the others slightly for
the Top-N recalls. The overlapping probability increased to relatively stable numerical values after 40.
The overfitting phenomenon, which perplexes many machine learning methods, was not serious with
high numbers of failure patterns.
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In the next experiment, the qualitative criteria were examined as a function of the time window
W and the attenuation coefficient ∆, with the number of the failure patterns K fixed at 40. The results
are shown in Figure 11. The peak values of different criteria were achieved with different parameters.
The optimal parameters with respect to the performance metrics are summarized in Table 3.
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Table 3. Optimal parameters for different prediction tasks.

Performance Criteria W (Years) ∆ (Days)

Top-1 7 30,000
Top-5 7 20,000

Top-10 3 10,000
Overlapping Probability 7 30,000

From Table 3, the high Top-1 recall calls for a relatively large window size of seven years and a
large decay parameter of 30,000 days, while the best Top-10 recall was obtained with smaller parameters
of three years and 10,000 days. The Top-5 recall also requires a large W of seven years but a smaller
∆ of 20,000 days when compared to the Top-1 recall. The overlapping probability also shares similar
optical parameters with Top-10. The difference among the parameter selection for different evaluation
parameters may be explained as follows. With wider W and larger ∆, the sub-sequence tends to
include more failure data. A duality exists where more data may help the model discover the failure
pattern more easily or limit its extension ability. With more data, the model tends to converge on
several certain failure patterns and provides more confidence in the failures. This explains why the
Top-1 recall and the overlapping probabilities share the same optical parameters. However, this kind
of converge may neglect the other related failures. For the Top-10 recall, the most important criterion is
the fraction of coverage, rather than one accurate hit. Training and predicting with relatively less data
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focuses more on the mutual associations, which provides more insight into the hidden risk. Generally,
the difference between the optical parameters of Top-1 and Top-10 recalls reflects a dilemma between
higher confidence and wider coverage in machine learning methods.

5.1.2. Comparison with Baselines

The best results were also compared with several baseline algorithms, including the statistical
approach, Bayesian method, and the newly developed Long Short-Term Memory (LSTM) neural
network. The statistical approach is the most common method for log analysis in power grids,
which accounts for a large proportion in the annual report of power enterprises. A global average
result that mainly focuses on the proportion of different failures is used to guide the production of the
next year. The Bayesian method is one of the main approaches for distribution estimation. A sequential
Dirichlet update initialized with the statistical average was conducted to provide a personalized
distribution estimates for each HVCB. In past years, deep learning has exceeded the traditional
methods in many areas. As one branch of deep learning for handling sequential data, LSTM has been
applied to HVCB log processing. The key parameters of the LSTM include the embedding dimension
of eight and the fully connected layer, having 100 units. Additionally, sequences shorter than 10 are
padded to ensure a constant input dimension.

Table 4 reports the experimental result, where the model with the best performance is marked
in bold font. The TLDA had the best performance for the Top-1, Top-5, and Top-10 tasks with
51.13%, 73.86%, and 92.93%, respectively, whereas the best overlapping probability was obtained by
the Bayesian method. Although the Bayesian method obtained good overlapping probability and
Top-1 recall, its Top-5 and Top-10 performances were the worst among the tested methods because the
Bayesian method places too much weight on individual information and ignores the global correlations.
On the contrary, the statistical approach obtained a slightly better result in Top-5 and Top-10 recall
owning to the long tail distribution. However, its Top-1 recall was the lowest. The unbalanced datasets
create a problem for the LSTM for obtaining high Top-1 recall. However, the LSTM still demonstrated
its learning ability as reflected in its Top-5 and Top-10 recalls.

Table 4. Performance comparison with different methods.

Method Top-1 (%) Top-5 (%) Top-10 (%) Po (%)

TLDA 51.13 73.86 92.93 31.50
Statistical Approach 19.79 58.33 78.12 5.87

Bayesian Sequential Method 41.67 55.21 65.63 33.96
Neural Network(LSTM) 32.29 67.70 81.25 15.52

5.2. Qualitative Analysis

5.2.1. Failure Patterns Extraction

As mentioned before, the LDA method treats each failure sequence as a mixture of several failure
patterns. Some interesting failure modes and failure associations can be mined by visualizing the
failures. For simplicity, failure patterns of 10 were adopted to train a new TLDA model. Table 5 lists the
failures that account for more than 1% in each failure pattern. All the failure patterns were extracted
automatically and the titles were summarized afterward. Notably, error records may exist, the most
common of which was the confusion between causes and phenomena. For example, various failure
categories can be mistaken for operating mechanism failure as that the mechanism is the last step of a
complete HVCB operation. A summary of the extracted failure patterns is as follows.
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Table 5. Top failures in each failure pattern.

1. Operation Error by
Machinery Parts

2. Operation Error by
Driving System

3. Operation Error by
Tripping Coils

4. Cubicles and Its
Auxiliary System

Operating mechanism
Assistive component
damage
High voltage indicating
device
SF6 leakage
Electromotor stalling
Travel switch

Electromotor stalling
Travel switch
Relay
Reason Unidentified
Electromotor on file
Safe-blocked circuit
Closing instruction
Operating mechanism

Tripping and closing coil
Secondary cubicle
Operating mechanism
Humidity ovenproof
Mechanism cubicle
Safe-blocked circuit

Mechanism cubicle
High temperature
Secondary cubicle
Insulator
Closing instructions
Auxiliary switch
Incomplete installation
High voltage indicating
device
Operating mechanism
Travel switch

5. SF6 Leakage 6. Operation Error by
Secondary System

7. Pneumatic
Mechanism 8. Measuring System

SF6 leakage

Remote control signal
Auxiliary switch
Rejecting action
Operating mechanism
Tripping and closing coil
Gas pressure meter

Pneumatic mechanism
leakage
Poor contact
Misjudgment
Air compressor stalling
Air compressor leakage
Mechanism cubicle
SF6 leakage
Remote control signal
Relay
Electromotor stalling

Closing instructions
High voltage indicating
device
Operation counter
False wring
Transmission bar
Operating mechanism
SF6 leakage
Gas pressure meter
SF6 constituents
Tripping and closing coil

9. Secondary System 10. Hydraulic Mechanism

Contactor
Safe-blocked circuit
Air compressor stalling
Main circuit
High voltage indicating device
SF6 constituents
False wring
Contactor

Hydraulic mechanism leakage
Closing instructions
SF6 leakage
Operating mechanism

Failure pattern 1 mainly contains the operating mechanism’s own failures, while pattern 2 reveals
the co-occurrence of the operating mechanism within the driving system. Analogously, pattern 3 and
pattern 6 mainly focus on how the operation may be broken by the tripping coils and secondary parts
such as remote control signal. Pattern 7 and pattern 10 cluster the failures of pneumatic and hydraulic
mechanism together. The other patterns also show different features. Different failure patterns have
special emphasis and overlap. For example, though both contain secondary components, pattern 9
only considers their manufacturing quality, while pattern 6 emphasizes the interaction between the
secondary components and the final operation.

5.2.2. Temporal Features of the Failure Patterns

The average value of θ in different time slices can be calculated as a function of time to show the
average variation tendency of different failure patterns. As shown in Figure 12, the failure modes of
hydraulic mechanism, pneumatic mechanism and cubicles increase along with operation years, while
the percentage of the measuring system, tripping and closing coils decrease. The SF6 leakage and
machinery failures always share a large portion. The rise and fall of different failure patterns reflect
the dynamic change of the device state, which is useful for targeted action scheduling.
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Additionally, the concentration can be placed on one sequence to determine how each event change
the mixture of the failure modes. Figure 13 shows the failure mode variation of the sample. At first, the SF6
leakage and the cubicle failures allocates a large portion to the corresponding modes. Then, the contactor
failure improves the failure pattern of the secondary system. Afterward, the operation mechanism creates
a peak in the pattern of machinery parts. However, its shares are quickly replaced by the failure mode of
the tripping coils. This can be considered as the model’s self-correction to distinguish failures caused by
the operating mechanism itself or its preorder system. At last, the remote control failure causes a portion
shift from the failure mode of the secondary system to the operation error by secondary system.
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5.2.3. Similarities between Failures

The similarities between different failures based on Equation (18) are shown in Figure 14. A wealth of
associations can be extracted combined with the equipment structure knowledge. In general, the failures
with high similarities can be classified into four types.
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The first type is causal relationship, where the occurrence of one failure is caused by another.
For example, the failure of a rejecting action may be caused by the remote control signal, safe-blocked
circuit, auxiliary switch, SF6 constituents, and humidity ovenproof which may cause blocking according,
to the similarity map. The second type is wrong logging. Failures with wrong logging relationships often
occur in a functional chain, facilitating wrong error location. The similarity between electromotor stalling
and relay or travel switch failures, and the similarity between secondary cubicle and tripping coil may
belong to this type. The third type is common cause failures. The failures are caused by similar reasons,
such as the similarities among the measurement instruments, including the closing instructions, the high
voltage indicating device, the operation counters, and the gas pressure meter. The strong association
between the secondary cubicle and the mechanism cubicle may be caused by the deficient sealing, and a
bad choice of motors assigns high similarity between the electromotor and oil pump. The fourth type is
relation transmission. Similarities are built on indirect association. For example, the transmission bar has
a direct connect to the operation counter, and the counter shares a similar aging reason with the other
measurement instrument, making the transmission bar similar in number to the high voltage indicating
device and the gas pressure meter. Likewise, the safe-blocked circuit may act as the medium between the
air compressor stalling and SF6 constituents.

This similarity map may help establish a failure look-up table for fast failure reason analysis
and location.

6. Conclusions and Future Work

In this paper, the event logs in a power grid were considered a promising data source for the goal
of predicting future critical events and extracting the latent failure patterns. A TLDA framework is
presented as an extension of the topic model, introducing a failure pattern layer as the medium between
the failure sequences and the failures. The conjunction relation between the multinomial distribution and
the Dirichlet distribution is embedded into the framework for better generalizations. Using a mixture of
hidden variables for a failure representation not only enables pattern mining from the sparse data but also
enables the establishment of quantitative relationships among failures. Furthermore, a simple but effective
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temporal new co-occurrence pattern was established to introduce strict chronological order of events
into the originally exchangeable Bayesian framework. The effectiveness of the proposed method was
verified by thousands of real-word failure records of the HVCBs from both quantitative and qualitative
perspectives. The Top-1, Top-5, and Top-10 results revealed that the proposed method outperformed
the existing methods in predicting potential failures before they occurred. The parameter analysis
showed a different parameter preference for higher confidence or a wider coverage. By visualizing the
temporal structures of the failure patterns, the TLDA showed its ability to extract meaningful semantic
characteristics, providing insight into the time variation and interaction of failures.

As future work, experiments can be conducted in other application areas. Furthermore, as a
branch of the state space model, the attempt to use the trained TLDA embedding in the Recurrent
Neural Network may provide better results.
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