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Abstract: Motivated by recent developments in batch Reinforcement Learning (RL), this paper
contributes to the application of batch RL in energy management in microgrids. We tackle
the challenge of finding a closed-loop control policy to optimally schedule the operation of a storage
device, in order to maximize self-consumption of local photovoltaic production in a microgrid.
In this work, the fitted Q-iteration algorithm, a standard batch RL technique, is used by an RL agent
to construct a control policy. The proposed method is data-driven and uses a state-action value
function to find an optimal scheduling plan for a battery. The battery’s charge and discharge
efficiencies, and the nonlinearity in the microgrid due to the inverter’s efficiency are taken
into account. The proposed approach has been tested by simulation in a residential setting using data
from Belgian residential consumers. The developed framework is benchmarked with a model-based
technique, and the simulation results show a performance gap of 19%. The simulation results
provide insight for developing optimal policies in more realistically-scaled and interconnected
microgrids and for including uncertainties in generation and consumption for which white-box
models become inaccurate and/or infeasible.

Keywords: control policy; fitted-Q iteration; microgrids; reinforcement learning

1. Introduction

The liberalization of the electricity market and environmental concerns have introduced new
challenges in the design and operation of power grids [1]. As such, climate and energy packages
adopted worldwide have resulted in clear objectives for the energy sector. For example, the European
Union “climate and energy package” has set ambitious sustainability targets with the aim of halving
greenhouse gas emissions to mitigate climate change by 2050 compared to 1990 [2], resulting in heavy
investments in Renewable Energy Sources (RES) and power grid infrastructure. This has led
to the smart grid paradigm, with technological advancement towards a green, intelligent and more
efficient power grid. Microgrids can be a good base for the study and implementation of smart grid
solutions [3–5]. Microgrids are electrical systems consisting of loads and distributed energy resources
(like energy storage facilities and RES) that can operate in parallel with or disconnected from the main
utility grid [6]. It is expected that the future power grid will be a combination of multiple microgrids
collaborating with each other [7,8].

Over the years, the decreasing costs of Photovoltaic (PV) systems have led to the development
of microgrids powered by PV systems [8]. However, one of the major challenges in operating microgrids
powered by RES is to find energy management strategies, capable of handling uncertainties related
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to electricity production from RES and consumption. Recent technological innovations are producing
batteries with improved storage capacities to bridge this gap [9]. The operation mode of energy storage
devices has a major influence on the dynamics of microgrids. Thus, to ensure reliability and stability
within the microgrid, there is a need to develop smart control strategies for energy storage devices
in microgrids.

The traditional control paradigm is model-based, requiring an explicit model of the microgrid,
a forecasting technique and an optimizer or a solver. Developing a model-based controller requires
the selection and estimation of precise models and model parameters. In the microgrid setting,
obtaining these models and parameters can be challenged by the heterogeneous and dynamic nature
of electricity usage patterns and the intermittent nature of RES [10]. Thus, different electricity
consumers might lead to completely different model parameters and perhaps different models.
The implementation of model-based controllers on a large-scale requires the construction of appropriate
models and corresponding model parameters and, as such, relies on expert knowledge. These factors
mean that model-based solutions are not cost effective. Hence, model-based control approaches
fail to provide effective solutions to achieve the desired control while minimizing implementation
costs. One of the most successful and popular model-based control approaches is model predictive
control [11]. Model predictive control was originally designed to solve open-loop deterministic
optimal control problems in a receding horizon [12]. Despite the above-mentioned challenges,
the works of Bifaretti et al. [13] and Prodan et al. [14] present a successful implementation of model
predictive control to maximize self-consumption of locally-produced renewable energy in a microgrid.
Another type of model-based control formulates the control problem as a Markov Decision Process
(MDP) and solves the underlying optimization problem using dynamic programming techniques [15].
In the work of Costa et al. [16], a dynamic programming approach is used to solve a microgrid energy
resource scheduling problem.

Unlike model-based control approaches, Reinforcement Learning (RL) techniques [17] are
model-free and do not require system identification. Reinforcement learning techniques were
designed to construct closed-loop policies for stochastic optimal control problems from a set of
trajectories obtained from interactions with the real environment or from simulations. Hence, RL
techniques are data-driven. With the development of smart grids, data on consumption patterns
and electricity generation will be readily available making data-driven techniques relevant. This
data availability together with the complex and stochastic nature of smart electricity grids makes
data-driven methods more relevant to consider in smart grid control. Developing models for such
large complex systems is difficult and costly, whereas the system model and dynamics could easily be
learned from the readily available data. Ernst et al. [12] suggest that RL and model predictive control
can complement each other to achieve robust and accurate optimal control. Q-learning, a temporal
difference method and a popular on-line RL algorithm, has been applied in energy management in
microgrids [3,18,19]. A bias-corrected Q-learning algorithm for efficient operation of energy storage
devices during variations in electricity spot prices is proposed in the work of Lee et al. [20]. Kuznetsova
et al. [18] proposed a framework for multi-criteria decision-making for energy storage management in
a microgrid using Q-learning.

Despite being a popular RL method, Q-learning throws away the observations after every update,
leading to inefficient data usage. This results in a slow convergence rate of the Q-learning algorithm
to an optimal policy [21]; more observations are needed to construct a control policy. In batch RL
techniques (off-line RL) [22,23], a controller estimates a control policy based on a batch of its past
experiences. The ability of batch RL to reuse their past experiences makes them converge faster
than online RL methods like Q-learning and SARSA. Batch RL has been used for demand response
in [21,24–26]. Vandael et al. [27] used a batch RL technique to find a day-ahead consumption plan
of a cluster of electric vehicles. Furthermore, in the work of De Somer et al. [28], batch RL is used to
schedule the heating cycles of a domestic water heater.
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Motivated by the success in batch RL, this paper contributes to the application of batch RL
in energy management in microgrids. As such, an intelligent decision-maker (agent) using a batch
RL technique is designed in this framework, aiming to minimize the amount of electricity bought or
sold from or to the grid. This RL agent develops an optimal battery scheduling strategy that controls
the operation mode of the battery in a continuously changing environment. Kuznetsova et al. [18]
addressed this problem using Q-learning, while Francois et al. [29] used deep reinforcement learning.
The additional contribution of this paper is the proposition of a model-free batch RL approach that
takes into account the stochastic nature of the problem and the nonlinearity in the system. This work
builds on the existing literature on the fitted Q-iteration of a batch RL algorithm [22,23,30,31].

The rest of the paper is structured as follows. Section 2 presents an overview of the microgrid
architecture in the context of this paper. Section 3 presents a detailed formulation of the operational
planning of the storage device as a Markov decision process. The application of batch RL for energy
management in microgrids is presented in Section 4. Section 5 presents and discusses the simulation
results based on data from Belgian residential consumers, and Section 6 summarizes the work
with the conclusion and discusses the future directions of the research.

2. Microgrid Model

Microgrids predominantly powered by RES have led to a high penetration of RES in the power
grid. However, this high penetration is becoming a challenge for distribution system operators.
Voltage and frequency fluctuations in the low voltage grid pose a significant technical challenge [32].
In the context of this paper, these technical constraints of the main utility grid and the microgrid
are not taken into account. The main focus consists of the operational planning of storage devices
in a grid-connected microgrid.

The microgrid considered in this work consists of a PV system, a battery pack as the energy storage
device, residential load, inverters and a transformer connecting the microgrid to the local utility grid.
The inverters convert the Direct Current (DC) from the battery and PV system to Alternating Current
(AC) for the load. Information on electricity prices is available to microgrid users due to the microgrid’s
connection to the local utility grid. The residential load can be met by using the energy from the local
PV system or by purchasing energy from the local utility grid. Excess energy produced during low
energy demand or high production can be stored in the battery and reused during peak demand or can
be sold to the local utility grid. The described microgrid architecture is shown in Figure 1.

Local 
utility grid

G

Storage facility

Residential load

Renewable 
energy source

Transformer

Microgrid
Point of common 

coupling

Figure 1. Microgrid architecture including DC/AC converters, to interface storage and generation
to the load and the local utility grid.
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2.1. Battery Model

The battery model represents the dynamics of the battery regarding its mode of operation (battery
idle, charging and discharging). The model provides information on the energy level of the battery
at every time step:

Et+1 = Et + ηPcharge∆t −
Pdischarge∆t

η
, (1)

where t = current timestamp, Pcharge = charge power, Pdischarge = discharge power,
η = charge/discharge efficiency, ∆t = length of a control period or the time step and Et = the battery
energy level at the beginning of timestamp t. The battery is subject to the following constraints:

• Capacity constraint: The battery cannot be charged above Emax or discharged below Emin,
where Emax = battery capacity and Emin = minimum battery energy level:

Emin ≤ E ≤ Emax. (2)

• Charge/discharge constraint: The battery cannot be charged and discharged simultaneously.
Let ac and ad represent charge and discharge actions respectively, where the actions are binary
(zero or one). The charge/discharge constraint is represented as follows:

acad = 0. (3)

2.2. Inverter Model

Inverters for power conversion are one of the major components in PV systems and microgrids.
They are responsible for converting DC output from solar cells and storage devices into AC.
Unlike Kuznetsova et al. [18] and Francois et al. [29], this work considers the influence of inverter
efficiency on the system’s performance. The inverter efficiency is dependent on the input power
and the rated capacity of the inverter (Figure 2). This relationship introduces a nonlinearity
into the system. To make use of this information, it is necessary to integrate the inverter model
into the system and consider its influence on the control policy and, therefore, the system performance.
The inverter model considered in this work is extracted from the work of Driesse et al. [33].
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Figure 2. Efficiency curve of a 4 kW inverter extracted from [33].

3. Problem Formulation

This paper considers an RL technique to tackle a sequential decision-making problem involving
the operational planning of a battery in the previously-defined microgrid. Depending on the load,
the battery’s State of Charge (SoC), the efficiency of the inverter and the electricity generated by the PV,
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the RL agent decides the best operational mode for the battery: stay idle, charge or discharge the battery.
The agent’s goal is to minimize the electricity cost and, therefore, maximize self-consumption
of the locally-produced electricity. The operational planning of the microgrid is formulated
as a sequential decision-making problem using an MDP.

Reinforcement learning problems can be defined using an MDP. The MDP is defined by its
d-dimensional state space S ⊂ IRd, action space A ⊂ IR, transition function f and cost function ρ. This
work considers a deterministic MDP with a finite optimization horizon of T time steps. At each time
step k, as a consequence of a control action, ak ∈ A, the system evolves from state sk ∈ S to sk+1 ∈ S
according to f .

sk+1 = f (sk, ak), ∀k ∈ {0, 1, . . . , T − 1}. (4)

Associated with each state transition is a cost signal ck ∈ IR according to Equation (5).

ck = ρ(sk, ak), ∀k ∈ {0, 1, . . . , T − 1}. (5)

In RL problems, the goal is to find an optimal policy, h∗, that minimizes the sum of costs
or penalties over the entire optimization horizon, Equation (6).

Rh(s0) =
T−1

∑
k=0

(γkρ(sk, h(sk))), (6)

where γ is the discount factor, γ ∈ [0, 1], which takes into account the uncertainty about the future.
A policy h is a mapping from a given state to the action that has to be taken in that state, h : S→ A.

A policy is characterized by its state-action value function (Q-function). The Q-function is an estimate of
the aggregated cost obtained starting from a given state s, applying an action a and, then, subsequently
always following the policy h, Qh : S ×A → IR,

Qh(s, a) = ρ(s, a) + γRh( f (s, a)). (7)

The optimal Q-function, Q∗, is defined as:

Q∗(s, a) = min
h

Qh(s, a) (8)

Using Q∗, the optimal policy h∗ is calculated as shown in Equation (9) by choosing actions that
minimize the expected cost in any given state.

h∗(s) = arg min
∀a∈A

Q∗(s, a), (9)

with Q∗ satisfying the Bellman optimality equation [30]:

Q∗(s, a) = ρ(s, u) + min
a′∈A

Q∗( f (s, a), a′). (10)

Inspired by [6] and following the notation of its authors, S , A and ρ are described below.

3.1. State Space (S)

The state space S consists of a timing component, St, a non-controllable exogenous component,
Sx, and a controllable component, Sc.

S = St × Sx × Sc (11)

(i) Timing feature: The timing component, St, is date- and time-dependent and contains the
microgrid’s state information related to the time period. Using this information, the learning
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agent can capture some information on the dynamics of the microgrid relevant for the learning
process. The timing feature is defined as follows:

St = Sd
t × Sq

t , Sd
t ⊆ {0, . . . , 6}, Sq

t ⊆ {0, . . . , 95}, (12)

where sq
t ∈ Sq

t represents the quarter-hour of the day and sd
t ∈ Sd

t the day
of the week. The timing component allows the learning agent to acquire information
such as the consumption pattern of residential consumers and the PV production profile.
Most residential consumers and PV systems tend to follow a repetitive daily consumption
and production pattern respectively.

(ii) Controllable feature: The controllable component Sc contains state information related
to system quantities that can be measured locally and that are influenced by the control
actions. In this case, the battery SoC is the controllable component: ∀sc ∈ Sc, sc = {SoC}.
In the context of this paper, the SoC is uniformly sampled to 25 bins of equal length in the
interval [0,1]. The SoC is defined as:

SoC =
E

Emax
. (13)

(iii) Exogenous feature: The exogenous feature, Sx, contains the observable exogenous information
that has an impact on the system dynamics and the cost function, but cannot be influenced
by the control actions. This feature is time- and weather-dependent. This work assumes
the availability of a deterministic forecast of the exogenous state information.

Sx = Sl
x × Spv

x , (14)

where ∀sx ∈ Sx, sx = {load, PV}, load ∈ Sl
x represents the residential load and PV ∈ Spv

x
the information on the PV generation.

Thus, the microgrid’s state is defined by the vector:

sk = (sd, sq, SoC, load, PV) ∈ S , ∀k ∈ {0, 1, . . . , T − 1}. (15)

3.2. Action Space (A)

At each time step, the possible actions the RL agent can take are to either leave the battery idle,
charge the battery or discharge the battery depending on the state of the microgrid. In this regard,
this work considers an action space consisting of three options, i.e., a ∈ [0, 1, 2], where:

• a = 0: battery idle, i.e., covering all the electricity demand by using energy produced by the PV
system and/or purchasing from the grid.

• a = 1: charging the battery using all power generated by the PV while purchasing all energy
demanded by the consumer from the local utility grid.

• a = 2: cover part or all of the energy demand by discharging the battery; buy electricity
from the grid if PV generated and discharged energy from the battery are not sufficient.

3.3. Backup Controller

This paper considers that the battery is equipped with an overrule mechanism that ensures
that the battery constraints are not violated. The backup controller is a built-in system that can
induce charging or discharging of the battery depending on the current SoC and a predefined logic.
The backup controller acts as a filter for every control action resulting from a policy h. At every
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time step k, the function b representing the backup controller maps the suggested control action ak
to a physical control action aph, depending on the SoC of the battery.

aph = b(SoC, ak, θ), ∀k ∈ {0, 1, . . . , T − 1}, (16)

with b(.) defined by:

b(SoC, ak, θ) =


1 if SoC < SoCmin

2 if SoC > SoCmax

ak if SoCmin ≤ SoC ≥ SoCmax.

(17)

For example, if the SoC of the battery increases to greater than SoCmax, the backup controller will
request for the discharge of the battery independent of the suggested control action, resulting in aph

needed to calculate the cost. The settings of the backup controller are unknown to the learning agent.
However, the agent can measure the result of the physical action from the cost or penalty it receives.

3.4. Cost Function

The objective of this work is to maximize the self-consumption of the electricity produced
by the PV system, thus, minimizing the amount of electricity bought from or sold to the grid. The cost
c given by the cost function, ρ, when the system is in state s and takes action a, is defined as:

ρ(s, a) = λimpPimp + λinjPinj, (18)

where λimp and λinj represent the price of buying or selling a kilowatt of electricity during a 15-min
period ( kWh

4 ) from or to the grid, respectively, and Pimp and Pinj represent the amount of power
in kilowatts imported from or injected to the the grid respectively. The values of Pimp and Pinj
are a consequence of the physical action, aph. Pinj is defined as the inverter output power minus
the load, Pinj = inverter output power− load.

3.5. Reinforcement Learning

The availability of system dynamics in the form of transition and cost functions means that
the problem of finding an optimal control policy can be formulated as an MDP [30]. In this work,
we consider that the transition function and the backup controller are unknown to the learning
agent and that they are difficult and costly to obtain in a microgrid setting. As such, a model-free
batch RL approach that builds on existing literature on RL, in particular Fitted Q-iteration (FQI) [22],
is considered.

4. Implementation

This section presents batch reinforcement learning, the fitted-Q iteration algorithm
and the microgrid case study considered in this work. In model-free RL techniques, the learning agent
does not require any prior information of the system. By interacting with the system, the agent collects
new transitions that are added systematically to its batch, thus enriching its batch of experiences.
The building blocks of batch RL are show in Figure 3.

Microgrid Batch
Feature 

extraction

Fitted Q-
iteration

Compute Q-
function

Regressor 
(Extra trees)Features

Online Offline

Backup 
controller

Figure 3. Building blocks of the batch reinforcement learning approach applied in a microgrid setting.
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4.1. Batch Reinforcement Learning

Batch RL is a branch of dynamic programming-based RL [30] and makes more efficient use
of data and, thus, can achieve faster convergence to an optimal control policy compared to online RL
techniques like Q-learning. In batch RL, a fixed batch of data is collected from the system a priori,
and a control policy is learned from this batch of data. The goal of batch RL is to learn the best
control policy from the given training data (batch) and use this policy on the environment. Thus,
at the beginning of a control period, the learning agent uses a batch RL algorithm to construct a control
policy, using a batch of past interactions with the system. In this paper, the proposed RL agent is
applied to optimally schedule the operational mode of a battery in the microgrid described in Section 2.
The observable state information contains input data on the state of the system. Before this information
is sent to the batch RL algorithm, the learning agent can apply feature extraction. This feature extraction
step selects only the state representation parameters necessary for the learning process.

The learning agent constructs a control policy that minimizes electricity cost, thus, since the load
is not flexible in our setting, maximizing self-consumption of the locally-produced energy from the PV
system and increasing the utilization rate of the battery. The solution of this control problem is
a closed-loop control policy that is a function of the current state of the system. At every time step,
a control action for the system is chosen according to Equation (9). This work uses the FQI algorithm
to obtain a closed-loop policy from a batch of four-tuples F containing the state, action, next state and
corresponding cost (Equation (19)), where:

F = {(sl , al , s′l , cl)|l = 0, . . . , F− 1}, (19)

where s′l is the next state and F the number of batches of tuples.

4.2. Fitted Q-Iteration

The FQI is one of the most popular batch RL algorithms. Fitted Q-iteration makes efficient
use of gathered data samples and can be used together with any supervised learning method.
In contrast to standard Q-learning , FQI computes the Q-function offline and makes use of the whole
batch. Algorithm 1 presents an extended FQI algorithm that has been considered in this paper
and in the work of Ruelens et al. [21]. The extension to the standard FQI comes in the form of a next
state containing information on the forecasted uncontrollable exogenous component of the state
space such as the load. This is in contrast with the standard FQI where the next state contains only
past observations of the exogenous component. The algorithm iteratively constructs a training set
(T S) with all state-action pairs (s, a) in F as the input, as well as the targeted values consisting
of the corresponding cost, Equation (18), and the optimal Q-values, Equation (7). The optimal Q-values
are based on approximations of the Q-function from the previous iteration, for the next states and all
actions, mina∈A Q̃(s, a).

Algorithm 1 Fitted Q-iteration with function approximation and forecast of exogenous information [21].

Input: discount factor γ, control period T
1: Generate samples {(sl , al , s′l , cl)|l = {0, . . . , F− 1}}

s̃′l ← (sd, sq, SoC, s′x) observed exogenous component of the state s′x = {s̃l
x, s̃PV

x } is replaced
by its forecast s̃′x

2: Initialize Q̃T to zero for all state-action pairs, Q̃T ← 0
3: For k = T − 1, . . . , 0 do
4: For l = F− 1, . . . , 0 do
5: Qk,l ← cl + mina∈A Q̃k+1(s′l , a)
6: end for
7: use a regression algorithm to build Q̃k from T S = {((sl , al), Qk,l), l = {0, . . . , F− 1}}
8: end for

Output: Q̃∗ = Q̃0
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In this work, a finite optimization horizon of T control periods is considered. The training
set is constructed by iterating backwards over the training period. By considering this technique,
the Q-function contains information about the future costs after one sweep over the training period.
Thus, for the first iteration, k = T− 1, the Q-values in T S correspond to the immediate cost or revenue.
For all other iterations, Q-values are calculated using the Q-function of the previous iteration. For
all elements of the exogenous state space component, the successor state s′x in F is replaced by its
forecast, s̃′x. Thus, the next state contains information on the forecasted exogenous data. In the standard
FQI [22] algorithm, the next state contains past observations of the exogenous data. By replacing
the observed exogenous elements of the next state by their forecasts, the Q-function of the next state
assumes that the exogenous information will follow its forecast, i.e., the Q-value of the next state
becomes biased towards the provided forecast of the uncontrollable exogenous data. It is important to
note that the operational planning of the battery is a continuous process in which the new SoC of the
battery becomes the initial SoC in the next timestamp.

4.3. Regressor

Supervised learning algorithms can be used to build from the training set approximations
of the Q-function, Q̃. Approximations of the Q-function are necessary to cope with the curse
of dimensionality problem encountered when dealing with large or continuous state and/or action
spaces [30]. Several types of function approximation techniques, such as neural network [34] and
least-squares regression [35], can be used together with the FQI algorithm.

As a supervised learning method, this work considers a regression method based on an ensemble
of extremely randomized trees (ExtRa-Trees) [36], to find an approximation Q̃(s, a) of the Q-function.
At every iteration k, a regressor functionRk is constructed and used to build Q̃k−1 in the next iteration.
A detailed overview of extremely randomized trees can be found in Geurts et al. [36]. ExtRa-Trees are
robust (i.e., insignificantly affected by bad data and only in regions where the bad data are found)
and have a fast computation time, which is the reason for their choice in this work.

4.4. Microgrid Case Study

The microgrid in this study is a single household consisting of: a battery of capacity 40 kWh
with efficiency η = 90%. The SoCmin and SoCmax of the battery are 0.2 and 0.9, respectively.
The battery discharge rate is fixed to 2 kW. We assume that the battery can absorb all energy produced
by the PV system. Thus, there are no charge or discharge rate constraints. We consider an inverter of
a capacity of 4 kW converting the DC power from the battery and PV to AC for the residential load
and the grid. The inverter efficiency profile in Section 2.2, Figure 2, is considered. For the load and PV
production profiles, we use data from the LINEAR (Local Intelligent Networks and Energy Active
Regions) project [37]. The reader should note that this work focuses on the operational planning of the
battery in the microgrid, and issues related to the real-time control aspects of the microgrid and the
local utility grid to maintain frequency and voltage quality are out of the scope of this work.

The actions in A = [0, 1, 2] can be represented in binary form with two contacts, S1 and S2 (0 =
open, 1 = closed) for illustration, purposes as shown in Figure 4. This binary representation allows
one to take into account the charge/discharge constraint, Equation (3). The binary representation
of the actions is shown in Figure 4 and Table 1.

In this work, we consider that the battery can only be charged from the PV system as we focus
on reducing the microgrid’s dependency on the external grid. However, in practical scenarios, it is
also possible to charge the battery from the external grid during periods of low electricity prices.
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Figure 4. Energy flows within the microgrid with respect to the control actions.

Table 1. Binary representation of control actions.

Binary Representation Action

00: S1 = 0, S2 = 0 Idle
10: S1 = 1, S2 = 0 Charge
01: S1 = 0, S2 = 1 Discharge
11: S1 = 0, S2 = 1 Not possible due to charge/discharge constraint, Equation (3)

5. Simulation Results and Discussion

This section presents the simulation results from four experiments and evaluates the performance
of the proposed method using the indicators described in Section 5.3. In the first scenario,
fixed electricity prices are considered, where λimp = 5λinj. In the second scenario, the effect of dynamic
electricity pricing on the control policy is investigated. In both scenarios, the battery’s SoC is uniformly
sampled to 25 values in the interval [0,1]. The length of a control period is set to 15 min. The inverter
nonlinearity, load uncertainty, battery constraints and the partial observability of the system form
an important part of the environment, which the RL agent has to learn.

Figure 5 shows an example of the load and PV profiles over an optimization period of one day
(96 quarter-hours) considered. Notice that, whatever the scenario, the agent ensures that the battery
is always almost fully discharged to SoCmin at the end of the control period in order to avoid energy
wastage.
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Figure 5. Load and PV profiles over a period of one day (96 quarter-hours).
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5.1. Scenario 1: Fixed Electricity Prices

This scenario considers fixed electricity pricing and has three experiments. The initial SoC
of the battery is different in each experiment. This is to show that the approach can work for any initial
battery SoC. The agent was trained for a period of one day.

A. Experiment 1
This experiment shows the policy obtained when the elements of the exogenous component
of the state space are not considered, i.e., ∀s ∈ S , s = {sq

t , sd
t , SoC}. A perfect forecast of the load

and PV generation is provided. Simulation results are presented in Figure 6.
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Figure 6. Scenario 1, Experiment 1: Corrected control policy of the agent and SoC trajectory. The yellow
area shows the normalized PV production.

B. Experiment 2
In this experiment, all the elements of the exogenous component of the state space are considered.
∀s ∈ S , s = {sq

t , sd
t , SoC, load, PV}. The load and the PV are discretized to 50 discrete values

between 1.54 kW and 5.23 kW, 0 kW and 8 kW respectively. Figure 7 shows the control policy
and SoC evolution learned by the agent.

Quarter-hours of a day

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

So
C

SoC Minimum SoC Maximum SoC

Discharge

Idle

Charge

Quarter-hours of a day

Control policy

Figure 7. Scenario 1, Experiment 2: Corrected control policy of the agent and SoC trajectory. The yellow
area shows the normalized PV production.

C. Experiment 3
The final experiment in this scenario considers that ∀s ∈ S , s = {sq

t , sd
t , SoC, load}. A disturbance

is added to the perfect load forecast to introduce uncertainty, as illustrated in Figure 8.
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This disturbance is white noise; standard normal distribution, i.e., a normal distribution
with mean, µ = 0, and standard deviation, σ = 1. We choose to introduce a disturbance
in the load because it is common in real life to have uncertainties in the energy usage patterns
of residential consumers. Simulations results can be seen in Figure 9. By learning the time
component of the feature space, the RL agent can learn the PV production profile. A perfect
forecast of the PV generation is provided. The load is uniformly sampled to 50 values between
1.54 kW and 5.23 kW.
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Figure 8. Scenario 1, Experiment 3: Load profile with white noise.
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Figure 9. Scenario 1, Experiment 3: Corrected control policy of the agent and SoC trajectory. The yellow
area shows the normalized PV production.

The solid blue line in Figure 10 presents an example of a control policy learned by the agent
over a period of one day. The control policy represents the best actions that can be taken by the agent
when the microgrid is in a particular state, over the state space. It can be seen from the policy that
the agent discharges the battery during periods of little or no PV production depending on the battery
SoC. During high production, the agent charges the battery, thus building up its reserve. During the first
30 quarter-hours of the day, the agent decides to keep the battery idle. This is because keeping
the battery idle or charging the battery results in the same cost as there is no PV production. Notice that:
(i) The agent sometimes decides to keep the battery idle during high PV production. This is because
the PV produced is matching the demand. This is also because the agent avoids having some energy
left in the battery at the end of the optimization period. Thus, this ensures that the battery is discharged
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to SoCmin at the end of the optimization period. (ii) The agent decides to discharge the battery
even in the presence of enough PV production. This can be explained as due to the influence
of the inverter efficiency. The agent discharges the battery in order to achieve a higher inverter
efficiency. All these decisions are made depending on the features in the state space and values
of the Q-functions over the entire state space for every action.
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Charge

Quarter-hours of a day
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Figure 10. Scenario 1, Experiment 1: Control policy learned by the agent and SoC trajectory. The yellow
area shows the normalized PV production.

The solid blue lines in Figures 6–9 show examples of corrected control policies of the agent;
corrected in the sense that the effect of the backup controller has been incorporated in the policy learned
by the agent. Figure 6 represents the corrected control policy from Experiment 1. The agent requested
to either discharge the battery or to keep the battery idle during the first 30 quarter-hours (Figure 10).
However, due to the SoC of the battery (0.2 = SoCmin), the backup controller corrects this action
by requesting for the battery to be discharged as the capacity constraint, Equation (2), is being violated.
Notice that that sometimes a requested charge action from the backup controller has no effect on the SoC
as there is no PV production at that instance, and this can be seen during the first 30 quarter-hours
of Figure 7. This clearly shows the effect of the backup controller when the SoC ≤ SoCmin.

5.2. Scenario 2: Dynamic Electricity Pricing

In this scenario, a varying electricity price profile is considered. A sinusoidal price profile is
chosen as shown in Figure 11. The price profile also considers periods when the price of buying
electricity is less than the price of selling. This is a possible phenomenon in the real world especially
in the imbalance market. Similar to Scenario 1, the control policy and SoC trajectory can be seen
in Figure 12. This scenario shows the effect of varying electricity prices on the control policy.
When the price of buying electricity is lower than the price of selling electricity, the agent decides
to: (i) keep the battery idle and buy electricity from the grid (case of no PV production and SoC > 0;
period around the 20th quarter-hour of the day), (ii) charge the battery and buy electricity from the grid
if PV > 0 (period around the 45th quarter-hour of the day, Figure 12) or (iii) discharge the battery
in order to reduce the amount of energy bought from the grid, thus reducing electricity cost (period
around the 70th quarter-hour of the day).



Energies 2017, 10, 1846 14 of 19

0 10 20 30 40 50 60 70 80 90
0

2

4

Quarter-hours of a day

El
ec

tr
ic

it
y

pr
ic

e
pe

r
kW 4 Buy price Sell price

Figure 11. Scenario 2, electricity price profiles.
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Figure 12. Scenario 2, Experiment 1: Corrected control policy of the agent and SoC trajectory. The yellow
area shows the normalized PV production.

5.3. Performance Indicators

In this paper, the performance of the proposed RL controller is analyzed by considering
the indicators discussed below.

(a) Battery utilization rate, B: the ratio of the cumulative power from the PV used to charge
the battery, described by the following equation.

B =
∑ Pcharge

∑ PV
. (20)

(b) Inverter power utilization rate, P:

P =
∑ min(inverter output power, load)

∑ load
. (21)

(c) Net electricity cost C:
C = ∑ ∆pλ, (22)

where ∆p = inverter output power - load, λ = λinj if ∆p ≥ 0 or λimp otherwise .

The figures presented in Tables 2 and 3 have been considered for an initial battery SoC of 0.85,
over a period stretching from 1 January 2014–28 February 2014. An extract of PV generation and the
consumption profile for a single day within this period can be seen in Figure 5. For Scenario 1,
λimp = 10e cents, and λinj = 2e cents.

Table 2 shows the performance indicators for a microgrid with a single house in the case of fixed
electricity prices, Scenario 1. The reader should note that the indicators of Experiment 3 have been
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considered for a standard deviation of 0.02 in order to avoid large deviations from the deterministic
setting. To analyze the performance, Experiment 1 will be used as the reference, i.e., the exogenous
component of the state space is not considered. In Experiment 2, with the exogenous component
of the state space considered, the battery utilization rate increases by 20%, and the inverter
power utilization rate increases by 4%. This is reflected in the drop in the net electricity cost
paid by the residential user. For Experiment 3, simulations were run five times and the average
of the indicators taken. Comparing Experiment 3 with Experiment 1, i.e., by including the load
feature in the state space with a disturbance, the battery utilization rate increases, but the inverter
power utilization rate drops, an increase in net electricity cost can also be observed. This is because,
as a result of the disturbance, a slight increase in the total demand is observed: 2170.62 kW as opposed
to 2168.81 kW in Experiment 1.

This shows that, by including elements of the exogenous components in the feature space,
the learning process of the agent is enhanced, and a better control policy is obtained.

Table 3 presents performance indicators in the case of dynamic electricity prices, i.e.,
Scenario 2. It is worth mentioning that the same experiments as in Scenario 1 are carried
out, but for the introduction of dynamic prices. An increases in the battery utilization rate and
a drop in the net electricity cost are observed compared to the experiments in Scenario 1. This is due to
the possibility of having electricity prices lower than the fixed prices in Scenario 1.

Table 2. Scenario 1: performance indicators for the different scenarios during winter: January
2014–February 2014.

Indicator Experiment 1 Experiment 2 Experiment 3

Battery utilization rate, B(%) 27 47 32
Inverter power utilization rate, P(%) 17 21 17

Net electricity cost, C (euros) 155 149 156

Table 3. Scenario 2: performance indicators for the different scenarios during winter: January
2014–February 2014.

Indicator Experiment 1 Experiment 2 Experiment 3

Battery utilization rate, B(%) 30 49 34
Inverter power utilization rate, P(%) 18 21 17

Net electricity cost, C (euros) 75 71 77

5.4. Theoretical Benchmark in CPLEX

In order to see how well the proposed method behaves compared to other optimization techniques,
an optimal controller was developed. This optimal controller is model-based and has full information
about the microgrid. As such, a microgrid model was created containing information on all microgrid
components and a perfect forecasts of all exogenous variables, i.e., the PV generation and load
profiles. The optimal controller formalizes the problem as a mixed integer linear problem and uses
CPLEX (OPL), a commercial optimization solver [38]. The settings of Scenario 1, Experiment 1 are
considered. Simulation results showing the evolution of the battery’s SoC for an optimization period
of 96 quarter-hours are depicted in Figure 13.

As shown in Figure 13, in the case of the optimal controller, the system constraints are perfectly
respected, and there is no need for a backup controller. To clearly compare the two methods, the net
electricity costs are considered, and a performance gap metric is used G:

G =
net cost (FQI)− net cost (Optimal)

net cost (Optimal)
. (23)
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Figure 13. Simulation results with a fixed pricing scheme using an optimal controller (Optimal)
and extended FQI (FQI). The plot depicts the SoC trajectory obtained for the two methods.

A performance gap, G, of 19% between extended FQI and the optimal controller was obtained.
This shows that higher electricity costs are paid when the FQI algorithm is used. In model-based
methods, model parameters are well defined, and an optimal solution is obtained based on this model
and its parameters. The whole dataset is used to develop the model and obtain the optimal solution.
As such, it is important to note that the same data that was used to compute the model parameters
is used to evaluate the model. This is not an accurate evaluation of the model-based method, as this
would require splitting the data into seperate training and test sets. However, it does provide a good
benchmark / base line for the FQI algorithm, as it incorporates ‘future’ information not known at each
point in the simulation. However, this performance is realistic as the microgrid model is unknown to
the RL agent.

6. Conclusions and Future Work

This paper has presented a data-driven control approach applied to battery energy management
in microgrids. Specifically, a model-free batch reinforcement learning technique, the extended
fitted-Q iteration algorithm, has been used to control the operation mode of a battery storage
device in a microgrid. The objective was to maximize self-consumption of the locally-produced
energy from the PV system, hence minimizing the electricity cost and dependency on the local
utility grid. The stochastic occupant behavior in the residential setting, the PV production profile
and the nonlinearity from the inverter efficiency have been accounted for in the construction
of a closed-loop control policy by the RL agent. The performance of the learning algorithm has
been evaluated using three indicators. Simulation results showed that by including exogenous
features on the feature space, the learning process was enhanced. However, the computation time
increased significantly. Simulations were equally run with data from a summer period and similar
results obtained. Encouraged by the values of the performance indicators, the proposed approach
of batch RL can be up-scaled to a more realistic microgrid setting integrating more complex scenarios
with constraints at the local utility grid level, battery charging and discharge rates and a continuous
action space.

Future work will consider: (i) RL in a stochastic setting where the next state is conditioned
by a probability density defined by the current state and action, (ii) the effect of load flexibility
using heat pumps and domestic hot water storage on the control policy and (iii) the optimization
potential in clusters of microgrids with completely different electricity usage patterns and limited
communication capabilities between the microgrids.
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