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Abstract: The current European energy policies have an influence on the need to rehabilitate the
housing stock in order to meet the objectives of the European Union. Most of this housing stock
was built without any type of energy regulation in adverse technical and economic conditions and
thus is now energetically obsolete. The major rehabilitation effort required must be approached
through actions based on previous quantitative energy knowledge of the existing buildings in order
to guarantee the efficiency of energy-retrofitted solutions. This assessment can be carried out through
monitoring dwellings conditioned by use patterns; through simulation programs, which do not
usually offer faithful representations of energy conditions; or by using test cells, which allow us to
evaluate a controlled indoor environment without the influence of users. The objective of this paper
is to present the design and performance of test cells as an experimental method for vertical facade
analysis in order to tackle the problem of retrofitting residential buildings in a Mediterranean climate,
taking into account energy and environment. With this equipment, efficiency and energy savings, as
well as illumination and interior air quality, can be simultaneously and comprehensively evaluated.

Keywords: test cell; experimental test; housing stock; energy performance; Mediterranean climate;
diagnosis; monitoring; thermal comfort; energy consumption; social housing

1. Introduction

European regulations establish common ground for reducing energy consumption and meeting
the requirements set by the EU for 2020 [1], with housing stock as one of the central lines of action.
Most housing stock was built outside energy regulations of any sort and with little technology and
funding. Approaches to the problem of housing stock in the Mediterranean area cannot be the same as
those in northern Europe [2], given the difference in climate. In southern Spain, the housing stock was
built before the implementation of the first legislation for the thermal regulation of buildings, CT-79
in 1980 [3], in a context of limited technical and economic means, with a view to providing universal
access to housing for the working class. This housing stock presents deficient energy conditions
requiring high energy consumption in order to maintain suitable comfort conditions [4]. However, the
socio-economic profile of a large number of users results in living conditions of energy poverty,
with environmental deficiencies and discomfort [5]. In the current economic climate, architectural
retrofitting, covered by retrofitted supporting policies [6], is a priority in the construction sector.
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However, before any type of rehabilitation can be carried out on the housing stock, extensive
knowledge of a building’s energy performance in its current condition and the appropriate prediction
of the energy behaviour of the retrofitted proposals are required.

In fact, one of the themes proposed by the European Commission in its Horizon 2020 research and
innovation policy is “new tools and methodologies to reduce the gap between predicted and actual
energy performances at the level of buildings and blocks of buildings” [7].

A protocol has been put into place [8] for this Mediterranean housing stock to enable energy
characterization through in-use monitoring of representative study cases. This is followed by an
extrapolation of the results using energy simulation models previously validated with typological
analysis and an evaluation of the energy responses with in situ measurements and monitoring
campaigns [9]. The data obtained are used to propose active strategies at the neighbourhood [10] and
urban levels [11]. However, the representativeness of these studies is conditioned by use patterns,
wherein users are responsible for the performance gap [12].

In contrast to the laboratory test studies, which reproduce a steady-state regimen, the use of test cells
allows results with real outdoor conditions to be obtained in a controlled indoor environment with high
instrumentation levels. These also collect accurate results for each parameter evaluated, unlike the case of
in-use monitoring. In a controlled setting, this analysis allows the energy optimization of the constructive
solutions to be tested. Test cells cannot be seen as an end in themselves but rather as the first step of the
analysis, which is to be complemented with the validation stage and the later use of energy simulation
programs [13,14] analysing previous test cell results. This energy evaluation of test cells is presented as
one of the main mechanisms for the optimization of energy retrofitting strategies based on a comparative
study of different constructive options and the current state of the buildings to be rehabilitated.

Since the 1980s, the PASSYS (PASsive Solar Components and SYStems Testing) Project [15] has
been used for experiences in Europe in the field of energy efficiency and saving, making use of
experimental test cells located in outdoor environments. A thermal characterization test methodology
using highly insulated and real scale cells was developed [16] by the PASSYS Project. These cells
consisted of a test room with a removable facade facing south and a small room known as a service
room, where control systems, measurement equipment, and HVAC (Heating, ventilation, and air
conditioning) are located. These cells were used to analyse the performance of different interchangeable
building envelopes in the south facade mentioned above [17]. One of the main conclusions of this
project was the existence of methodological problems caused by uncontrolled transmission through
the insulated envelope. This led to the creation of the PASLINK cells [18] and the DYNASTEE group
(DYNamic Analysis, Simulation, and Testing applied to the Energy and Environmental performance
of buildings) [19], in which all results obtained are incorporated [20].

PASLINK test cells have been frequently used [21] for different purposes but mainly for
conducting tests for the performance improvement of a specific component in building envelopes.
In Europe, it is worth noting the experiences of the CSTC-BBRI (Centre Scientifique et Technique de la
Construction-Belgian Building Research Institute) in Belgium while analysing several types and sizes
of window apertures in the south facade [22]; with different facade components [23]; for photovoltaic
elements [24]; to obtain solar gain results [25]; or to be able to evaluate different orientations using a
rotary platform [26].

PASLINK test cells are used in pairs for the comparative evaluation of the efficiency of retrofitted
and existing solutions similar to real-scale facilities such as the twin houses of the IBP (Institute
for Building Physics) in Germany [27]. Attention should also be drawn to research into cells in
pairs, focusing more specifically on the investigation of residential buildings in the University of
California [28]. In this case a double cell is analysed, reproducing the initial conditions of a house,
contrasted with the conditions of the rehabilitation solution in order to evaluate cooling through
ventilation and comfort conditions in relation to window size, thermal mass, and ventilation flow rate.

In Spain, and in a continental climate, it is worth highlighting the work carried out in Madrid [29]
by a research team studying homogeneous facade solutions without considering the window aperture,
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as well as that of the building quality control laboratory of the Basque Government in Alava [30].
The solar platform installations in Almeria [31] are used to test different types of building envelopes in
a desert climate. Equally, in the case of a Mediterranean climate, it is worth highlighting the equipment
of the Centre for Renewable Energy Sources and Saving in Greece [32]. This studies homogeneous
solutions in facades with no energetic or acoustic interaction of the window aperture or influence from
solar protections or ventilation.

The aim of this study is to show the design and performance of one-pair test cells, which allow
the optimization of vertical building envelope solutions for the retrofit of residential buildings in a
Mediterranean area. The environmental conditions in a cell with an existing envelope and another
retrofitted one, both with the same orientation, are simultaneously evaluated. Moreover, the suitability
of the retrofitted solution is assessed from a global and simultaneous vision of energy aspects, thermal
and lighting comfort, and air quality through the later development of simulation models. The use of
this equipment provided a precise and real knowledge of the envelope solutions of buildings, ignoring
the influence of the user but considering a fully controlled environment that can be manipulated.

2. Description of Test Cells

2.1. Location Site

The test cells are located in an outdoor area of a building at the University of Seville, with a N-S
longitudinal axis, as can be seen in Figure 1.
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In order to determine the exact location, several sunlight and wind studies were conducted
to ensure that there were no obstacles to sun or to the significant influence of wind flows in the
surroundings (Figure 2).
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2.2. Spatial Description

The test cells are set up in two independent modules 90 cm off the ground and separated by an
access area. Each module features two test cells facing different directions and separated by a service
room for control systems, measurement equipment, and HVAC units. Each cell is an autonomous
system that reproduces a housing space, with an open information system, which can determine the
performance of different construction solutions in the facades tested. Four cells, two facing south and
two facing north, with interior dimensions of 2.40 m wide, 3.20 m deep, and 2.70 m high, are presented.
In this way, two different construction solutions can be evaluated simultaneously for the same cardinal
direction (Figure 3).
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2.3. Constructive Characterization

The modules are light ‘steel frame’ structures (Figure 4), pinned to a 10-cm-thick squared
reinforced concrete slab measuring 9.30 × 9.30 m. Galvanized steel frames are cold-formed and
used in the vertical building envelope as 100 mm frames and in the beams and joists as 200 mm profiles.
The roof slope consists of trusses with 50 mm galvanized steel profiles, while omega profiles are used
for the metallic belt structures, allowing them to support the galvanized and corrugated sheet panels
used as roofs. The north and south facing facades include a metal frame made of 6 mm welded plates
forming an L profile that supports the anchorage and installation of the different facade systems to be
tested. The facade samples are built over a frame of steel tubes.
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Figure 4. Axonometry of the module structure system, steel framing type.

The thermal enclosure, consisting of the vertical envelope, the floor, and the roof, is made of high
density sandwich panels, coloured in white, suitable as cold stores, and screwed to the steel frame
structure. There is one interior panel that is 100 mm thick and another exterior panel that is 200 mm
thick (both vertical and horizontal). The air chamber between infill pieces and metal studs is filled by
wool rock panels at a density of 100 kg/m3, and the space is 160 mm thick (80 + 80 mm). The thermal
transmittance (U-values) is 0.05 W/m2 K, which indicates a significant reduction of heat flow, with
values that are not considered significant in the overall balance (Table 1).

Table 1. Thermal envelope definition of the thermal transmittance (U-values).

Building Envelope U (W/m2 K)

W1 Exterior mortar rendering, brick wall (1/2 foot), interior rendering,
5 cm air chamber, brick partition wall, and gypsum plaster UW1 = 1.43

W2 W1 + thermal insulation EPS 50 mm with exterior rendering UW2 = 0.47

W3 200 mm sandwich panel, thermal insulation MW 80 + 80, 100 mm
sandwich panel

UW3 = 0.05
Floors UF = 0.05
Roof UR = 0.05

W4 100 mm sandwich panel UW4 = 0.17
Opening 4/8/4 double-glazing, Metal frame (no thermal bridge) UO = 3.3



Energies 2017, 10, 1816 6 of 16

For the flooring solution, 3 mm of non-slip black rubber is used, with cold storage pivot
access doors, both to the modules and cells, and similar thermal characteristics to those of the
opaque envelope.

The facade panels can be easily configured with different construction solutions executed
over a tubular steel frame, fitting and screwing the steel frame on the north and south sides of
the modules. Cells 3 and 4 of Module 1 reproduce the conditions of a traditional facade from a
Mediterranean climate dwelling (UW1 = 1.43 W/m2 K). In contrast, cells 1 and 2 of Module 2 represent
a retrofitted solution using the same base elements as the other module but adding an External
Thermal Insulation Composite System (ETICS), consisting of a 50-mm-thick Expanded Polystyrene
(EPS) panel (UW2 = 0.47 W/m2 K) (Table 1). Cells 1 and 3, facing south, have a window aperture
of 116 × 108 cm with aluminium sliding carpentry, 4.8.4 double glazing (UO = 3.3 W/m2 K), and
Polyvinyl Chloride (PVC) slatted shutters. Cells 2 and 4, facing north, are completely opaque (see
Video 1 in the Supplementary Materials).

2.4. Ventilation and Air Conditioning System

Ventilation is a variable that especially affects energy demand, as well as the degree of ambient
comfort and the accumulation of CO2, pollutants, and suspended particles. In the existing housing
stock, ventilation usually comes from uncontrolled infiltrations through enclosures, whereas the
current regulation of the Technical Building Code (CTE) [33] establishes the need to guarantee a
minimum outdoor airflow through the use of a mechanical system.

Given that the proposed test cells were designed to emulate social housing bedrooms, natural and
mechanical ventilation tests are carried out using an extraction fan corresponding to each room, with
an air flow rate of 187 m3/h. In order to simulate natural ventilation, this fan generates air depression,
allowing outdoor air into the room through the tested envelope. In the case of mechanical ventilation,
a gate valve is opened to resemble the operation of an air inlet.

Each test module has an interior thermal control system, consisting of a reversible heat pump
(air-water) and three fancoils: one per cell and a third one in the service room. This system also
includes a buffer tank of 200 L capacity. The thermal capacities (cooling/heating) of the equipment are
a production system of 5/5.5 kW, fancoils in the 2.5/3.5 kW tests cells, and a 1.87/2.53 kW fancoil in
the service room. A hydronic system has been chosen to measure the thermal demand in each cell,
as well as the final energy consumption. Demand measurement is possible thanks to thermal energy
meters placed on each fancoil, whereas final electrical consumption is recorded by electricity meters.

2.5. Monitoring System

The interior monitoring system controls ambient conditions of interior air quality, lighting,
consumption, and energy efficiency. A weather station placed over one of the experimental modules is
used to monitor the exterior parameters.

The protocol established in EN ISO 7726:2001 [34] has been followed in the installation process
for this system, considering a 5 min time interval for the reading of monitored data and recording
historic tendencies.

Monitoring probes, sensors, and meters are organized into seven systems: one for the
measurement of external ambient conditions, four for the test cells, and the remaining two for
air-conditioning systems.

The system that measures the external ambient conditions is controlled by the weather station and
is composed of sensors for the air temperature variables, relative humidity, carbon dioxide, velocity,
wind direction, direct normal and diffuse solar irradiation, and illuminance.

Most of the systems of the four test cells are similar. Each is composed of a set of sensors that
measures air temperature variables, relative humidity, carbon dioxide, illuminance, and the superficial
temperature of the envelope, both interior and exterior.
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Finally, the two systems related to the air-conditioning systems are identical to each other.
They incorporate several sensors that record the power consumed, electricity intensity, voltage, velocity,
and air temperature in the ventilation ducts, water temperature in the flow and return pipes of the
heat pump, and flowmeters in the interior air-conditioning units.

The monitoring installation is made up of a star network for data collection, where a set
of multi-parametric sensors carry out measurements of different ambient and energy variables.
This information is regularly sent to data loggers, where it is temporarily stored and uploaded
every 30 min to a File Transfer Protocol (FTP) server (Universidad de Sevilla, Seville, Spain) through
the RedIris network of the University of Seville. Data stored in the FTP server is periodically sent
to local computer equipment for processing and interpretation before it is imported to a standard
Microsoft Excel 2016® (Microsoft, Redmond, WA, USA) spreadsheet.

Description of Monitoring Equipment Installation

Measuring sensors used are as follows:

• Test cells: ambient parameters (air temperature, velocity, relative humidity, CO2 levels, radiant
temperature, and illuminance) are measured. The sensors hang from a metal false ceiling open
cell type padded with PVC, to make it possible to have a measurement matrix (Table 2) (Figure 5).

• Air conditioning systems: These are located in the service rooms between the test cells.
Electrical consumption (power, intensity, and potential difference) is recorded, and data from the
air extraction fan (air velocity and temperature) and from the water circuit feeding the fancoils
(water flow rate and temperature) are also collected (Table 3).

• Weather station: This is placed over an exterior metallic structure on top of Module 2 to measure
the outdoor ambient parameters (air temperature and relative humidity in the north and south
positions, air velocity and direction, CO2 levels, illuminance, and incoming solar radiation, both
direct and diffuse) (Table 4).

The hubs and data loggers of each test cell, which receive measured data from the sensors, are
situated in a cell panel located in the service rooms of both modules. These hubs are connected to an
RJ45 plug assembled in a double superficial jack on the partial electrical power panel, connecting to
the local Digital Visual Interface (DVI) network, which is in turn linked to the University of Seville
campus network.

Data from the test modules can be easily downloaded from the FTP server or accessed via the
Internet through an html portal. This portal also allows technical personnel to remotely access every
probe and hub installed and to easily modify their configuration.

Table 2. Probes in test cells.

Device # Location Unit Rank Accuracy

Thermocouple 32 On surface ◦C −250, +350 ±1 ± 0.75%
CO2 detector 4 Air return grille ppm 0–2000 ±2.0%
Hygrometer 4 Air return grille % 0–100 ±3% (0.70%) ± 5% (71.10%)
Lux meter 8 Interior matrix lux 20–2000 -

Thermometer 16 Interior matrix ◦C −40, +80 ±0.15 ± 0.1%
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Table 3. Probes in the air-conditioning system.

Device # Location Unit Rank Accuracy

Voltmeter 8 Electrical panel V - -
Ammeter 8 Electrical panel A - -

Potentiometer 8 Electrical panel W - -
Energy 4 Electrical panel kWh - -

Reactive energy 4 Electrical panel kVArh - -
Pipe thermometer 8 Hydronic circuit ◦C −75, +135 ±0.3
Duct thermometer 4 Air duct ◦C −10, +60 ±0.3

Ammeter 4 Air duct m/s 0.1–2.0 0.06 m/s + 3%

Table 4. Probes in the Weather Station.

Device # Orientation Unit Rank Accuracy

Thermometer 2 N,S ◦C −40, +80 ±0.15 ± 0.1%

Hygrometer 1 - % 0–100 ±3% (0.70%)
±5% (71.10%)

CO2 detector 1 - ppm 0–2000 ±2.0%
Lux meter 1 - lux 0–200,000 ±3.0%

Anemometer 1 - m/s 0–50 ±0.5
Vane 1 - ◦ 0–360 ±2.5

Pyranometer 6 North, South, East, West, horizontal, diffuse W/m2 0–2000 ±1.5%
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3. Cell Validation. Trials and Tests

3.1. Infiltration Tests

Enclosure pressurization/depressurization or Blower Door equipment can be used to measure
the airtightness level of the envelope of the cells, following ISO standard 9972:2015 [35]. These tests
consist of decreasing the pressure of the room with a fan and extracting air until the differential
pressure between indoor and outdoor is stabilized by the air entering through the envelope cracks.
The differential pressure is then decreased by lowering the fan speed in steps, thus obtaining a
regression curve of the differential pressure/extracted airflow relation.

The equipment used in these tests is the Minneapolis Blower Door Model 4/230 V System
(The Energy Conservatory, Minneapolis, MN, USA), controlled by TECTITE Express software
(The Energy Conservatory, Minneapolis, Minnesota, United States of America). Since the highest
pressure difference recommended by ISO 9972:2015 for these tests is at least ±50 Pa, this study was
performed with a maximum differential pressure value of ±70 Pa.

The airtightness measurements were performed by installing the Blower Door in the doors of the
inner test cells, and the following test procedure was developed:

• Test 1 (t1): Both the window and the air gate valve are closed.
• Test 2 (t2): Both the window perimeter and the air gate valve are closed and sealed.

It should be noted that, in order to ensure the airtightness of the test cells, which is essential for
the development of future work, the joint points have been sealed after the construction process to
guarantee adequate tightness conditions.

3.2. Thermographic Tests

Infrared images were taken to visualize and value the heat flow through the facade examples
for each test cell. The equipment used in these tests is a FLIR T620bx infrared camera (FLIR Systems,
Wilsonville, OR, USA) with a thermal resolution of 640 × 480 pixels; a FLIR MR77 psychrometer (FLIR
Systems, Wilsonville, OR, USA) to simultaneously measure air temperature and relative humidity;
and a laser distance measure LEICA Disto™ D5 (Leica Geosystems AG, Sankt Gallen, Switzerland) to
consider the atmospheric attenuation of solar radiation in relation to distance.

Measurements were conducted following the procedure established in EN 13187 [36] for image
recording and ISO 18434-1 [37] for the previous measurement of the reflected apparent temperature
(reflector method).

During testing, the indoor and outdoor ambient conditions were as shown in Table 5. In order
to guarantee an adequate thermal flow in the facades analysed, images were registered prior to the
heating of the exterior surfaces by solar radiation and considering dry surfaces. Furthermore, the
interior temperature of the cells was maintained at an average of 28.5 ◦C over exterior temperatures
during the 48 h previous to measurements.

Table 5. Ambient conditions considered for the thermographic tests.

Parameter Value

Outdoor ambient temperature 5.2 ◦C

Average indoor ambient temperature

Cell 1 33.9 ◦C
Cell 2 34.8 ◦C
Cell 3 33.4 ◦C
Cell 4 33.4 ◦C

Wind speed 1.0 m/s
Wind direction SW
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4. Results. Performance Analysis

4.1. Analysis of Infiltration Test Results

Initially, the sealing of the panel joints after the construction process mentioned above showed
that there was an average reduction of infiltrations of around 65.3%, with a standard deviation of 9.2%.
This means that suitable treatment of these joints is essential to the proper operation of the cell.

Secondly, as can be seen in Table 6, the infiltration rates obtained for the finished test cells under
normal conditions show that the airtightness of these rooms (t1) is remarkable. It presented an average
infiltration value of 4.6 Air Changes per Hour (ACH) for ±50 Pa, with a standard deviation of 1.0 ACH,
and 3.9 ACH with a standard deviation of 1.0 ACH when the window and the air gate valve were
sealed (t2).

Table 6. Test cell infiltration rates.

Test Cell Test Air leakage Rate at 50 Pa
(V50, m3/h)

Infiltration Rate at 50 Pa
(n50, ACH)

South-west (with window)
t1 112 3.8
t2 94 3.2

North-west (no windows)
t1 145 5.0
t2 143 4.9

South-east (with window)
t1 172 5.9
t2 135 4.6

North-east (no windows)
t1 111 3.8
t2 109 3.7

When the average infiltration rate for these test cells is analysed and compared with other
standards and measured values, as shown in Table 7, the average value observed is over 60% less
than that established in the technical conditions document for the application of the Spanish energy
certification tools in existing houses (HULC) [38], according to the Technical Building Code [39].
When this value is contrasted with the average airtightness value measured in existing social houses
in the Mediterranean [40], it can be observed that the average test cell value is only 20% less than that
obtained for the existing social houses. Therefore, it can be concluded that the airtightness conditions
of the test cells tend to be close to those obtained from measurements of existing social houses in
the Mediterranean.

Table 7. Comparison chart of infiltration rates at 50 Pa (n50) ACH.

Test Cell Average Value HULC Measurements in Mediterranean Existing Social Houses

4.6 12.0 5.72

4.2. Thermal Radiation Evaluation

Figure 6 shows infrared (a, b) and visual (c, d) images of the south facades of cells 1 and 3, taken
in the same ambient conditions. The images on the left correspond to the original solution wall (cell 3),
while those on the right show the rehabilitated facade (cell 1), which incorporates the External Thermal
Insulation Composite Systems (ETICS) insulation system. Both envelopes have the same exterior
surface finish (painted cement mortar), with 0.95 emissivity. The reflected apparent temperature on the
exterior was 5.7 ◦C. The thermal gap between interior and exterior ambient temperature was 28.1 ◦C
(cell 3) and 28.6 ◦C (cell 1).

Using the infrared images analysis tool Flir Tools+ (FLIR Systems, Wilsonville, OR, USA) [41], the
radiant temperatures of the external surfaces in both hypotheses have been evaluated: (a) considering
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only the homogeneous opaque part and (b) taking into account all the parts of the envelope
(homogenous opaque part, the window aperture, and the perimeter thermal bridge). Table 8 indicates
the average surface temperature (TSE), the thermal bridge between interior-exterior ambient (∆T), and
the heat flow per unit area (Φ), assuming a steady regime for each facade and hypothesis. The heat
flow per unit area is defined as:

Φ = ε·σ·(T4
SE − T4

re f ) + h·(TSE − TA) (1)

In Equation (1), ε is is the emissivity, σ is the Stefan–Boltzmann constant, Tref is the reflected
apparent temperature (K), TSE is the surface temperature (K), and TA is the outdoor temperature (K).
The convective coefficient (h), considered to estimate heat transfer due to an exterior convection effect,
was 8 W/m2 K, according to standard ISO 6946:2007 [42], considering a wind speed equal to 1 m/s.

According to the information presented in Table 8, and considering the entire wall (case b), the
heat flows show that the original facade wall displays slightly more than double the losses of the
retrofitted solution, which means a 56.5% reduction in flow in the retrofitted case. When exclusively
considering the opaque section of the wall (case a), the retrofitted facade presents a reduction in
superficial heat flow of around 67.4% compared with the original solution.

Table 8. The external surface temperature and estimated heat flux.

Original Wall (Cell 3) Rehabilitated Wall (Cell 1)

Case (a) Opaque Part Case (b) Global Case (a) Opaque Part Case (b) Global

TSE (◦C) 9.7 10.9 6.8 7.8
∆T (◦C) 28.1 28.6

Φ (W/m2) 55.1 70.6 17.9 30.7
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4.3. Temperature Evaluation

The evolution throughout a week of the outdoor temperatures, average indoor temperatures for
each cell, and the global solar radiation (W/m2) inciding on the facades is obtained from the monitored
data and represented in Figure 7. Tables 9 and 10 show the maximum outdoor temperature and sol-air
temperature [43] values, as well as the time lag (hours) between the moments of maximum outdoor
and indoor temperature. Data are recorded during a period of free running or, in other words, without
the influence of air conditioning systems.
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Table 9. Air ambient temperature in Cells 1 and 3.

Day Outdoor Max. Tsol Max.

Cell 1 Cell 3

Indoor Max.
Gap

Indoor Max.
Gap

Outdoor Tsol Outdoor Tsol

29 September 2016 36.8 ◦C 43.4 ◦C 32.9 ◦C 1:40 1:30 34.6 ◦C 2:10 2:00
30 September 2016 37.7 ◦C 46.8 ◦C 34.1 ◦C 0:30 2:20 35.7 ◦C 0:10 2:35

01 October 2016 37.6 ◦C 46.7 ◦C 34.2 ◦C 1:05 1:40 35.4 ◦C 1:40 2:15
02 October 2016 36.2 ◦C 45.5 ◦C 32.7 ◦C 0:45 1:05 33.4 ◦C 2:10 2:30
03 October 2016 38.7 ◦C 50.2 ◦C 32.9 ◦C 1:05 0:50 34.3 ◦C 1:55 1:40
04 October 2016 40.1 ◦C 50.9 ◦C 33.8 ◦C 0:30 0:35 35.5 ◦C 1:15 1:20
05 October 2016 38.8 ◦C 48.8 ◦C 34.1 ◦C 1:20 2:05 35.4 ◦C 1:55 2:40
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Table 10. Air ambient temperature in Cells 2 and 4.

Day Outdoor Max. Tsol Max.

Cell 1 Cell 3

Indoor Max.
Gap

Indoor Max.
Gap

Outdoor Tsol Outdoor Tsol

29 September 2016 36.8 ◦C 38.0 ◦C 27.5 ◦C 9:20 9:10 28.4 ◦C 8:40 8:30
30 September 2016 37.7 ◦C 39.3 ◦C 27.8 ◦C 6:50 6:50 28.8 ◦C 6:40 6:40

01 October 2016 37.6 ◦C 39.2 ◦C 27.9 ◦C 7:30 7:30 28.8 ◦C 7:05 7:05
02 October 2016 35.9 ◦C 37.8 ◦C 27.8 ◦C 10:15 10:35 28.4 ◦C 8:30 8:50
03 October 2016 38.9 ◦C 41.1 ◦C 27.1 ◦C 9:15 9:00 27.3 ◦C 8:55 8:40
04 October 2016 40.3 ◦C 50.9 ◦C 27.1 ◦C 9:15 9:20 28.2 ◦C 8:25 8:30
05 October 2016 38.7 ◦C 40.4 ◦C 27.4 ◦C 9:25 8:45 28.3 ◦C 8:55 8:15

As expected, the influence of solar radiation, as well as the existence of a window aperture, lead
to much higher indoor thermal oscillations in test cells facing south (cells 1 and 3), when compared
to north-facing cells (cells 2 and 4). In south-facing cells, the implementation of the ETICS insulation
system (cell 1) entails greater attenuation of the thermal wave; around 2 ◦C compared to the cell
without thermal insulation (cell 3). In north-facing modules, since there is no influence from direct
solar radiation or window aperture, differences in temperature attenuation between the cell with the
ETICS system (cell 2) and its partner (cell 4) are slightly lower (up to 1.5 ◦C).

In Figure 8, an instant cooling load (W) for each cell can be observed, as well as for the modules
overall, over a five-day period. The temperature set point was 25 ◦C. The thermal power of each
module corresponds to the sum of each of its cells (Module 1: cells 1 and 2; Module 2: cells 3 and
4). As can be seen, the demands of Module 1 (retrofitted facades) are appreciably lower than those
of Module 2 (original facades) by approximately 15%. However, when the results of each cell are
analysed, those facing South (cells 1 and 3) have very similar demands (1%) due to the influence of the
window aperture, which minimizes the effect of the opaque part. In contrast, in north-facing cells with
no window apertures, the differences in demand are much more significant (27%).
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5. Conclusions

The use of test cells provided precise and tangible information to determine improvements
in ambient conditions in retrofitted processes for dwellings located in a Mediterranean climate,
without the influence of users. This made it possible to simultaneously evaluate demand conditions,
energy consumption, and thermal comfort, comparing results both in the original solution and the
retrofitted one.

The equipment in the test cells, composed of an extensive range of sensors and data acquisition
systems, offers a wide variety of tests, obtaining essential empirical data on the ambient and energy
variables, as well as their evolution over time. This data set will be used as an initial tool to validate and
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adjust energy and lighting simulation models for the more detailed and accurate use of these tools and
the extrapolation of results to other climate zones and cardinal directions. The analysis of the results,
combined with statistical tools, allows correlations to be established between the different variables
monitored. This contributes to the optimization of retrofitted solutions in vertical envelopes, as well
as the design conditions of air conditioning and lighting systems, before acting on real buildings.
Moreover, all this will foster a reduction in economic costs, aiming to optimize thermal and lighting
comfort conditions, as well as energy use in air conditioning and lighting installations in dwellings.

Although equipment construction must resolve some of the problems detected, including thermal
bridges and infiltrations, it ensures a wide and complete operating range in realistic climate conditions
with valuable and representative results of dynamic performance.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/11/1816/s1,
Video S1: Construction Process Video.
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