
  

Energies 2017, 10, 1879; doi:10.3390/en10111879 www.mdpi.com/journal/energies 

Article 

Assessing the Quality of Natural Gas Consumption 
Forecasting: An Application to the Italian Residential 
Sector 

Federico Scarpa and Vincenzo Bianco * 

Dipartimento di Ingegneria meccanica, energetica, gestionale e dei trasporti (DIME), University of Genoa,  

via All’Opera Pia 15 A, 16145 Genoa, Italy; fscarpa@ditec.unige.it 

* Correspondence: vincenzo.bianco@unige.it; Tel.: +39-010-353-2872 

Received: 23 October 2017; Accepted: 13 November 2017; Published: 16 November 2017 

Abstract: (1) Background: The present paper aims at estimating the quality of the forecasts obtained 

by using one equation models. In particular, the focus is on the effect that the explanatory variables 

have on the forecasted quantity. The analysis is performed on the long term natural gas consumption 

in the Italian residential sector, but the same methodology can be applied to other contexts; (2) 

Methods: Different ex ante knowledge scenarios are built by associating different levels of confidence 

to the same set of explanatory variables. Forecasting results, coming from a standard regression 

algorithm and confirmed by a Kalman filter, are analyzed by means of covariance matrix 

propagation to assess the quality of the provided estimates; (3) Results: The outcomes show that 

one-equation models are very sensitive to the quality of the explanatory variables, therefore their 

erroneous estimation may have a relevant detrimental effect on the predictive accuracy of the model; 

(4) Conclusions: The overall ex ante forecasting accuracy of an example of one equation model is 

assessed. It has emerged that long-term forecasts need particular attention when the covered time 

horizon spans over decades. The information contained in the present paper is of interest for energy 

planners, supply network managers and policy makers in order to support their decisions. 
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1. Introduction and Literature Review 

Primary energy consumption forecasting is of fundamental importance since it is essential in a 

multitude of different sectors and activities. A simple example is represented by companies which 

sell energy, as they need to know the demand of their customers in order to organize their supply 

chains. The estimation of future consumption of primary energy is a key element also in case of 

energy infrastructure planning and construction, such as pipelines, storages and so on, because the 

expected consumptions are the main input for their evaluation and design. Other areas of 

application are the elaboration of energy policies, the study of demand side management strategies, 

the analysis of energy markets and many other fields [1]. 

As one can notice, the subject is broad and different approaches have been developed 

attempting to create accurate models representing the evolution of energy consumption in the 

future. These models have been applied to predict the demand of different energy sources, such as 

electricity, natural gas, coal and others, with different time horizons, i.e., short, medium and long 

term predictions. 

Short term predictions are usually utilized to support market operations, while long term 

predictions are generally employed to support strategic decisions, whereas medium term estimates 

can be used for both, depending on the specific sector of application. 
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In energy demand modeling, there are usually two main approaches: “top down” and “bottom 

up” modeling. The bottom-up approach is mostly used when there is a detailed level of information, 

based on equipment load factor, efficiencies and usage [2]. For example, this approach is often 

utilized in the simulation of power markets [3]. Top down methods are often used when available 

information on equipment or appliance stocks is limited [2]. These methods are typically applied to 

forecast long term energy consumption [4,5]. 

Most of the literature available on the long term forecasting of energy consumption is devoted 

to the electricity or to global energy consumption, while the specific sources of primary energy have 

deserved less consideration [6], probably due to the difficulty in getting data to develop the analysis. 

During the last 20 years, an increase of natural gas consumption has been regularly detected 

year by year. In light of this, different authors decided to investigate on the analysis and forecasting 

of natural gas consumptions by using different approaches and methodologies. 

Huntington [7] proposed a statistical model of industrial US natural gas consumption based 

upon historical data from the 1958–2003 time period. The model specifically addresses interfuel 

substitution possibilities and changes in the industrial economic base. His idea was to provide a 

valuable input for larger and more complex models. Sailor and Muñoz [8] developed a technique to 

assess the relation between electricity and natural gas consumption and climate at regional scales. 

The advantages and disadvantages of using primitive (i.e., temperature) and derived variables (i.e., 

heating degree days) are discussed in that paper. 

Potočnik and coworkers [9] tested different static and adaptive models for short-term natural 

gas consumption. From the investigation, a clear improvement of the prediction performance 

emerges when the adaptive variant of the models is utilized if the forecasting is applied to the 

distribution company, while performances are not affected when dealing with individual house 

consumption. Iranmanesh [10] proposed a hybrid approach for long-term demand forecasting based 

on the neuro-fuzzy model. The approach is implemented in three case studies for the prediction of 

long-term gasoline, crude oil and natural gas demand in the United States. 

Similarly, Bianco et al. [11] proposed a long term top down model to forecast natural gas 

consumption in the Italian non-residential sector. A model is developed relating historical 

consumption, economic growth and climatic data, in order to perform an analysis under different 

scenarios of the explaining variables. Moreover, Soldo et al. [12] investigated the effect of solar 

radiation on forecasting residential natural gas consumption. Solar radiation impact is tested against 

natural gas consumption data from a model house and from measurement taken from a distribution 

company. Furthermore, Lu at al. [13] proposed a novel statistical method to predict energy 

consumption in the building sector. Their work takes into account the stochastic nature of weather 

conditions, energy consumption and loads. 

Other authors [14] have proposed a new study based on the grey forecasting methodology. In 

particular, they suggested the utilization of grey Verhulst model and the nonlinear grey Bernoulli 

model to forecast long term natural gas consumption in China. Also, Shaikh and Ji [15] investigated 

on the prediction of natural gas consumption in China. They suggest the application of a logistic 

model coupled with the Levenberg-Marquardt Algorithm for the estimation of the model 

parameters. Furthermore, Szoplik [16] analyzes the application of an artificial neural network with 

hourly resolution for the estimation of the natural gas demand. The model is intended for the 

optimization of the operation of the natural gas network. 

Recently, Soldo [17] presented a review on the literature dealing with forecasting of natural gas 

consumption, where he reported the state of the art on this subject. He examined many papers and 

grouped them by using different criteria, among which the forecasting technique utilized. 

In the reviewed literature, the subject “forecasting accuracy” is tackled from the point of view of 

the “ex post comparison” of measured data against the forecasted data obtained by using the model 

to be tested. This can be easily done in case of short-term forecasting while very-long-term 

projections ask for “ex ante” methods that can provide an estimation of the “expected forecasting 

quality” by using covariance propagation techniques. 
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Three factors drive the value of the accuracy: the first is the intrinsic volatility of the phenomenon 

to be investigated and its sensitivity to the interconnected explanatory variables which control its time 

evolution; the second driving factor is the level of knowledge about the future behavior of the 

explanatory variables since also a perfect model is completely useless if it is driven by uncertain 

variables and the third is the model itself, i.e., a bad model rarely leads to good estimates. 

The present study is focused on the quality assessment of “one equation” long-term forecasting 

models since this approach is frequently applied to the prediction of both electricity [4,18], and 

natural gas [7,19,20]. 

To this aim, a case study is proposed, namely the long term forecasting of natural gas 

consumption in the Italian household sector, which can be successfully described by a simple 

evolutionary equation driven by a number of explanatory variables as shown in [21]. Data from this 

study are updated and the analysis is verified by the use of a Kalman filter which, to the best of the 

authors’ knowledge, has never been applied so far to evaluate the long term consumption of natural 

gas. Then, covariance of the predicted estimates is propagated in the future to assess the ex ante 

forecasting accuracy. 

The Kalman filter estimation technique was originally used in engineering and chemistry 

applications, but later it was also applied to other fields, such as economy [22] (Inglesi-Lotz 2011). As 

pointed out in this study, the Kalman filter methodology is very effective to estimate regressions 

with variables whose impact varies over time and in the presence of parameter instability. 

Nguyen and Nabney (2010) [23] utilized a Kalman filter approach combined with wavelet 

transform to forecast day ahead electricity consumption and gas price. The method has been also 

applied to the forecasting of non-durable consumptions [24] (Song et al., 1996) and to study about 

electricity load forecasting, as given in [25] (Pappas 2008). 

It is noted that the present study does not propose any new model or estimation technique, 

which are well consolidated. Also, the covariance propagation method used to predict the accuracy 

of the forecast in the future is well established but, to the best of authors’ knowledge, has not yet 

been applied to investigate the long-term performance of one-equation forecasting models. 

The utilization of natural gas in the Italian residential sector represents about one third of the 

total national consumption, so it is of fundamental importance to predict future consumption with 

an adequate degree of accuracy. The estimation is of relevant importance to plan new infrastructures 

and to establish the most adequate supply strategies. 

The proposed approach is able to provide, along with the long term forecasting of the 

consumption, the estimation of the associated accuracy. Various sensitivity analyses are developed; 

in particular, starting from a fixed set of data ranging from the year 1999 up to the year 2015 on the 

gas consumption and its drivers, a series of scenarios are presented, up to the year 2030, in which the 

variable trend is not changed, but different levels of confidence are assumed about the knowledge of 

the driving variables. In this way, the minimal level of knowledge which provides acceptable 

forecasting can be found. 

Finally, the importance of using reliable models, of gathering information about the quality of 

the exogenous explanatory variables and, in general, the need to pose special attention when the 

covered time horizon spans over decades, is focused. 

It is believed that the information contained in the present paper is of interest for energy 

planners, supply network managers and policy makers, who can utilize the proposed technique to 

support their decisions. 

In synthesis, the study is organized as follows: after selecting the model that describes the time 

evolution of the natural gas consumption, its forecasting performance is tested on historical data by 

using either a regression algorithm or a Kalman filter. Then, the model is applied to a long term 

forecast and the quality of its estimates is assessed by means of covariance propagation techniques. 

At last, some considerations are drawn concerning the need for particular attention when the model 

used here is applied to time horizons spanning decades. 
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2. Methodology 

The model used to link residential natural gas consumption to the three considered explanatory 

variables, namely heating degree days, price of natural gas and gross domestic product (GDP) per 

capita, is reported in Equation (1). The model is expressed as a linear logarithmic function and it 

assumes the form of a standard dynamic constant elasticity function of the consumption [21,26,27].  

ln(Cres,k) = β0 + β1ln(HDD,k) + β2ln(Pres,k) + β3ln(GDPPC,k) + β4ln(Cres,k−1) + β5ln(Pres,k−1), (1) 

where Cres represents the domestic gas consumption in bcm (billion cubic meters), HDD are the 

annual average heating degree days in °C-days, Pres is the average gas price for residential customers 

in €/GJ HHV (high heating value) and GDPPC represents the GDP per capita in € per inhabitant, βi are 

the regression coefficients and the subscript “k − 1” refers to the lag term (i.e., a time lag of one year 

in the present case). The coefficients β1, β2 and β3 respectively, indicate HDD, price and GDP per 

capita short run elasticities, of residential gas consumption, that is the sensitivities with respect to 

the exogenous input. All the βi have been assumed constant. 

The unknown coefficients of model (1) are estimated by means of ordinary least squares (OLS) 

regression and there might be the possibility that results are misleading due to the presence of 

heteroskedasticity and serial correlations [28–30], therefore it is necessary to assess for the 

correctness of the estimation. 

To this scope, White heteroskedasticity test is performed and the Breusch–Godfrey Serial 

Correlation LM test [29,30] is applied to the model to check for the presence of serial correlation. All the 

above statistical tests were successful [19], as well as the check for the existence of unit roots [29,30]. 

We further check the obtained results by using a small Linearized Kalman Filter (LKF) to 

identify the unknown parameters. It was decided in favor to this approach since our aim is to 

investigate the quality of future estimate by propagating the covariance equation associated to the 

model (1) and the Kalman algorithm is based on the same covariance equations (see Equation (6) 

below). The linearization is required by the fact that the model is not linear since also the unknown 

parameters are managed as state variables by the filter. An Extended Kalman Filter (EKF) is not 

required in this context since real time performance is not needed and iterating an LKF gives usually 

better results. 

Kalman filtering technique was applied in many disciplines [29], but references to the energy 

consumption forecasting are mainly addressed to the electricity sector [30], whereas applications to 

natural gas are few. One of the interesting features of the processor is that it delivers a measure of the 

quality of the estimates it is providing. 

In the following, capital bold letters denote matrices, lowercase bold italics denote vectors while 

simple variables are written in italics. 

Equation (1) can be seen as a general state-space evolution equation of the form 

xk = f(xk−1, uk−1, β) (2) 

where x represents the state, u the control while β is the (unknown) parameter vector. Namely,  

x = ln(Cres), u = [ln(HDD), ln(Pres), ln(GDPPC)]t, β  [β0, …, β5]t, while the observation (measurement) 

model is simply the identity plus some observation error: 

yk = xk + vk (3) 

In the LKF perspective, see for instance [31], a model based processor can be set up where the 

state, x, is augmented to include the parameter vector, β, so that z = [x, βt]t. 

The complete filter formulation is not repeated here but it is underlined that it is founded on the 

state estimate evolution equation and the covariance propagation equation that is: 

Reference evolution 

z*k = f(z*k−1, uk−1) (4) 

State and covariance prediction  

zk|k−1 = z*k + Ak·( zk−1|k−1 − z*k−1) (5) 
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Pk|k−1 = Ak·Pk−1|k−1·Akt + Qk·Ruk−1|k−1·Qkt (6) 

Measurement prediction 

yk|k−1 = C·zk|k−1, with C = [1, 0] (7) 

The superscript * stands for the “reference trajectory” on which the linearization process is 

made, the reference trajectory evolves according to a fixed value, β*, of the parameter vector. The 

notation zi|j stands for “estimate of z(ti) by means of the information available at tj”. 

In particular, the focus is on Equation (6), which represents the evolution of the state vector 

covariance, since the same equation is used outside the estimator, β identified, to assess the quality 

of the gas consumption forecasting in future times. 

The matrices A and Q are the Jacobian (sensitivity) matrices of the process with respect to the 

state and the control (exogenous input), respectively 
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can be viewed as the elasticity matrix of the system. Sensitivity in respect to the unknown parameter 

is included in the Jacobian matrix A. 

State and covariance predictions given by Equations (5) and (6) are then corrected by means of 

the information coming from the observation process, which is properly weighted by the following  

zk|k = zk|k−1 + Kk·(ym k − yk|k−1) (8) 

Pk|k = (I − Kk·Ck) Pk|k−1 (9) 

where ym is the observed and K is the Kalman gain given by  

Kk = Pk|k−1·Ckt·(Ck·Pk|k−1·Ckt + Rv)−1 (10) 

with Rv the measurement noise covariance matrix. 

The vector z*, that is the “reference trajectory” the state z is linearized on, is an open loop state 

evolution driven by a constant value of the unknown parameter vector which are updated only after 

a complete iteration over the time index k. It is underlined that, to the purpose of the present study, 

the Kalman algorithm has been used only as a practical way to tackle with this application but other 

algorithms can be satisfactorily used. Conversely, the covariance prediction Equation (6) is an 

essential tool for the analysis.  

Iteration after iteration, the value of β* will refine and converge to some stable value. Then the 

filter will be used as a predictor to give estimate of the relevant variables, in this case Cres, over the 

requested future time horizon. So, a two stage procedure can be noticed; during a first stage, 

observed data along a definite time window are used to identify the unknown parameter vector β. In 

the second stage, the model uses the found β values to predict “future” outcomes of Cres, while 

information about its quality is provided by the covariance. This procedure is at first utilized to tune 

the model and to validate it against programming errors. 

According to Equation (1), the analysis is developed assuming normality of the logs. It follows 

that the linear, additive-error model on the log-scale is a multiplicative lognormal model on the 

original scale. 

3. Data 

3.1. Model Tuning 

In this preliminary phase, the observation window encompasses the years from 1990 up to 2011. 

The identified values of β will characterize the model in the following extrapolation phase up to the 

year 2015. Used data are updated from [20] and reported in Table 1. 

An analysis of the historical trend, a discussion on the dependence of natural gas consumption 

on the chosen explaining variables and a number of statistical tests on the data set have been 

performed and discussed in the above referenced study [20]. 
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It is worth noting that, during the model tuning, the algorithm is driven by measured controls; 

that is, the values of GDP, gas price and HDD are measured ones (i.e., the historical values), also in 

the “simulated” forecasting phase. As a consequence, the good behavior of the algorithm in respect 

to the forecasted unknown quantities is a roughly approximate index of the prediction quality 

during the successive true forecasting process since this quality strongly depends on that of the 

estimated future exogenous variables. The issue of obtaining an accurate forecasting is moved from 

the establishment of a robust “prediction model” to the achievement of a precise estimation of the 

explaining variables. 

Table 2 reports the tentative values used to populate the initial vector of unknown constants 

and the associate covariance matrix necessary to initialize the algorithm. The initial quality of the 

sought for parameters has been set to a relatively great value, 6, that is 1200% of the initial value, to 

mean no prior knowledge at all. Greater values are useless and they may cause algorithm instability. 

Table 1. Reference data (observed values) for Cres, gross domestic product (GDP), Pres and heating 

degree days (HDD). 

Year Cres [bcm] GDP [€] Pres [€ GJ−1] HDD [°C Days] 

1990 12.6 12,365.3 13.8 1884 

1991 14.6 13,492.3 15.8 2234 

1992 14.1 14,185.3 16.2 1886 

1993 14.8 14,600.2 14.0 1973 

1994 13.6 15,440.8 14.4 1797 

1995 15.0 16,665.5 13.5 1929 

1996 15.8 17,653.4 14.5 1938 

1997 15.2 18,434.9 16.2 1807 

1998 16.4 19,178.1 15.8 1902 

1999 17.1 19,802.6 15.2 1883 

2000 16.5 20,917.0 16.5 1695 

2001 17.3 21,914.9 18.0 1767 

2002 16.8 22,660.7 17.0 1711 

2003 19.0 23,181.3 17.0 1913 

2004 19.7 23,919.6 15.0 1883 

2005 20.6 24,390.9 15.6 2051 

2006 18.7 25,200.9 17.1 1824 

2007 17.5 26,040.8 17.9 1715 

2008 17.6 26,204.1 18.8 1776 

2009 18.5 25,465.0 18.2 1829 

2010 20.5 26,224.3 19.6 1992 

2011 19.8 26,602.0 21.9 1861 

2012 19.9 26,254.7 24.3 1968 

2013 19.9 25,589.1 24.8 1933 

2014 16.5 25,702.7 24.7 1603 

2015 18.1 26,003.1 23.6 1810 

Table 2. Assumed initial condition and measurement quality. 

Parameter Initial Value Quality (1.96σ) 

β0, …, β5 0.5 6 (∞) 

Control noise - Varied (see analysis) 

Observation noise - 1.5% 

Table 3 shows results from this preliminary phase. The Kalman algorithm has been compared 

to a usual regression procedure. By a direct comparison of the errors affecting the estimates, it can be 

seen that the results are quite similar. Sample standard deviations are roughly the same. The last 

column reports the 95% confidence intervals as predicted by the filter. It can be seen that this 

parameter tends to increase as the prediction is more and more in the future. The overall uncertainty 

associated to the forecasted variables is small in this case, since the explanatory variables are 

assumed to be known with a good level of accuracy, the same used in the model identification phase, 

also during the forecasting. So, in both cases, the double of the standard deviation (95% confidence 
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interval, in case of normally distributed noise) has been assumed equal to ±1.5% for all the 

explanatory variables. 

Table 3. Validation phase. Cres values. Model identification phase: 1990–2011. A 95% confidence 

interval equal to ±1.5% for all the explanatory variables has been assumed. Forecasting interval: 

2012–2015. Standard regression compared to Kalman filter forecasting. The percentage errors in 

respect to the observed values are reported too. 

Year 

Observed

Values 

(bcm) 

Regression 

Forecasting 

(bcm) 

Kalman 

Forecasting 

(bcm) 

Percentage 

Difference  

Regr vs. Kalman 

Cres Estimated 

95% Confidence 

(bcm) 

2012 19.91 20.44 (+2.7%) 20.24 (+1.7%) −1.0% ±2.5% 

2013 19.86 20.34 (+2.4%) 20.02 (+0.8%) −1.5% ±3.1% 

2014 16.55 17.60 (+6.4%) 17.34 (+4.8%) −2.0% ±3.3% 

2015 18.10 18.82 (+4.0%) 18.88 (+4.3%) +0.3% ±3.1% 

Results from Table 3 show a substantial equivalence between the two methods with difference 

smaller than 1.5% in the years from 2012 up to 2015. 

Since the Kalman algorithm has been applied under the normal hypothesis of the “log” 

variable, the usual link between standard deviation and confidence level is lost when dealing with 

the original variables. In the following section, we consistently adopt asymmetrical bounds when 

reporting the 95% confidence limits of the forecasted gas consumption, Cres. 

Figure 1 synthetizes data from Tables 1 and 3 to compare the performance of the different 

forecasting algorithms in the validation phase. 

 

Figure 1. Validation phase. Cres values. Observer data in the period 1990–2011 (continuous line) and 

forecasted values in the years 2012–2015; Regression algorithm (dashed line) and Kalman algorithm 

(dotted line). 

3.2. True Forecasting Phase 

When the forecasting is extended to true future times, the control variables are unknown and 

only rough estimates are utilized to drive the model. These forecasted values will be characterized by 

an uncertainty (variance) described by the covariance propagation Equation (6) which needs some 

vital information, namely the variance associated to the control explanatory variable vector u. 

However, all the explanatory terms used to calculate the forecasted variable are in turn extrapolated 

guesses, usually deduced roughly, for instance using regression, from available historical data or from 
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qualitative considerations, irrespective of any information concerning their accuracy. Furthermore, as 

usual, each explanatory variable is guessed from historical data independently on the other one, 

neglecting that some correlation exists among them and should be included in the model. 

As a consequence, the forecasted quantity (also noting that the considered time horizon is often 

beyond ten years) could be characterized by relative confidence bounds so large to be completely 

useless from the point of view of a policy maker. 

Since the vector u, the driver, is not an observed quantity, but the result of a forecasting process, 

and information about its precision (covariance) is rarely known, a number of scenarios are tested to 

quantitatively show the link between estimated gas consumption precision and the precision of the 

utilized forecasted values of GDPPC, Pres, HDD. 

So, scenarios are not introduced to hypothesize different future situations regarding the context 

of the forecast [32]; in contrast, scenarios refer to different levels of knowledge. 

Since presumably, the control variable estimates will get worse over time and consequently 

their confidence bounds should show an increasing trend after a certain number of years, scenarios 

are set up in which the controls are characterized by confidence augmenting at a constant rate with 

time. Starting from a 1.5% value, the C.B. values will linearly grow with time to reach the relative 

values of 10%, 25% and 50% at the end of the forecasting period, the year 2030. Three further 

scenarios will show the forecasting quality in presence of constant confidence intervals during the 

whole forecasted horizon equal to 1.5%, 10% and 30%. This situation can be considered typical for 

estimates of pricing and GDP, as the values of these two explaining variables are often known with a 

high level of knowledge. In particular, robust information on energy price of one and two years 

ahead is available by consulting forward market prices, whereas reliable forecasts on GDP growth 

are taken by ministries of economic development, or the European Central Bank in case of the 

European Union (EU). 

During this pure prediction phase, the uncertainty reflected on the forecasted variable only 

depends on the structure (sensitivity) of the model (1), on the initial (year 2015) extended state 

covariance, and on the values of the assumed confidence bounds of the explanatory variables. 

It is underlined that, during the forecasting phase, only Equations (1) and (6) are used. From an 

operative point of view, this can be easily accomplished without exiting the Kalman filter, by setting 

the Rv diagonal elements to be very large quantities. In this way, the filter is instructed that no 

information is coming from the measurements process which does not take place at all. 

To forecast the residential natural gas consumption, it is necessary to use future guesses of the 

control variables utilized in Equation (1), namely GDP per capita, natural gas price and HDD.  

The estimate of GDP per capita is built by utilizing the projections of population growth given 

by ISTAT in [33] and the expected GDP trend reported in [34]. 

As for natural gas price, a correlation between Bundesamt fur Wirtschaft und Aufurcontrolle 

(BAFA) gas price (i.e., gas prices published by the German Federal Office of Economics and Export 

Control) and oil price is studied and utilized, and taxation levels in line with the historical values as 

given in [21] is assumed. 

Finally, an assumption on the expected HDDs scenario is made taking the average HDDs from 

1990 up to 2015, 1867.8 °C-days, as representative of average future weather conditions. Another two 

“extreme” scenarios cases have been considered: (i) the minimum HDDs from 1990 up to 2015, that 

is 1603 °C-days; and (ii) the maximum HDDs in the same period, 2234 °C-days. In this case, it 

appears reasonable that a 95% relative confidence interval of about 10% will be representative of the 

variability of the expected weather condition. In any case, a constant hypothesis has been assumed 

and the role of possible trend is not considered. Regarding the other two explaining variables, GDP 

per capita and natural gas price, it is noted that, as often happens, the forecasted value is not 

supplemented by information about the quality of the prediction. 

Regarding the considered model, represented by Equation (1), it emerges that the exogenous input 

that mainly contributes to Cres uncertainty is ln(HDD); that is, the long term weather condition forecast. 

4. Results and Discussion 
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Table 4 shows the results of the forecasting phase with reference to the last four years. The first 

thing to note is the very low difference between the value for the year 2030 predicted by the Kalman 

Filter (Cres = 24.87 [bcm]) and that given by the regression procedure (Cres = 24.88 [bcm]), a difference 

of about 0.05%. This fact is accidental since if the forecasting window is extended up to 2040, for 

example, the obtained estimates slowly diverge. Nevertheless, the two methodologies can be 

considered practically equivalent in the considered application. 

Table 4. Forecasting results. Cres values. Standard regression compared to Kalman filter forecasting. 

The percentage differences are reported in the last column. 

Year 

Regression 

Forecasting 

(bcm) 

Kalman 

Forecasting 

(bcm) 

Percentage 

Difference 

Regr vs. Kalman 

        
2027 23.48 23.50 +0.080% 

2028 23.93 23.95 +0.071% 

2029 24.40 24.41 +0.064% 

2030 24.87 24.88 +0.055% 

Figure 2a,b graphically show the forecasted results, highlighting the quality of the estimates in 

the different scenarios. It follows that, in case of growing uncertainty (Figure 2a), the confidence 

bounds of the forecasted variable increase practically at the same rate as the confidence bounds 

associated to the explanatory variables. 
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(a) (b) 

Figure 2. Forecasted values of natural gas consumption, Cres, and associated 95% confidence bounds. 

(a) Linear increase of the std. dev. associated to the exogenous variables, three different rates starting 

from 1.5% up to 10%, 25% and 50% at the end of the time horizon; (b) Constant std. dev. during the 

whole time horizon, three different levels; 1.5%, 10% and 30%.  

On the other hand, if we use a constant variance value during the whole time horizon, the 

resulting confidence intervals associated to the forecasted values abruptly increase during the first 

year and then a phase of a small increase follows (Figure 2b). The behavior of the quality is 

underlined in Figure 3a,b, which reports the magnitude of the confidence bounds in the six 

presented scenarios. 

The overall entity of the uncertainty at the end of the forecasting horizon is, in any case, quite 

worrying. The roots of the behavior of “one equation” model are found in Equations (1) and (6). 

According to the model, the sensitivity of the forecasted value with respect to state and control 

variables, that is the coefficients reported in Table 5, controls the evolution of the covariance matrix. 
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(a) (b) 

Figure 3. Average 95% confidence intervals as a percentage of the Cres value. (a) Linear increase of the 

std. dev. associated to the exogenous variables, three different rates; (b) Constant std. dev. during the 

whole time horizon, three different levels. See Figure 2. 

Table 5. Model parameters found from data of Table 1. 

Algorithm β0 β1 β2 β3 β4 β5 

Standard regression −5.42 0.834 −0.174 0.479 0.256 0.103 

Kalman filter −5.28 0.829 −0.162 0.529 0.163 0.092 

The variance behavior of the ln(Cres) follows from Equation (6). It is composed of two terms; the 

first representing the propagation of the state variance and the second accounting for the injection 

due to the exogenous inputs. The time history of these components is reported in Table 6 with 

reference to the constant variance addition, 10% case, see Figure 3b. The squared values of the (1, 1) 

element are reported. 

Since the state variables are the natural log of the original variable, the value can be directly 

interpreted as a fraction value of Cres confidence interval. In other words, the last column specifies a 

value of the 95% confidence interval equal to about 10% of the Cres value. 

Table 6. Steady state behavior of ln(Cres) variance and its components, as from Equation (6).  

Year 

A B C D 

1.96
1

)1,1(



t

P  1.96 )1,1(tAPA  1.96 )1,1(tQRQ  1.96
t

P )1,1(  

          
2024 0.10119 2.32 × 10−2 9.86 × 10−2 0.10132 

2025 0.10132 2.38 × 10−2 “ 0.10146 

2026 0.10146 2.44 × 10−2 “ 0.10160 

2027 0.10160 2.50 × 10−2 “ 0.10175 

2028 0.10175 2.57 × 10−2 “ 0.10191 

2029 0.10191 2.64 × 10−2 “ 0.10210 

2030 0.10210 2.70 × 10−2 “ 0.10226 

The fact that the final magnitude of the Cres confidence is similar to the confidence assumed for 

the explanatory variables is casual and results from the particular values of the elasticities in this 

specific case. 

After a short transient phase, it appears that the confidence of Cres, after a reduction due to 

model propagation (Table 5 column B), reaches a quasi-steady state (column D) with the addition of 

variance that accounts for the control uncertainty (column C). This fact appears a somewhat 

favorable element but it must be noted that this result is obtained only in case of constant uncertainty 

affecting the explanatory variables. It seems more realistic that the constant rate increase better 

represents the difficulty to make prediction when the involved times are more and more remote. 
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Finally, it is noted that if the model utilized to describe the proposed scenario is exact (typically 

in simulated tests, where the model underlying the simulated data is the same used by the 

forecasting algorithm), no problem arises during the model identification process and correct results 

can be found also in the presence of large observation errors. If, as it seems to happen in this study, 

our description of the phenomenon contains some known or unknown approximations and 

incorrectness (e.g., possible oversimplification of the “one equation” model), the identification of 

unknown parameters may become unreliable, especially if results are extrapolated to predict future 

performance. In fact, the inverse solution algorithm, whose primary target is to minimize the 

residuals of the term “ln(Cres)”, might compensate the model incorrectness with a wrong choice of 

parameters and a good fitting on observed data does not always guarantee a good forecasting. 

Various techniques can be implemented in these conditions, for example the use of proper process 

noise covariance matrix (separate from the control noise covariance) to account for model 

mismatches. In any case, obviously, the more the algorithm model differs from the real one, the more 

biased the forecasting will be [35]. 

Anyway, it should be always considered the optimal trade-off between the complexity of the 

model and the accuracy of the results, because the risk is to complicate more than necessary energy 

consumption models by introducing, for instance, new parameters and links towards external 

variables, which require a number of inputs difficult to find in the usual available statistics [36]. 

5. Conclusions 

Forecasting results concerning natural gas consumption coming from a standard regression 

technique has been validated by using a Kalman filter. Then, the model behavior has been studied by 

means of standard covariance propagation analysis to assess the quality of the obtained estimates. 

From the results, it reasonably appears that the commonly used “one equation” approach, at 

least in the presented case, causes the forecasted variable to be very sensitive to errors in the 

explanatory variables. While this is not a serious issue during the fitting phase of historical data, 

problems arise when the selected formula is used to predict future scenarios. 

As a consequence, a great care must be taken when the forecast horizon extends over many 

years and it is necessary to analyze and check the explanatory variables in order to investigate their 

accuracy, which represents a fundamental aspect of the whole forecasting process. 

Another approach might be represented by the implementation of more sophisticated models 

able to include the multi-level interconnections among the variables. To mimic these mutual 

correlations, it would be better to improve the basic model to include more and more explanatory 

variables (but avoiding over-specification, i.e., the inclusion of redundant predictor variables [37]), 

along with their models, in order to better describe the nature of the real word dynamics. To tackle 

such an integrated approach, it may be better to model primary energy consumption as a set of 

equations in which the interactions with the “surrounding” are pushed further and further away to 

provide a kind of smoothing of the errors coming from the exogenous input. The correctness of this 

approach will be confirmed, or not, by an analysis of the variance evolution.  
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