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Abstract: The accuracy of load modeling directly influences power system operation and control.
Previous modeling studies have mainly concentrated on the loads connected to a single boundary
bus, without thoroughly considering the static load characteristics of the voltage. To remedy this
oversight, this paper proposes an accurate modeling approach for area loads with multiple boundary
buses and ZIP loads (a combination of constant-impedance, constant-current and constant-power
loads) based on Ward equivalence. Furthermore, to satisfy the requirements for real-time monitoring,
the model parameters are identified in an online manner using an enhanced reinforcement learning
(ERL) algorithm. Parallel tables of value functions are implemented in the ERL algorithm to improve
its tracking performance. Three simulation cases are addressed, the first involving a single ZIP load
and the second and third involving area loads in the IEEE 57-bus system and in a real 1209-bus
power system in China, respectively. The results demonstrate that the ERL algorithm outperforms
an existing reinforcement learning algorithm and the improved least-squares method in terms of
convergence and the ability to track both step-changing and time-varying loads. Additionally, the
results obtained on test cases confirm that the proposed area load model is more accurate than a
previously introduced model.

Keywords: load modeling; parameter tracking; reinforcement learning; Ward equivalence

1. Introduction

The expansion of power grids has significantly increased the complexity of power flow analysis,
posing challenges for online dispatch and control. As a vital element of power flow analysis,
load modeling has attracted extensive attention from researchers for decades. An ‘area load’ represents
a specific load area network in a system, including its internal buses and devices [1]. When constructing
a model of an area load, the aim is to simplify the topological structure of the power grid to decrease
the computational burden of power flow analysis.

Load models can be classified into static and dynamic models [2]. Static models express the
active and reactive power at any instant of time as functions of the bus voltage magnitudes and
frequencies, which are typically in a steady state. The static load features of the area loads seen
from a single boundary bus can be represented by a ZIP load (a combination of constant-impedance,
constant-current and constant-power load) model [3] or by an exponential model [4]. A number of
researchers has proposed static load models for area loads in distribution networks [5,6]. In reality,
to ensure a reliable supply of power, electricity is delivered from external power supply networks to
area loads through multiple lines simultaneously. Therefore, it is necessary to investigate an area load
model with multiple boundary buses.
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The first step of load modeling is to determine the model structure. Ward equivalence [7] is a
classic approach for reducing the topological structure of area loads with multiple boundary buses
for applications such as state estimation [8], security analysis [9] and network reconfiguration [10].
The equivalent system with N + 1 buses proposed in paper [11] is an extension of the Thevenin
equivalence approach combined with Ward equivalence, in which the equivalent loads are treated
using a constant-impedance model. Our previous studies reported in [1,12] introduced another
approach to area load modeling, which focuses on replacing the internal buses and lines with only one
fictitious load bus and several fictitious lines linking that load bus to multiple boundary buses. A ZIP
model is connected to the fictitious load bus to describe the load features of the area load in the form
of internal ZIP loads.

The next step of load modeling is to identify the model parameters. Using synchronized phasor
measurement units (PMUs), researchers can conveniently collect measurements at the boundary buses
to derive the load characteristics. In reality, the system loads vary in time and thus cannot be simply
treated as constants or ZIP loads with fixed coefficients, as is done in offline modeling approaches [13].
Moreover, it is difficult for the operators of transmission grids to obtain real-time information on the
internal loads of distribution networks to serve as a basis for making operational decisions. Hence,
an alternative approach is to optimize the model parameters online based on a sliding time window
using real-time measurements at the boundary buses.

To achieve online optimization of the parameters of an area load model with a single boundary bus,
papers [3,14] utilize a recursive least-squares (LS) method to minimize the error between the modeled
and true area loads in each time window. LS methods are also widely used in other applications,
such as the short-term forecasting of wind power [15], power estimation for electric vehicles [16],
the design of filters [17], and the forecasting of electricity prices [18–20]. According to paper [11],
the optimization problem corresponding to the modeling of an area load with multiple boundary buses
is a complex non-linear programming problem with multiple local optima. In that paper, a sequential
quadratic programming (SQP) method with improved initial points is used to optimize the parameters.
Meanwhile, several assumptions are adopted to weaken the correlations among the model parameters,
which can impair the accuracy of the model. Without these assumptions, more global optimization
algorithms would be needed to solve the multi-mode optimization problem.

In applications involving the online control or dispatch of power systems, reinforcement learning
(RL) methods have exhibited remarkable capabilities for performing online calculations [21–23]. RL is
based on the concept of trial and error and explicitly considers the problem of a goal-directed agent
interacting with an uncertain environment [24]. It originated in the study of animal intelligence [25] and
has become a major branch of machine learning [26]. RL encompasses numerous learning mechanisms,
and various optimization algorithms have been developed on the basis of these mechanisms.
The method of function optimization by reinforcement learning (FORL) proposed in paper [27]
was developed based on the idea of temporal-difference learning [24]. Evaluations of the FORL
method on benchmark functions have demonstrated that it exhibits superior performance compared
with most prevailing population-based algorithms in terms of both accuracy and convergence,
especially in the case of multi-mode functions. The distinct advantage of the FORL method is that it
involves a complementary operation related to covariance matrix adaptation [28], which enables the
algorithm to solve optimization problems with a continuous domain. Several decentralized Q-learning
algorithms have been proposed to eliminate the curse of dimensionality in traditional Q-learning.
Additionally, a hysteretic Q-learning method [29] has been presented that considers both cooperation
and coordination among agents by means of adaptive learning rates.

The two main contributions of this paper can be summarized as follows. (1) We propose a Ward
equivalent model for area loads with multiple boundary buses. Unlike previous proposals, the model
includes internal ZIP loads. (2) We develop an enhanced reinforcement learning (ERL) algorithm
for identifying the model parameters based on real-time synchronized measurements taken at the
boundary buses. Compared with the FORL method, two improvements are incorporated into the ERL
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algorithm, i.e., adaptive learning rates and parallel tables of value functions, to enhance its ability to
track load changes quickly and accurately. Moreover, unlike the Q-learning algorithms mentioned
above, the ERL algorithm can be used to solve the parameter identification problem with a continuous
solution domain.

The remainder of the paper is organized as follows. In Section 2, the Ward equivalent model is
presented. The ERL algorithm is introduced in Section 3. Simulation studies are reported in Section 4.
In the final section, conclusions are drawn, and future work is discussed.

2. Area Load Modeling and Topological Structure Simplification of Power Systems

Electric power is delivered from a power supply network to an area load through boundary
buses. Consider the IEEE 57-bus power system, for example. Figure 1a illustrates the 57-bus power
system, in which the area load to be simplified includes 11 branches and eight buses. The loads
included in the area load are ZIP loads. Suppose that synchronized PMUs are configured on boundary
buses 22, 29 and 32; thus, the voltage phasors V̇i (i = 1, 2, 3) at these boundary buses and the current
phasors İi (i = 1, 2, 3) injected into the area load can be measured accordingly.
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Figure 1. Area load modeling in the IEEE 57-bus power system. (a) The 57-bus power system with an
area load; (b) the Ward equivalent model of the area load.

In the conventional Ward equivalence approach, the internal buses in the area load are simplified
as fictitious lines between each pair of boundary buses. The resulting Ward equivalent model is
depicted in Figure 1b. The model parameters include the admittances of the fictitious lines, gij and
bij (i, j = 1, 2, 3 and i 6= j), and the fictitious load parameters. The fictitious loads in conventional Ward
equivalent models are constant-current or constant-power loads; therefore, the nodal admittance matrix
(or the parameters) of the equivalent model can be determined by performing Gaussian elimination on
the nodal admittance matrix of the area load. Paper [11] treats these loads as constant impedances,
and the model parameters are determined using measurements collected at the boundary buses.
In this paper, the accuracy of the model is improved by formulating ZIP models of the active and
reactive loads as follows [30]: {

Pi = api,1V2
i + api,2Vi + api,3

Qi = aqi,1V2
i + aqi,2Vi + aqi,3

(1)

where api,j and aqi,j (i, j = 1, 2, 3) are load coefficients. All parameters in the proposed model
are estimated through online training based on real-time measurements to ensure that the model
parameters are kept up to date to track the time-varying loads.
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3. The Enhanced Reinforcement Learning Algorithm for Online Parameter Tracking

In this section, an ERL algorithm is proposed for identifying the parameters of the area load
model. An overview is first presented to introduce the basic procedures of RL. A flowchart is also
included to illustrate the implementation of the proposed algorithm for the online tracking of the
model parameters. The main steps of the ERL algorithm are then described in detail.

3.1. Overview

In an RL algorithm, agents first sense the current state of the environment. They are not told
which actions to take; instead, they must discover which actions yield the greatest reward generated
by the environment [24]. In turn, the behavior of the agents causes the environment to transition into a
new state. In this way, actions that result in good or bad outcomes have a tendency to be reselected or
abandoned, respectively.

The basic elements of the ERL algorithm are defined below. Suppose that the proposed model
contains N parameters; thus, the control variables for parameter identification can be denoted by
Z = [z1, z2, · · · , zN ]. Accordingly, N agents are employed, each of which is responsible for one control
variable. The feasible domain of the i-th dimension of Z is then discretized into Di cells. Thus,
the action set of agent i can be denoted by Ai = {1, 2, · · · , Di} (i = 1, · · · , N). When agent i takes its
j-th action, this indicates that the corresponding one-dimensional control variable will be randomly
chosen from the corresponding cell. In the ERL algorithm, the environment state refers to the accuracy
of the model, which is quantified as the value of an error function, F(Z). Instead of calculating values
for ‘state-action’ pairs, as in the case of conventional RL algorithms, the ERL algorithm only records
value functions for actions. For instance, the value function of the j-th action conducted by the i-th
agent is denoted by Q(i, j). These value functions are updated by means of a scalar reward R, which is
generated by the environment.

The online parameter tracking process that is implemented by means of the ERL algorithm
is depicted in Figure 2. The learning behavior of the agents is shown in the dashed box, and the
four main steps of this behavior are described in detail in Sections 3.2–3.5 below. First, an agent
evaluates the current solution based on voltage and current measurements, after initialization of
the counter k. Note that in this paper, the measurements have been filtered to remove noise before
parameter identification. A scale reward or punishment signal (one or −1) is then fed back to the
agent, indicating whether the selected action is beneficial or not, respectively. Meanwhile, the best
solution Zbest is updated and sent to the area load model. The value function is then updated with
the immediate reward. The agent then selects a new action from its action set based on the updated
value functions. The counter is increased by one every time an agent completes the above cycle of
learning behavior. Agents take turns repeating this learning cycle until the counter reaches a preset
threshold, kmax. Similar to the FORL procedure presented in [27], once agent N completes its learning
behavior, different tiny perturbations are simultaneously applied to all of the one-dimensional solutions.
This complementary operation facilitates the full exploitation of favorable actions.

Compared with the FORL method proposed in [27], which has shown excellent optimization
performance on high-dimensional and multi-modal functions, the ERL algorithm includes two
improvements concerning the updating of the value functions. First, adaptive learning rates,
which were first used in [29], are adopted for the agents to allow them to exhibit cooperation and
coordination behaviors. Second, parallel tables of value functions are introduced to accumulate the
search experience gained under different load demands.
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Figure 2. Flowchart of the online parameter tracking process implemented by means of the enhanced
reinforcement learning (ERL) algorithm.

3.2. State Evaluation

The area load model is trained under the same voltages as in the original area load. The voltage
measurements V̇m are imposed on the model, and the currents İc

1 ∼ İc
n flowing from the boundary

buses to the model are calculated. The environment state is then evaluated by calculating the
root-mean-square error between the calculated currents ( İc

1 ∼ İc
n) and the measured currents ( İm

1 ∼ İm
n ),

which is formulated as the following error function:

F(Z) =

√
1/ns ∑ns

s=1 ∑n
i=1

(
| İm

i,s − İc
i,s(Z) | / | İm

i,s |
)2

(2)

where ns is the number of samples. The value of this function reflects the accuracy of the optimized
model in each sliding time window, which is frequently used as the objective function for parameter
identification [31–33]. Given V̇m, İc

i,s(Z) is calculated based on the current solution Z in accordance
with the circuit shown in Figure 1b.

3.3. Reward Calculation

Once an agent relocates within its own dimension, it obtains a signal indicating whether the area
load model with the current parameters is more accurate than the model with the previous parameters.
Based on a combined evaluation of the current locations of all agents, Zk+1, a reward or punishment
signal is generated according to the following rule:

R =

{
1 if F(Zk+1) ≤ F(Zbest)

−1 otherwise
(3)

where Zbest is currently the best solution that has been found based on the same samples, and this
signal is then used in the learning process to update the value function. A positive signal will increase
the value of the current action, and vice versa, as expressed in (4) and (5).
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3.4. Value Function Update

3.4.1. Decentralized Strategy

The ERL algorithm uses a decentralized strategy [34] to update the value functions. The value
function of the j-th action taken by the i-th agent is updated as follows:

Qk+1(i, j) = (1− α)Qk(i, j) + α

(
R + γ max

j
Qk(i, j)

)
(i = 1, 2, · · · , N and j = 1, 2, · · · , Di)

(4)

where α is the learning rate and γ is the discount factor. In this decentralized strategy, agent i
accumulates its own value functions without knowledge of the actions taken by other agents.

The value functions considered in the ERL algorithm are illustrated in Table 1. When agent
i takes action j (j ∈ Ai), the element Q(i, j) in row i and column j is updated. Agents take turns
updating elements in their own rows. The values of all elements in the table are initialized as zero.
Therefore, in each row, given proper α and γ values, the values of the value functions that correspond
to more favorable actions are larger. In turn, these favorable actions will be selected more frequently.
Note that despite adopting a decentralized update strategy, the ERL algorithm does not optimize the
model parameters independently, since the reward is determined based on the values of all parameters.

Table 1. Q-table used in the decentralized strategy.

Agent
Action 1 2 · · · Di

(i = 1, 2, · · · , N)
1 Q(1, 1) Q(1, 2) · · · Q(1, D1)
2 Q(2, 1) Q(2, 2) · · · Q(2, D2)
...

...
...

. . .
...

N Q(N, 1) Q(N, 2) · · · Q(N, DN)

3.4.2. Adaptive Learning Rates

The ERL algorithm employs adaptive learning rates [29]. Consequently, the update rule for the
value function of the j-th action taken by the i-th agent is rewritten as follows:

δ(i) = R + γ max
j
Qk(i, j)−Qk(i, j) (5)

Qk+1(i, j) =

{
Qk(i, j) + αδ(i) if δ(i) ≥ 0
Qk(i, j) + βδ(i) otherwise

(6)

where α and β are the learning rates for increasing and decreasing the value function, respectively,
and 1 > α > β > 0. When the increment δ(i) is positive, the estimated joint solution is currently the
best. Thus, all agents have taken favorable actions that should be encouraged. By contrast, when δ(i)
is negative, all agents have taken potentially adverse actions. In this case, it is difficult to determine
whether the current action should be punished, so a low learning rate is suitable. If not, a high
learning rate may decrease the probability of selecting this favorable action, preventing the model
parameter optimized by this agent from reaching its optimal value. Considering these two cases,
adaptive learning rates are utilized for updating the value function of the current action. A high
learning rate α can increase the value of a favorable action, thereby enhancing its possibility of being
selected. Meanwhile, when an adverse solution occurs (when δ(i) < 0), a relatively low learning rate β

is suitable for imposing only a slight punishment for the current action.
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3.4.3. Parallel Tables

The measurement values are influenced by the load rate of the area load, which is defined as
the ratio of the current load demand to the maximal load demand of the area load. In practice,
the load demand or load rate is typically varying in time, as in the consumption profiles presented in
paper [2]. Figure 3 shows the profile for the summer residential class, where the vertical coordinate
represents the load rate. Under different load rates, the area load model requires different parameters.
Therefore, as the load rate varies dramatically throughout the day, the favorable actions of agents
should also change accordingly.

The ERL algorithm uses multiple tables of value functions to assign high values to different
actions that are favorable under different load rates. For example, in Figure 3, the load rate values
are evenly partitioned into several intervals, with the partition points denoted by P1, P2 and P3.
Accordingly, the same number ofQ-tables is utilized to store the value functions corresponding to each
load rate interval. The ERL algorithm identifies the interval in which the current load rate of the load
area network lies and then updates the value functions in the corresponding table. We suggest that the
number of intervals should be no more than three; otherwise, the tables cannot be fully explored.
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Time (h)

Lo
ad

 R
at

e Table 1

Table 2

Table 3

Value Functions
P

1

P
3

P
2

I−1

I−2

I−3

Figure 3. Mapping from intervals to parallel tables.

3.5. Action Selection

Each agent selects its action based on the values in its row of theQ-table. More specifically, starting
from the j-th element of the i-th row in Table 1, agent i can move either leftwards or rightwards to
select the next action on the left or right path, respectively. Each path has a path value Ll(i, j) (l = 1, 2),
which is used to estimate the potential to find a better one-dimensional solution along that path.
The selection probabilities for the paths, p1(l) (l = 1, 2), are determined by the path values. Along the
selected path, agent i then chooses its next action from among the g adjacent actions according to their
action probabilities, p2(h) (h = 1, 2, · · · , g). The formulations of the path values, path probabilities
and action probabilities can be found in [27].

4. Case Studies

In this section, three simulation cases are presented to demonstrate the advantages of the
ERL algorithm in comparison with the LS and FORL algorithms. Subsequently, the accuracy of
the optimized models is examined in non-base scenarios. The presented analyses are summarized
in Table 2.

Table 2. Summary of the analyses.

Section Analyses

4.1.1 A single ZIP load with stepwise changes
4.1.2 A time-variant Ward equivalent model in the IEEE 57-bus power system
4.1.3 A time-variant Ward equivalent model in a real 1209-bus power system

4.2.1 Accuracy verification for the ERL algorithm
4.2.2 Accuracy comparison among the ERL, FORL and LS algorithms
4.2.3 Accuracy comparison between the Ward equivalent model and the model from [35]
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4.1. Online Tracking of Area Load Parameters

The first case, described in Section 4.1.1, involves a single ZIP load and is investigated to examine
the performance of the ERL algorithm when tracking load coefficients exhibiting stepwise changes.
In the next case, described in Section 4.1.2, the algorithms are utilized to track the time-varying
parameters of the Ward equivalent model presented in Figure 1b in order to demonstrate the continuous
optimization capability of the ERL algorithm in a time-varying system. Since the actual parameters of
the model are unknown, the objective function values obtained by the algorithms are presented as
indicators of the accuracy of the optimized models. A real 1209-bus power system from China is then
employed to examine the proposed modeling approach, and the case is described in Section 4.1.3.

4.1.1. Single ZIP Load

This case demonstrates the performance of the ERL algorithm on a single ZIP load connected to a
load bus. Time-varying voltage signals are imposed on the load bus, and current measurements are
collected at the load bus. The ERL, FORL and LS algorithms are used to optimize the coefficients of
the ZIP load in accordance with the real-time voltage measurements. As is done in [11], the initial
values in the current time window are set to the optimal values for the last time window in the LS
algorithm. The parameters of the ERL algorithm are set as follows: Di = 10 (i = 1, 2, · · · , N), α = 0.5,
β = 0.1 and γ = 0.9. The value of Di is determined by referring to [27], and the values of α, β and γ are
suggested in [29]. The parameters of the FORL algorithm are set equal to those in [27]. The sampling
rate of the synchronized PMUs is 1 Hz. The ERL and FORL algorithms both perform 200 objective
function evaluations at a frequency of 1 Hz using the measurements from the most recent ten-second
time window. The LS algorithm uses the same time window and operates at the same frequency.
The total simulation period is 120 s. It is assumed that the load rates of the ZIP load for the periods
corresponding to 0∼40 s, 40∼80 s and 80∼120 s are 0.5, 0.75 and 1.0, respectively. The initial values for
the three algorithms are all set to one.

Figure 4 shows the coefficients obtained by the ERL, FORL and LS algorithms and the actual values
of the load coefficients. In all figures, the ERL and FORL algorithms both find the initial coefficients
successfully. The coefficients obtained by the ERL algorithm are consistent with the actual values at
each time point, except for the few immediately following the transitions at 0 s, 40 s and 80 s. When
the true values undergo a stepwise change, the output of the ERL algorithm moves from the previous
optima to the new optima after a few time points. By contrast, the FORL algorithm misses the actual
values after 40 s. Compared with the FORL algorithm, the ERL algorithm exhibits an advantage due to
its use of parallel tables for different load rate conditions, which allow optimal solutions for different
load rates to be recorded simultaneously. Regarding the LS algorithm, despite the assignment of initial
values for each time window, it cannot find the actual values of the coefficients under time-varying
operating conditions.

Figure 5 shows the objective function values obtained by the three algorithms, which indicate the
accuracy of the optimized coefficients. The results in this figure are consistent with those in Figure 4.
The ERL algorithm exhibits high accuracy except for a few time points after each stepwise change,
whereas the FORL algorithm cannot find the necessary optima to achieve high accuracy after the
stepwise change at 40 s. The accuracy of the LS algorithm is much lower than that of the ERL algorithm
throughout the simulation period. Therefore, the ERL algorithm outperforms both the FORL and LS
algorithms in tracking stepwise changes in the coefficients of a ZIP load.
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Figure 4. Coefficients for the single ZIP load. (a) Coefficients of active power; (b) coefficients of
reactive power.
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Figure 5. Objective function values obtained by the three algorithms.

4.1.2. Ward Equivalent Model with Multiple Boundary Buses

Figure 6 depicts the weekly load rate profile of the area load in the 57-bus power system,
from which it can be seen that the daily load profiles over a period of a week are essentially the
same except in their mean values. The daily peak loads from Monday to Sunday can be found in [36].
As shown in the figure, the load rate varies in the range of [0.5, 1.0], which can be evenly divided into
three intervals, I-1 ([0.5, 0.66)), I-2 ([0.66, 0.83)) and I-3 ([0.83, 1.0]). It is assumed that each bus load in
the power supply network varies proportionally to the load rate profile shown in Figure 6.

The ERL, FORL and LS algorithms are each employed to identify the parameters of the Ward
equivalent model. The sampling rate of the PMUs is 1 Hz, and the simulation period is seven days.
Since there are 24 parameters to be identified, a sliding time window of 50 s is used. The susceptances
of real transmission lines are inductive; therefore, the bi,j values (i, j = 1, 2, 3; i 6= j) should be negative.
Thus, the initial values of the load coefficients and line conductances in the equivalent load model are
set to one, whereas the line susceptances are set to −1. As an equivalent model of passive networks,
the equivalent loads at the boundary buses are constrained to take positive values. The parameters of
the algorithms are set the same as in the previous case.
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Figure 6. Weekly load profile of the area load in the 57-bus power system.

Figure 7 shows the error function values generated by the three algorithms. For the ERL algorithm,
F(Z) varies in the range of (10−8, 10−4), whereas it varies in the range of (10−2, 10−6) for the FORL
algorithm. The difference in performance between these two algorithms can be attributed to the
improvements to the ERL algorithm mentioned in Section 3.1. First, the agents in the ERL algorithm
are able to mutually cooperate and coordinate towards a common goal by virtue of their adaptive
learning rates. By contrast, the agents in the FORL algorithm lack the ability to coordinate with each
other due to their fixed learning rate. Second, the agents in the ERL algorithm accumulate separate
value functions corresponding to the three different load rate intervals. Therefore, they have access
to various solutions that are effective under different load rates. In the case of the FORL algorithm,
only one table of value functions is used to store the search experience gained when operating in all
load rate intervals. As mentioned in Section 3, the optimal parameters are influenced by the load
rate. It is clear in Figure 6 that the load rates on the sixth and seventh days are quite different from
those on the first five days. The initial values set in the LS algorithm may be close to the optima of the
model parameters corresponding to the last two days, but far from the optima for the first five days.
Consequently, the LS algorithm falls into local optima during the first five days and cannot find
effective solutions to the model until the beginning of the sixth day. We can conclude from this
observation that the LS algorithm cannot avoid being influenced by the chosen initial values despite
the relevant improvements. Thus, the ERL algorithm outperforms the FORL algorithm in terms of
modeling accuracy and has an advantage over the LS algorithm in its ability to escape from local optima.
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Figure 7. Error function values over seven days on the IEEE 57-bus power system.

4.1.3. Ward Equivalent Model of a Real Power System

In this case, a real 1209-bus power system operating in China is considered, and a portion of the
system with a voltage level below 110 kV is replaced with a Ward equivalent model. A total of 56 buses
are to be reduced, and the Ward equivalent model involves 6 boundary buses and 66 parameters to
be identified. Under the same sampling rate and the same set of algorithms as in the previous case,
the ERL, FORL and LS algorithms are each employed to identify the parameters of the model. Suppose
that each bus load in the 1209-bus power system varies proportionally to the load rate profile shown
in Figure 6.
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Figure 8 shows the error function values generated by the three algorithms for the real power
system. For the ERL algorithm, F(Z) varies in the range of (10−6, 10−2), whereas it varies in the ranges
of (10−4, 10−2) and (100, 102) for the FORL and LS algorithms, respectively. Compared with the results
for the IEEE 57-bus power system, the models optimized by the three algorithms in this case are less
accurate because the reduced network contains more buses and branches and the model involves more
parameters to be identified. Consistent with the conclusions drawn in the previous case, the results
obtained on the real power system also indicate that the ERL algorithm outperforms the FORL and LS
algorithms in terms of accuracy and the ability to avoid local optima.

0 1 2 3 4 5 6 7
10

−8
10

−6
10

−4
10

−2
10

0
10

2

F
(Z

)

Day

 

 

ERL FORL LS

Figure 8. Error function values over seven days on the 1209-bus power system.

4.2. Accuracy in Non-Base Scenarios

In this analysis, the Ward equivalent model is connected to the power supply network in place of
the original area load. By comparing the power flow results for the original and equivalent systems,
the accuracy of the Ward equivalent model is tested in the following non-base scenarios.

• Scenario 1: the voltage magnitude of Generator 2 (G2), VG2, varies with a deviation ∆VG2 ranging
from −10% to +10% of its nominal value.

• Scenario 2: the active power output of G12, PG12, varies with a deviation ∆PG12 ranging from
−10% to +10% of its nominal value.

• Scenario 3: the apparent power of the total load in the power supply network, SLoad, varies with a
deviation ∆SLoad ranging from −10% to +10% of its nominal value.

Moreover, the following two metrics are employed to evaluate the accuracy of the model under
system disturbances: the relative magnitude of the error between the complex power injected into the
original area load and the area load model (ES) and the relative magnitude of the error between the
voltages at the boundary buses in the original and equivalent systems (EV). These two metrics are
formulated below: 

ES = max
i

(
|
·

Vi
∗
Ii −

·
Ve

i

∗
Ie
i |/|

·
Vi
∗
Ii|
)
(i = 1, 2, · · · , n)

EV = max
i

(
|
·

Vi −
·

Ve
i |/|

·
Vi|
)
(i = 1, 2, · · · , n)

(7)

where
·

Vi and
∗
Ii are the voltage phasor and the conjugate of the current phasor, respectively, measured at

the i-th boundary bus in the original power system; voltage and current phasors with a superscript of
‘e’ denote the corresponding quantities calculated for the equivalent system; and n is the number of
boundary buses.

4.2.1. Accuracy Verification for the ERL Algorithm

Figure 9 shows the test results obtained using the ERL algorithm in all scenarios during the
seventh day on the IEEE 57-bus power system. In all plots, the errors increase when VG2, PG12 and
SLoad deviate from their nominal values. In Scenarios 1 and 2, as seen from Figure 9a to Figure 9d,
all relative errors are below 0.1%, and EV is no more than 0.01%. These results indicate that the model
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remains accurate when the voltage magnitude or active power output of a generator varies around its
nominal value. In Scenario 3, the load changes result in large variations of the power flow distribution,
so the values of ES and EV are both larger than in the other scenarios. Nevertheless, the largest error
in Figure 9e is only approximately 1%. Therefore, the test results presented in Figure 9 demonstrate
that the proposed Ward equivalent model is able to accurately represent the area load in the above
scenarios and that the ERL algorithm can also accurately track the parameters in an online manner.
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Figure 9. Relative errors of the Ward equivalent model as obtained using the ERL algorithm in the
different scenarios. (a) ES in Scenario 1; (b) EV in Scenario 1; (c) ES in Scenario 2; (d) EV in Scenario 2;
(e) ES in Scenario 3; (f) EV in Scenario 3.

4.2.2. Accuracy Comparison with Other Algorithms

The tracking results obtained using the ERL, FORL and LS algorithms for the Ward equivalent
model at 02:23 on the fifth day in the three scenarios above are shown in Figure 10. The two types of
errors are distinguished by different marker shapes, and the algorithms are distinguished by different
line types. In this study, ∆VG2, ∆PG12 and ∆SLoad vary from −10% to +10% of the corresponding
nominal values. In Figure 10a,b, the ES and EV values obtained using the ERL algorithm are much
lower than those obtained using the FORL and LS algorithms. More specifically, in scenarios 1 and 2,
the ERL algorithm achieves values of ES that are below 1% and values of EV that are below 0.01%.
In Scenario 3, when all loads in the power supply network vary by 10%, the ES values obtained by
the ERL algorithm are no greater than 10%. In all three scenarios, the models trained by both the ERL
and FORL algorithms are more accurate when the total load deviation is within −2% to 2% of the
nominal value. By contrast, for the LS algorithm, ES remains in the range of (10%, 100%) in all three
scenarios, indicating that this algorithm always fails to find effective parameters for the model at this
time instant. Therefore, the area load model optimized using the ERL algorithm is more accurate than
those optimized using the other two algorithms in all three scenarios.
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Figure 10. Relative errors produced by the three algorithms in the different scenarios.

To further examine the stability of the algorithms, two statistically significant metrics are employed
to assess the average errors when the optimized models are subjected to perturbations:

ES = 1/n∆

n∆

∑
k=1

ES,k

EV = 1/n∆

n∆

∑
k=1

EV,k

(8)

where n∆ is the number of samples of system perturbations ∆VG2, ∆PG12 and ∆SLoad. Intuitively,
calculating ES means compressing the 3-D plot shown in Figure 9a along the ∆VG2 axis; then, at each
time instant, ES is the average of the values of ES obtained as ∆VG2 varies. EV can similarly be
calculated by averaging the values of EV. We present the results for ES and EV throughout the 5th
day in Figures 11 and 12, respectively. According to these figures, the ERL algorithm is much more
accurate than the FORL and LS algorithms under all three scenarios on this day. Moreover, the average
errors of the FORL algorithm can be quite large at several specific time instants, which indicates that
the stability of the FORL algorithm is not satisfactory.
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Figure 11. Mean complex power errors produced by the three algorithms in the different scenarios.
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Figure 12. Mean voltage errors produced by the three algorithms in the different scenarios.

4.2.3. Accuracy Comparison with Another Model

As a basis for comparison in this analysis, we consider the model for the area load in the 57-bus
power system that is presented in [35]; this model is composed of a fictitious load bus and fictitious
branches. The parameters of the model from [35] are tracked in an online manner by the ERL algorithm
under the same load profile. Figure 13 presents the test results at the same time instant considered
in Section 4.2.2. In this figure, the superscript ‘Ward’ represents the Ward equivalent model, and the
superscript ‘Model2’ represents the model presented in [35]. The two types of errors are distinguished
by different marker shapes. Figure 13a,b show that in Scenarios 1 and 2, the ES and EV values for the
Ward equivalent model are much lower than those for the model from [35] when ∆VG2 and ∆PG12,
respectively, vary from −10% to 10% of the corresponding nominal value. In Scenario 3, the two
models exhibit similar performance, but the ES and EV values for the Ward equivalent model are much
lower than those for the model from [35] when ∆SLoad is within −2% to 2% of the nominal SLoad value.
According to these results, the Ward-equivalence-based area load model proposed in this paper is
more accurate than the model previously proposed in [35].
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Figure 13. Relative errors produced by the two models in the different scenarios.

As in the previous comparison, the average errors ES and EV of the two models during the 5th
day are presented in Figures 14 and 15, respectively. We can conclude from these figures that the
accuracy of both models is stable under system perturbations. However, the Ward equivalent model is
much more accurate than the model previously proposed in [35] on this day.
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Figure 14. Mean complex power errors produced by the two models in the different scenarios.
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Figure 15. Mean voltage errors produced by the two models in the different scenarios.

5. Conclusions

This paper proposes an area load modelling approach for simplifying the topological structure of
power networks and introduces an ERL algorithm for the online tracking of the model parameters.
Unlike the models utilized in previous works, the proposed Ward equivalent area load model
involves multiple boundary buses and explicitly considers the static load characteristics of the voltage.
According to the results obtained for three simulation cases, the proposed ERL algorithm is capable
of tracking both step-changing and time-varying parameters in an online manner and can improve
the accuracy of the proposed Ward equivalent model compared with the FORL and LS algorithms.
Therefore, the online modelling approach presented in this work can serve as a foundation for the
real-time dispatch and control of power systems.
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