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Abstract: This paper proposes the use of bridge type fault current limiters (BFCLs) as a potential
solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC
(VSC-HVDC) systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance
the fault ride-through (FRT) capability with auxiliary control devices like BFCLs. BFCL controllers
have been developed to limit the fault current during the inception of system disturbances. Real and
reactive power controllers for the VSC-HVDC have been developed based on current control mode.
DC link voltage control has been achieved by a feedback mechanism such that net power exchange
with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated
VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented
in a real time digital simulator (RTDS). Symmetrical three phase as well as different types of
unsymmetrical faults have been applied in the systems in order to show the effectiveness of the
proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation
have been greatly suppressed with the proposed BFCL. Another significant feature of this work is
that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series
dynamic braking resistor (SDBR). Comparative results show that the proposed BFCL is superior over
SDBR in limiting fault current as well as improving system fault ride through (FRT) capability.

Keywords: voltage source converter (VSC); high voltage DC (HVDC); bridge type fault current
limiter (BFCL); series dynamic braking resistor (SDBR); fault ride through (FRT); voltage fluctuation;
wind farm

1. Introduction

In the electric power industry, alternating-current (AC) systems have been overwhelmingly
dominant over the direct-current (DC) option for a long time. However, this scenario is changing in
recent years with DC systems playing an ever increasing role in the overall power systems due to
several potential benefits: long distance water crossing, lower losses, controllability, limit short circuit
currents, lesser corona loss, and the fact they requires less insulation [1]. Voltage source converter
(VSC)-based high voltage direct current (HVDC) transmission is increasing research interest in the
study of the smart grid. The VSC-based HVDC concept was introduced by manufacturers in the late
1990s and this new technology was also named HVDC Light by ABB [2,3] and HVDC Plus [4] by
Siemens. Compared to the classic line commutated converter HVDC (LCC-HVDC), the former has
several potential benefits such as self-regulating control of active and reactive power, increased power
quality, comfortable integration of large-scale wind farm, and easy operation with weak AC grids, no
reactive power demand, and less operational cost [5–9].
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Moreover, VSC-HVDC offers a solution for many problems faced nowadays by power
networks such as network congestion, grid reinforcement, multi-terminal DC (MTDC) operation and
asynchronous operations of two different grids [10]. Different types of VSC topologies are proposed in
the literature [11,12] including two level, three level and multilevel converters for HVDC transmission.
Multilevel means more than two voltage levels can be achieved in one phase leg, which reduces
the switching times of valve and makes the voltage wave form closer to a sinusoidal curve. Line to
neutral voltage waveforms of both two-level and three-level converters with PWM are discussed and
compared in [12].

However, despite the numerous advantages, VSC-HVDC systems face difficulties in dealing
with different grid faults [13]. Fault ride-through (FRT) capability enhancement is one of the main
requirements for wind farm-integrated VSC-HVDC systems [14,15]. During system faults, bulk power
interruptions must be avoided by keeping the HVDC system energized, otherwise, the system may
face serious instability due to this bulk power interruption. Modular multilevel converter-based
VSC-HVDC system topologies can provide enhanced fault ride-through capability [16]. In [17,18]
FRT capability as well as transient stability improvement have been reported by applying various
VSC control techniques. A power synchronization control technique has been proposed in [19] with
coordination between wind turbines and HVDC controllers in order to achieve FRT and frequency
response capabilities, relying solely on offshore frequency modulation. Power oscillations minimization
and DC link ripples reduction have been presented [20] with a negative sequence current controller.
However, the power from the sending end wind power plant is reduced to zero which results in
serious stresses on the mechanical system.

The security and stability of electric power systems are becoming ever more significant for
the future due to their complex nature. A prospective solution to the stability and security issues
mentioned above is to employ fault current limiters. Different categories of fault current limiter such
as resistive, inductive, superconducting, flux-lock, DC reactor, and resonance FCL [21–25] have been
presented for limiting fault currents as well as improving the stability of power systems. Resistive-type
and inductive-type FCLs provide approximately zero impedance under normal condition, while
they provide high-impedance resistors or inductors under a fault condition. Recently, a number of
practical superconducting fault current limiter (SFCL) devices have been successfully developed and
demonstrated by in-grid tests. The current motivation on the applied superconductivity technology
to build SFCL devices has been moving from the 10-kV distribution level [26,27] to the 100-kV
transmission level [27,28].

So far, fault current limiters have been comprehensively studied and applied in AC power grids to
limit fault currents and to improve the dynamic performance of the system. However, the application
of FCLs in VSC-HVDC systems has not been fully investigated [29]. In [30], the authors introduced a
flux-coupling-type superconducting FCL to reduce the possibility of commutation failure in classic
LCC-HVDC systems. DC fault current amplitude, commutation voltage, commutation failure duration,
and successive commutation reduction have been observed with this FCL. However, SFCL parameter
optimization, economic performance analysis, design of electrical insulation are not yet investigated.
Superconducting fault current limiters have been studied in VSC-HVDC systems [31–37]. A novel SFCL
with both a superconducting coil and a resistance is presented for limiting rapidly growing current
in VSC-HVDC systems during severe disturbances [32]. A DC protection scheme of multiterminal
VSC-HVDC with resistive type SFCL was presented [34]. Resistive type SFCLs reduce the current
rating of DC circuit breakers. Maximum fault current, dissipated energy stress on HVDC circuit
breaker and interruption time have been reduced with SFCLs by absorbing the fault energy during
system disturbances [37]. A resistive-type SFCL with a chopper controlled resistor was presented [38]
for transient stability augmentation of VSC-HVDC systems. Reduction in DC link voltage fluctuation
and current is observed with the offered resistive SFCL scheme.

Among the different types of FCLs the non-superconducting bride-type fault current limiter
(BFCL) is a new technology offering the capability of limiting fault currents as well as improving
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the dynamic performance of the power grid [39,40]. Diodes and IGBT switches are required for
BFCLs which can be implemented easily [41]. Moreover, inductor and resistor required for the current
limiting part of the BFCL are non-superconducting in nature. This reduces the implementation cost
greatly compared to superconducting fault current limiters [42]. However, to the best of the authors’
knowledge this innovative technology in enhancing FRT capability as well as the stability of VSC-HVDC
systems has not been examined so far. Since the necessity of auxiliary devices in improving dynamic
performance of VSC-HVDC systems cannot be ignored and cost of applications needs to be minimized,
BFCL represents a potential solution in this regard. In conclusion, there is a lack of works exploring the
potential of BFCL to enhance transient stability as well as the FRT capability of VSC-HVDC system.

This research proposes a BFCL-based approach for fault current reduction and fault ride-through
capability enhancement as well as stability improvement of VSC-HVDC systems in different
configurations of two-grids connected mode and wind farm integrated mode. To the best of our
knowledge, the potential of BFCL has not been examined so far in VSC-HVDC to enhance system
dynamic performance. Some literatures [43,44] have presented series dynamic braking resistor (SDBR)
as a potential solution to limit fault current. In this work, the proposed BFCL for VSC-HVDC systems is
compared with SDBR in order to show the effectiveness of BFCL to reduce fault currents and improve
system stability. The main contributions of this research are as follows:

n The proposed BFCL solution is able to limit fault currents of VSC-HVDC system for both
symmetrical and unsymmetrical faults.

n DC link voltage fluctuation is greatly suppressed with the proposed BFCL.
n Active power oscillation is significantly reduced with BFCL.
n Wind generator speed oscillation is notably suppressed with BFCL in wind-integrated

VSC-HVDC systems.
n BFCL shows better performance over SDBR in all cases considered.

2. Bridge Type Fault Current Limiter

In this work, BFCL is proposed as a potential solution to the fault problems in VSC-HVDC
systems. Its structure, operation and control technique are described in the following subsections.

2.1. BFCL Structrue, Operation and Design Consideration

BFCL is composed of a bridge with a parallel shunt branch [39,45] as shown in Figure 1a.
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Figure 1. Bridge type fault current limiter (a) configuration (b) control strategy.

The bridge part consists a diode rectifier, very small DC resistor and inductor with antiparallel
diode, and an IGBT switch. The shunt branch consists of a series resistance and reactance. The main
function of BFCL is to insert resistance and reactance by connecting its shunt branch with the line.

During normal operating conditions of the system, the IGBT switch is turned on by its controller,
so for a positive half cycle, current conducts thorough the path D1-LDC-RDC-IGBT-D4. During a
negative half cycle, current passes thorough the path D2-LDC-RDC-IGBT-D3. Therefore, for both the
cycles, the current has a unified direction through LDC and RDC. Consequently, LDC is charged to the
peak value of the line current and acts like a short circuit. Since the values of RDC and LDC are very
small, insignificant voltage drops across them. Eventually, bridge is short circuited during normal
system operation and it has no effect on this operating condition. On the other hand, during system
disturbances, the IGBT switch is turned off by BFCL controller. As a result, the shunt branch is
connected to the line by considering the open circuit of the bridge part. Insertion of this resistance and
reactance during system disturbances limits fault currents and improves the dynamic stability of the
VSC-HVDC system.

In this work, BFCL parameters are designed based on the pre-fault power flow through each
line [46]. In order to have least effect of the fault on the system, BFCL should consume equal or higher
amount of active power as the pre-fault value. Pre-fault power consumption by the BFCL is given
as below:

PBFCL ≤
PG
3

(1)

PBFCL =
V2

PCCRsh

R2
sh + X2

sh
(2)

where PG, VPCC, Rsh and Xsh are power delivered by the grid or wind farm, voltage at point of common
coupling (PCC), shunt resistance, and shunt reactance, respectively. The above two equations give the
following expression:

Rsh ≥
3V2

PCC +
√

9V4
PCC − 4P2

GX2
sh

2PG
(3)

The necessary condition for the Rsh to be a real value is as follows:

Xsh < 1.5
V2

PCC
PG

(4)

The same approach is used to find the value of Rsh. For the BFCL to be practical, small values of
LDC and RDC are chosen so that the voltage drop across them is negligible and the DC current flowing
through them is smooth.
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2.2. BFCL Control Technique

Disturbances in AC/DC systems can be detected either by voltage dips or by over-current at the
point of common coupling (PCC) [47]. Voltage dip at the PCC has been used in this work to sense
faults and generate IGBT gate control pulses as shown in Figure 1b. A comparator compares the
PCC voltage (VPCC) with a predefined threshold voltage (VT). Under normal operating conditions
when VPCC is higher than the VT, the comparator output goes on low, so the step voltage generation
part of the BFCL controller generates a high voltage signal to make the IGBT switch on. During grid
abnormalities VPCC decreases and becomes lower than VT, and as a result the comparator output
becomes high. In this condition, a low voltage signal is generated by step voltage generation to turn off
the IGBT. Consequently, the shunt branch of BFCL comes into operation to limit the fault current and
enhance the system stability. Afterwards, when VPCC exceeds VT due to fault clearance or PCC voltage
support by any compensation technique, IGBT receives a high voltage signal and consequently turns
on. In this way, BFCL has no effect on normal operating condition and inserts resistance and reactance
in order to limit fault current and augment fault ride-through capability of VSC-HVDC system. It is
worth mentioning that during fault initiation the LDC line current tends to rise drastically; however,
LDC limits this current. Therefore, the IGBT switch is protected from high di/dt.

3. System Modelling and Controller Design

For transient stability and dynamic performance analysis, two grids connected VSC-HVDC
system and fixed speed induction generators based wind farm integrated VSC-HVDC system as
shown in Figure 2a,b, respectively, are modeled in this work.
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Figure 2. Schematic diagram of VSC-HVDC systems (a) Two grids connected mode (b) Wind farm
integrated mode.

A two grids connected VSC-HVDC system allows bidirectional power flow between the grids
depending on the reference power, whereas, power transfer is unidirectional from the wind farm
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to the grid for a wind farm integrated VSC-HVDC system. For a HVDC system, the DC link
voltage must be regulated at a prespecified value. The converter used in this work is a 2-level
VSC. The VSC2controller regulates the DC bus voltage. The proposed control technique with BFCL is
described in the following subsections.

3.1. Wind Power Plant Modeling

In order to model the wind turbine, the power coefficient (Cp) must be known to compute the
amount of power produced by the turbine for a given wind speed. Cp is highly nonlinear function
of pitch angle (β) and tip speed ratio (λ) whose analytical expression can be given by the following
equation [48]:

Cp(λ, β) =
1
2
(λ− 0.022β2 − 5.6)e−0.17λ (5)

Turbine blades are designed to stall if the wind speed exceeds a designed maximum. Active stall
blades have the features that their pitch angle can be adapted dynamically to adjust their efficiency.
The wind turbine is connected to the induction machine through a gear box as shown in Figure 2b.
Torque is provided from the wind turbine model as input to the induction machine and induction
machine provides shaft speed back to the turbine model.

A number of capacitor banks equipped with switches are connected at the terminal of the
induction machine. A control loop is designed among the switches in order to maintain power factor
within a set-point range. Several wind generating units are connected at the point of common coupling
(PCC) to achieve a desired power delivery to the grid through the HVDC link.

3.2. Control of VSC1

The function of the VSC1 controller is to regulate the active power exchange between grids or
from the wind farm to a grid. In addition, the VSC1 controller can regulate the reactive power exchange
with the grid or wind farm to control the AC voltage at the PCC. According to instantaneous power
theory active power and reactive power in terms of d-q quantities are given as follows:

Ps =
3
2
[Vd Id + Vq Iq] (6)

Qs =
3
2
[−Vd Iq + Vq Id] (7)

The function of phase locked loop (PLL) is to regulate Vq at zero, so putting Vq = 0 in the above
equations, the following equations can be written:

Ps =
3
2

Vd Id (8)

Qs = −
3
2

Vd Iq (9)

Therefore, direct axis current controls the active power and quadrature axis current controls the
reactive power independently given as:

Idre f =
2

3Vd
Pre f (10)

Iqre f = −
2

3Vd
Qre f (11)

Using a-b-c to d-q transformation and assuming steady state operation condition, we have
following set of equations for voltage source converter (VSC) of Figure 2:
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L
dId
dt

= Lω0 Iq − RId + Vtd −Vd (12)

L
dIq

dt
= −Lω0 Id − RIq + Vtq −Vq (13)

Vtd =
VDC

2
md (14)

Vtq =
VDC

2
mq (15)

Using the above set of equations and the third harmonic injected PWM technique, the VSC1
controller has been developed as shown in Figure 3a to control active and reactive power. As shown in
Figure 3a active and reactive power are controlled by an inner current controller with corresponding
direct and quadrature current control. PI controllers are used for both the direct axis and quadrature
axis currents. The pole-zero cancellation technique has been used to tune the inner current controller
parameters. Undesirable start-up transients have been avoided by augmenting the control scheme
with a feed forward filter (FFF). The third harmonic injected PWM technique is used to make the VSC
voltage remain within permissible limits.
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Figure 3. HVDC system controllers (a) VSC1 controller with BFCL/SDBR (b) VSC2 controller with
BFCL/SDBR.

3.3. Control of VSC2

Among several control strategies, DC voltage control is the main aspect of the VSC-HVDC
system analogous to the frequency control in classic AC power system. The system stability is greatly
influenced by DC link capacitance [49] and control of voltage across DC links [50,51]. DC bus voltage
can be considered as constant only during switching period as this period is usually very short [50].
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VSC2 has two controllers: an outer controller for regulating the DC link voltage and an inner controller
for regulating the current. VSC2 has a similar inner current controller as shown in Figure 3a, except
that the Pref for VSC2 controller is provided by an outer DC link voltage controller. The outer DC
link voltage controller for VSC2 is shown in Figure 3b. In the outer DC link voltage controller, the
measured DC link voltage (VDC) is compared with a reference DC link voltage (VDCref) and the error is
controlled by a proportional-integral (PI) controller. PI parameters have been tuned with symmetrical
optimum method [52]. PI controller output is added with power exchange between two grids or wind
farm and grid (PDC) to generate reference active power for VSC2.

4. Results and Discussions

4.1. RTDS Implementation

Test systems of Figure 2 are implemented in a real time digital simulator (RTDS) to validate the
effectiveness of proposed BFCL solution. BFCL is also compared with SDBR to show the improvement
of systems performance in limiting fault current. The same value of resistors is used for both BFCL
and SDBR for fair comparison. Details of the VSC-HVDC system (with controllers) and wind system
data are listed in Tables 1 and 2, respectively.

RTDS operates in real time and is a fully digital power system simulator [53]. It continuously
produces output conditions that accurately characterize the conditions in the real network by solving
the power system equations. In RTDS, the small-time step (2 µs) is used to simulate the power
electronic devices while the power components are represented by large-time step (50 µs). Thus, RTDS
has widely been recognized as an ideal tool for the design, development, and testing of power control
and protection schemes.

As shown in Figure 4, RTDS is connected to a workstation computer via a network hub. A system
network is created in RSCAD software and saved as a draft file. Afterwards, this file is compiled
and downloaded in RTDS. In addition to the draft module, RSCAD provides a runtime module
for monitoring network behavior in real time. The subsequent sections present the detailed RTDS
implementation results.

Table 1. HVDC system parameters.

Parameter Value

HVDC system power rating 30 MVA
Grid voltage 140 kV (l-l rms)
Frequency 60 Hz
Transfer power rating 30 MVA
Voltage ratio of the transformer 140/18 kV (Delta/Y)
Leakage inductance of transformer referred to delta side 110 mH
Interface resistor (R) and reactor (L) 88 mΩ and 8.5 mH
DC cable length 25 km
DC cable resistance, inductance, and capacitance 6 mΩ/km, 0.8 mH/km, 0.20 µF/km
DC capacitance 500 µF
Reference DC bus voltage 35 kV
BFCL shunt resistor and inductor 10 mΩ and 2 mH
RDC and LDC of BFCL 0.1 mΩ and 0.1 mH
SDBR resistor 10 mΩ
Inner current controller Kpid 8.5
Inner current controller Kiiq 88
Outer voltage controller Kpvdc 0.1036
Outer voltage controller Kivdc 17.77
Feed forward function (FFF) 1/(1 + 7 × 10−6 s)
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Table 2. Wind system parameters.

Parameter Value

Rotor blade radius 41 m
Wind speed (cut-in/nominal/cut-out) 3.5/13/20 m/s
Nominal turbine speed 14.4 rpm
Rated power 1.65 MW
Induction machine 6 pole, 1200 rpm
Induction machine speed at rated power 1207 rpm
Rated slip 0.00167
Gear box ratio 84.5
Power factor correction capacitors 499.4 kVAR
Stator resistance 0.0077 Ω
Rotor resistance 0.0062 Ω
Stator reactance 0.0697 Ω
Magnetizing reactance 3.454 Ω
Rotor reactance 0.0834 Ω
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Figure 4. Real Time Digital Simulator setup.

Initially, the systems are considered to be operated under their normal conditions. Then,
a symmetrical three line to ground (3LG) fault and different unsymmetrical faults: single line to
ground (1LG) fault and double line to ground (2LG) fault are applied. Three different simulation cases
are considered: without FCL; with SDBR; and with proposed BFCL.

4.2. Symmetrical Fault Application

4.2.1. Grids Connected VSC-HVSC System

Initially, DC capacitors are discharged by disconnecting the HVDC system from both grid and
gate pulses of VSC1 and VSC2 are blocked with all controllers in inactive conditions. Then, the HVDC
system is connected to the grid through the transformers, so the capacitors are charged gradually to
a voltage level of around 25 kV through the antiparallel diodes of VSCs. Afterwards, the DC link
reference voltage is set to 35 kV. As a result, the DC link voltage reaches 35 kV by the control action of
the outer DC link voltage controller of VSC2. Now, 20 MW power is transferred from grid1 to grid2 by
changing the reference power (Pref1) command of VSC1. Different types of faults are then applied in
the system at grid1. DC link voltage, line active power, and line current are presented and compared
for both cases of SDBR and proposed BFCL. All faults have been applied for six cycles.

Figure 5 shows the transient response improvement of VSC-HVDC system with symmetrical
three phase fault applied in grid1. Figure 5a shows that DC link voltage fluctuates from 17 kV to 61 kV
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without any auxiliary controller. This fluctuation is reduced with the SDBR controller to the range
of 19 kV to 53 kV. However, the DC link voltage oscillation is greatly suppressed with the proposed
BFCL controller keeping the voltage fluctuation from 29 kV to 39 KV. Moreover, DC link voltage
reaches its reference value of 35 kV at 0.8 s whereas it takes 2 s with SDBR and 2.4 s without any FCL.
Power oscillation minimization and fault current limiting capability of the proposed BFCL solution
have been clearly visualized in Figure 5b,c, respectively, for a 3LG fault at grid1.
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4.2.2. Wind Farm Integrated VSC-HVSC System

A three phase symmetrical fault is applied to wind farm integrated VSC-HVDC system. Figure 7a
shows that induction machine speed fluctuates over a wide range of 1205 RPM to 1218 RPM without
any auxiliary controller for symmetrical fault applied at PCC. System performance improvement is
observed by the slight speed fluctuation reduction with SDBR. However, machine speed oscillation is
greatly damped with the proposed BFCL controller. Moreover, the machine speed reaches to its steady
state value at 0.9 s with BFCL whereas it takes 1.5 s with SDBR. Without any controller the machine
speed reaches to its steady state value at around 2.3 s. Machine stator fault current reduction and DC
link voltage oscillation minimization with the proposed BFCL solution have been clearly visualized in
Figure 7b,c, respectively, for a 3LG fault at the PCC.Energies 2017, 10, 1898  13 of 20 
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4.3. Unsymmetrical Fault Application

Different types of unsymmetrical faults have been applied in grid1 for a two grids-connected
VSC-HVDC system. Real time simulation shows a positive effect to reduce DC link voltage oscillation,
power oscillation and the fault current with the proposed BFCL.

4.3.1. Single Line to Ground Fault

Figure 8a shows the DC link voltage response with 1LG fault applied at grid1 for a two grids
connected VSC-HVDC system. Without FCL, the system has a high DC link voltage overshoot.
Application of SDBR reduces this overshoot by 31.03%. However, a great reduction in DC link voltage
overshoot is observed with the proposed BFCL corresponding to a 72.14% reduction. Moreover, the
settling time for the DC link voltage is higher for the system without any auxiliary controller. A very
slight reduction in settling time is achieved by SDBR. However, the proposed BFCL reduces the settling
time for the DC link voltage by 14.7%. A significant reduction in power oscillation and fault current is
observed as shown in Figure 8b,c.
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Figure 8. Comparative transient response of a two grids-connected VSC-HVDC system subject to
a 1LG fault at grid1 (a) DC link voltage (b) Grid1 active power flow (c) Phase ‘a’ current of grid1.

4.3.2. Double Line to Ground Fault

The fault current limiting capability of BFCL helps maintain the DC link voltage of a VSC-HVDC
system as shown in Figure 9 for a double line to ground (2LG) fault. Without FCL and with SDBR
the DC link voltage fluctuates widely between the range of 27 kV to 49 kV as shown in Figure 9a.
However, the voltage fluctuation is greatly reduced with the BFCL. The DC link voltage lies within the
range of 32 kV to 38 kV during a 2LG fault at grid1. The time taken by the system to bring the DC
link voltage to its steady state value is 0.75 s with the proposed BFCL controller; whereas, this time
is as long as 0.958 s without FCL and with SDBR. Figure 9b,c demonstrate the capability of BFCL in
improving system power damping and reducing fault currents during 2LG faults at grid1.
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4.4. Index-Based Comparison

Besides graphical representations, an index-based performance comparison is conducted to get
a more clear perception of VSC-HVDC systems performance improvement with proposed BFCL
controller. Several performance indices are considered, for example dcvolt, acpow, linecurr and MACspeed.
Mathematical expressions for the abovementioned indices can be defined as follows:

dcvolt =

T∫
0
|∆Vdc|dt

Vdc_rated
(16)

acpow =

T∫
0
|∆P|dt

Prated
(17)
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linecurr =

T∫
0
|∆i|dt

irated
(18)

MACspeed =

T∫
0
|∆N|dt

Nrated
(19)

where ∆Vdc, ∆P, ∆i and ∆N represent deviations of dc link voltage, active power flow, line current,
and machine speed respectively.

Performance indices for symmetrical and different unsymmetrical faults are listed in the Tables 3–6.

Table 3. Performance index improvement with the proposed BFCL for symmetrical fault
(two grids-connected VSC-HVDC system).

Index Parameters, %
Values of Indices

Without FCL SDBR Proposed BFCL

dcvolt 3.1883 2.1935 0.35573
acpow (grid1) 19.2779 9.5683 0.69532

linecurr (grid1) 1.0323 0.73188 0.22665

Table 4. Performance index improvement with the proposed BFCL for a symmetrical fault
(wind farm-integrated VSC-HVDC system).

Index Parameters, %
Values of Indices

Without FCL SDBR Proposed BFCL

dcvolt 1.3456 0.30726 0.16663
MACspeed 2.0075 2.0069 2.0063

linecurr (stator) 1.0242 0.94548 0.8011

Table 5. Performance index improvement with the proposed BFCL for a 1LG fault (two grids-connected
VSC-HVDC system).

Index Parameters, %
Values of Indices

Without FCL SDBR Proposed BFCL

dcvolt 0.21688 0.17779 0.12088
acpow (grid1) 0.11024 0.069492 0.030914

linecurr (grid1) 0.17433 0.17193 0.16587

Table 6. Performance index improvement with the proposed BFCL for a 2LG fault (two grids-connected
VSC-HVDC system).

Index Parameters, %
Values of Indices

Without FCL SDBR Proposed BFCL

dcvolt 0.61458 0.57893 0.25341
acpow (grid1) 2.7937 2.2805 1.9214

linecurr (grid1) 0.25032 0.24543 0.13371

Based on the performance indices values of DC link voltage, active power flow, line current, and
machine speed listed above, it can be concluded that the performance of the proposed BFCL is better in
two grid-connected and fixed speed wind farm integrated VSC-HVDC systems during different faults.



Energies 2017, 10, 1898 17 of 19

5. Conclusions

In this work, BFCL has been proposed to limit fault currents as well as augment the fault
ride-through capability of two grids-connected VSC-HVDC system and wind farm integrated
VSC-HVDC systems. Real and reactive power controllers, and a DC voltage controller have been
designed. Real time digital simulation of a HVDC plant, wind system, BFCL and their controllers
have been developed in RTDS. The effectiveness of the proposed BFCL has been examined though
the application of balanced and unbalanced faults. From the real time implementation results, BFCL
has been found to be a very effective way of limiting fault currents and enhancing the dynamic
performance of VSC-HVDC systems. The results demonstrate that the DC link voltage, power, fault
current, and wind generator speed fluctuations have been substantially reduced with the proposed
BFCL and associated controllers. The results also show that the proposed BFCL solution outperforms
SDBR in terms of response overshoots and settling times under all disturbance conditions considered.
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