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Abstract: The reliability of battery fault diagnosis depends on an accurate estimation of the state
of charge and battery characterizing parameters. This paper presents a fault diagnosis method
based on an adaptive unscented Kalman filter to diagnose the parameter bias faults for a Li-ion
battery in real time. The first-order equivalent circuit model and relationship between the open
circuit voltage and state of charge are established to describe the characteristics of the Li-ion battery.
The parameters in the equivalent circuit model are treated as system state variables to set up a joint
state and parameter space equation. The algorithm for fault diagnosis is designed according to the
estimated parameters. Two types of fault of the Li-ion battery, including internal ohmic resistance
fault and diffusion resistance faults, are studied as a case to validate the effectiveness of the algorithm.
The experimental results show that the proposed approach in this paper has effective tracking ability,
better estimation accuracy, and reliable diagnosis for Li-ion batteries.

Keywords: battery fault diagnosis; battery management system; parameters estimation; state of
charge estimation; adaptive unscented Kalman filter

1. Introduction

With the various applications of Li-ion batteries, an effective battery management system (BMS)
has become an essential part of the battery system in electrical vehicles and land-based distributed
energy storage systems [1]. As an important part of a BMS, battery fault diagnosis techniques have
attracted much more attention in recent years [2-5]. For battery cells, as the basic unit of battery packs,
the faults of the cell are difficult to detect directly. However, the faults of the cell would cause the
variation of internal parameters: leakage of electrolyte will change the polarization characteristics,
poor internal connections will lead to the increase of ohmic resistance, etc. Therefore, the real-time
estimation of cells is of great importance for system identification, fault detection and isolation,
and fault-tolerant control for BMSs.

At present, battery parameter estimation is treated as an effective approach for state of charge
(SoC) estimation of batteries [6-15]. Zhang et al. [6] and He et al. [7] implemented an Extended
Kalman Filter (EKF) algorithm based on battery parameters estimation to support the estimation of
SoC, and achieved a good result in estimation accuracy. The Gauss—Newton method was introduced
to iteratively solve battery internal parameters on SoC estimation, and the proposed method has a
relatively low computational complexity [8]. Liu et al. [9] suggested a dual Particle Filter estimator
based on a temperature-compensated model to estimate battery parameters, and considered the
robustness of estimation against temperature changes and noises. Sun etal. [10,11] proposed a recursive
least square method (RLSM) with a constant fading factor to identify time-varying battery parameters
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which could accurately capture the dynamic behavior of voltage. Parameter variations could then
be linked with battery faults. Chen et al. [16] developed an accurate probabilistic-based framework
by using large deviation principles to analyze the reliability of battery fault diagnosis, and a series of
simulations and experiments were conducted to validate the effectiveness of the proposed framework.
Zhang et al. [17] and Zheng et al. [18] analyzed the capacity degradation of battery packs in a series
connection by a recursive-least-squares algorithm with restricted memory and constraints. The battery
faults could be distinguished through simulation and experimental validation. Dey et al. [19] modeled
electrochemical faults as parametric faults, and multiple sliding observers were incorporated in the
diagnostic scheme. The effectiveness of detection, isolation, and estimation of parametric faults were
tested via simulation studies. Some works applied parameter estimation-based diagnosis approaches
into battery-related applications such as hybrid electric vehicles or Hybrid Energy Storage Systems
(HESS) [20,21], which strongly proved the applicability of parameter estimation in Li-ion battery
systems. However, all the works mentioned above are limited with solving constant or slow-varying
parameters. The parameters of faulty batteries may change quickly or vary in a wide range in some
cases. Therefore, these approaches may result in misdiagnosis in such cases.

For improving the reliability of diagnosis, Zhou et al. [22] proposed an extended Kalman filter
(EKF) based strong tracking filter (STF) with a time-varying fading factor. STF has strong robustness
in dealing with the uncertainty of system models and has a strong tracking ability for the sudden
change of parameters or state. Therefore, STF is compatible with real-time estimation on time-varying
parameters or state in a wide range. Wang et al. [23] combined STF with an unscented Kalman Filter
(UKF) into an adaptive unscented Kalman filter (AUKF) algorithm. The AUKF not only inherits strong
robustness from STE, but also overcomes the limits of STF in solving nonlinear problems and simplifies
the complexity without calculating a Jacobian matrix. Thus, AUKEF is suitable for high-order nonlinear
problems and has been successfully applied in engine state estimation and Global Positioning System
(GPS) navigation [24,25].

In this paper, the AUKEF algorithm is applied to accurately diagnose the parameter bias faults of
a Li-ion battery for the first time. Due to the strong nonlinearity and uncertainty, parameters were
considered as states of the system. Through the AUKF algorithm, the parameters of the Li-ion battery
could be tracked in real time, and the parameters and state could be jointly estimated. Therefore,
the faults of the Li-ion battery could be identified and isolated based on the AUKF algorithm according
to the different parameter estimation values.

This paper is organized as follows. Section 2 is the battery modeling. In Section 3, the joint
parameter estimation method is described and the robustness is analyzed. In Section 4, the parametric
diagnosis approach is proposed. In Section 5, experiments are conducted to validate the effectiveness
and reliability of the proposed diagnosis algorithm in solving parametric faults of li-ion batteries.
Some concluding remarks are provided in Section 6.

2. Battery Modeling

Among the present battery modeling approaches, the equivalent circuit model (ECM),
electrochemical model, and artificial neural network (ANN) are most commonly used models to
capture battery electrical characteristics [26]. In this paper, to compromise computational complexity
and modeling accuracy, a simple one-order resistance-capacitance (RC) network ECM is used to
describe the battery characteristics. The model is constructed using several components, including an
open circuit voltage source Vcy, an ohmic resistance Ry, and one RC network Rj, — C;,. The schematic
of the ECM is plotted in Figure 1. The ECM differential equations can be expressed as
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where R, is the polarize internal resistance; Cy, is the polarize capacitance; i(t) is the current; v(t) is the
terminal voltage of the battery; and v,y is the open circuit voltage (OCV), which is a nonlinear function
of the SoC as described by v,c, = g(S0C). The nonlinear function is utilized to fit the OCV-SoC curve
extracted from experimental data. The SoC is calculated as follows:

|

s(t) =s(to) + | —=i(r)dt 3)
to QO

where Qg is the maximum available capacity. The nonlinear relationship between OCV and SoC is
variable with the temperature. Three OCV-5S0C curves in 5 °C, 20 °C, and 50 °C have been obtained
from the experimental data, and are shown in Figure 2. Since V¢, is insensitive to temperature,

the nonlinear function g(SoC) is fitted with a 7-order polynomial function:

Voco = 397.45" Doy — 14345° 4 2093s° — 1583s* + 661.25% — 150.552 + 17.38s + 2.417 (4)
A
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Figure 1. First-order equivalent circuit model of Li-ion battery.
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Figure 2. OCV-50C characteristic mapping curve in different temperature. OCV: open circuit voltage;
SoC: state of charge.



Energies 2017, 10, 1810 4 of 14

3. Parameters Estimation

3.1. Joint State Space Description

The main characterizing parameters that affect Li-ion battery performance are C,, Ry, Ro.

Therefore, an extended state vector is defined as x; = {sk, Up(k)r Cp, Rp, Ro|. The steady part of the
characterizing parameters is used as a state equation due to the unknown change rule of parameters.
The discrete equation can be obtained from (1)—(4):

{ X1 = A(xe)xk + B(xp )ik + 1¢ )

Vir1 = (X1, ik1) + €yt
A(x¢) = diag[1,exp(—T/R,Cp),1,1,1] ©

B(x¢) = [T/Qo, Ry [1,exp(~T/R,C,)],0,0,0] ©

h(Xi1,ik41) = 8(Sk+1) + 0(pyk1 + k1 Ro @)

T o Q, l=m
E{r[l]re" [1]} = { 0,14 m ©)

R, I =

E{elllei" 1)} = { 01 m ©)

where v is the output of the system, iy is the current, ry is the process noise, ey is the measurement
noise, and T is the sampling time. Both r¢ and ¢; are assumed to be independent, with zero mean value
Gaussian white noise with covariance matrix Q and R as (8) and (9), respectively.

3.2. Joint Estimation Approach

Traditional UKF has shown good adaptability to nonlinear problems, but has poor robustness.
Thus, UKEF has poor ability to track abrupt states. As the system becomes stable, the Kalman gain
matrix Ky 1 approaches 0. If the system suddenly changes at this moment, the Ky 1€, 1 is still rather
small although the residual ;1 continues to increase, and the estimated value of the next time step
is unchanged.

STF uses a time-varying fading factor Ay, 1 to adaptively adjust the state prediction covariance as
follows [22]:

Pk = M1 A PepA(x) T +Q (10)
where
Nes1 = {)‘0’ Aozl BNk (1)
1, A<l tr(Mii1)

Ni+1 = Vi1 — HeQHp T — 7R 12)

Mjt1 = Hk+1Pk+1\ka+1T +R = Vi1 + N

€117, k=0

Vit1 = 9 pVi +sk+1sk+1Tl k> 1 (13)

14+p
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While implementing Ay, into UKF, Hy, 1 should be expressed as an equivalent form of output

prediction covariance Py, . and cross-covariance P due to

Vier1 Xe+1Vk417

. . T
Po . = E[(Vicrr — Viqai) (Viern — Vi)
. . T
= E{[Hy1 (41 — Xega i) + ekt [Hirr (1 — Keqae) +expn] ) (14)
. . T
= Hi1 E[(%k1 — K1) (k1 — R ge) THE 1 + Elexr1€pin”]

= Hi 1 PeqHen " +R

. . T
Pooin = E[0%1 — Rin) (Vs — Vi) |
. . T
= E{(xt+1 — Kiq16) [Hir1 (k01 — Reqape) +exr — R}

X X T . (15)
= E[(xkr1 — Kigaje) k11 — Riyape) [ Hi

— T
= Pry1eHi

T
P‘A’k+1

Thus, Hy, = Py ~1. The equivalent forms of N 1 and My, 1 in AUKF are shown in (16):

191
Nii1 =Vig1 — 7R =Py o TP 10 'OP 1 P ¢

k+1 k+1 7] K1 V41 T k+1k k+1lk Kie+1 k41 (16)
M1 = Py, = Vierr + N

AUKEF not only has the advantage of UKF, but can also adaptively adjust the values of noise
covariance matrices in the estimation process, which makes the residual sequence mutually orthogonal.
The impact of historical data is impaired to enhance the tracking ability of the filter. When the
parameter bias fault happens, Equation (5) is compatible with the model and the AUKF could be
used to estimate the characterizing parameters. The AUKF algorithm has strong robustness against
uncertainties and disturbance and its robustness had been verified in [22].

In the AUKEF algorithm, a set of 2 + 1 Sigma points {¢;} and corresponding weights W™ and W¢
from n-dimension state vector x are generated through unscented transformation:

Jo =%
é‘i:f(Jr(\/(nJrK)P)i, i=1,2,...,n (17)
gi:ﬁ—( (n+K)P),, i=n+1,n+2,...,2n

1

Wi =x/(n+x)
WS =x/(n+x)+ (1—a®+B) (18)
WM =W;=1/2(n+x)], i=12,...,2n

where k = a?(n + k) — n, a is a scale factor that can be chosen as a = 1, and  is a factor for improving
the accuracy of variance that can be set as § = 2 for Gaussian distribution. The details of the AUKF
algorithm are listed in Algorithm 1.
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Algorithm 1. Details of the Adaptive Unscented Kalman Filter (AUKF) Algorithm

Step 1: Initialize

Initializing estimated state value %o and covariance matrix Py)o.
Step 2: Predict State and output

Transform Sigma points &; s to ;x4 1|x through (5), one-step estimate state & 1|, and covariance
matrix Py, q .

Yigr1k = ACix)Cik + B(Eix)ik
2n
Riy1k = 'Zo Wiy ki
=
2n . . . T
Pepip = 'Zo WE i1k — Rk ik Vi ke — Kk
i=

Predict Sigma points &; ;1| through (8) and (9) with % ; and Py 1 ;. Output prediction can be obtained

from (5) with ¢; 1 |x. We calculate the output prediction covariance matrix Py, , and cross-covariance P

Vi1 K1k 41
through Dp 1k
. 2n " .
D1k = 'Zo W (8 ki1 ks Te+1)
1=
2n . . . . . T
Pg,., = 420 WER(E ket k1) — Viga e (8 e o k1) — Vil
=
2n . . . . T
Pyt = ,ZO WESi sk — R k] (it o 1) — Vi i
1=
€41 = Vi1 — Vep1jk
where ¢, 1 is the residual. The fading factor Ay, can be calculated by the approaches in [19].
A Ao, Ap2>1 A tr(Ngs1)
k+1 = ’ 0~ ./ na
- 1, Ap<1 tr(Myy1)
where
Nit1 = Vi1 — R = Pﬁkﬂflkﬂ TPk+1\k_1QPk+1\k_le(kﬂ‘A’kH
M1 =Py = Vi1 + Nie
6181T, k=0
Vi1 = pVi +€k+1£k+1T/ k> 1
1+p
where 0 < p < 1is the fading factor, and p is normally equal to 0.95.
Modify the prediction of the covariance matrix:
2n T
Priiik = Mep1 ) WEG i1k — R [ e 1k — Riaji)
i=0
Recalculate Sigma points &; 1 with modified Py 1 and X, 1. Modify V¢ 1t, Pe,,, and Py 9,

through (11).

Step 3: Update state
Kt 1)ke+1 = Rie1fk + K18
Ky =P Py, !

Rie+1Vk1 7 Viey1
— T
Piiiperr = P — Kis1Poy Kir

Step 4: Set k = k + 1, return to Step 2 and start iteration

4. Diagnosis Approach for Parameter Bias Fault

Faults can be divided into abrupt-type faults and slow-varying-type faults, according to the
variation pattern of parameters [22]. For Li-ion battery cells, the diffusivity and contact ability of
the electrolyte will vary when some faults occur, and will result in the variation of the time constant
T = R,C; and ohmic internal resistance Ry, respectively. The faults can be detected by calculating the
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standard deviations of two parameters. These standard deviations are compared with some thresholds.
A corresponding fault is detected once the standard deviation is beyond a certain threshold. Therefore,
we implement the diagnosis on T and Ry, and define

o= 1 ﬁ( By ) 19)
N+TZ\ Ro-)

=0
I =
Sk, = NEO {Ro(k_]) — eRo}
N 2
2= % ¥ [f - 0]
j=0
where N is the data window, and 0™ is the normal value of the parameter.
The fault detector is expressed as
Hy
S Zgi(i—lz- = Ry, 7) (21)
¢ < S\t T & ¢ = Ko,
Hy

where Hi means the fault is happening, and Hy means no fault. The slow-varying-type fault thresholds
and the abrupt-type fault thresholds—which could be chosen by experience or by trial and error
tests—are defined as ¢! and €, respectively. The fault map is listed in Table 1 according to the fault
detector. The diagnosis initializes with the following process, and the diagnosis flow-chart is presented
in Figure 3.

Step 1: Set a sequence of parameters within a data window N;

Step 2: Extract Ro(k— j) and T_; from the sequence;

Step 3: Calculate 9}*{0, S}{O, S% and 0%, SZO, S%, respectively;

Step 4: Start fault detection to detect the faults. If there is a fault, the detector alerts the system
and breaks out; if there is no fault, the system moves to k + 1.

k=k+1

iz No
Calculate
o l—‘(es—» Abrupt fault
'944‘ ‘Sk, ‘Sf;.

S, 28, No

Initial Value Extract
A — Ry 7 \—Yes—> Slowf:‘illn;ymg Parameters
k= 07 ISI SN =012 . N normal

>
S3 > No-
Calculate I—ch—b Abrupt fault
L
g s s
Si>g Nor

Slow varying
G fault

Figure 3. Parameter-biased fault diagnosis process of battery cell.
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Table 1. Fault map.

Rp slow varying fault 511{% > 8%0
Rp abrupt fault S;>er

T slow varying fault 512Q > e%o
T abrupt fault S2 >

5. Experimental Validation

For verifying the effectiveness of the diagnosis proposed in the paper, the experiment is conducted
through simulating the abrupt-type fault and slow-varying-type fault of a Li-ion battery by controlling
the battery ambient temperature as a case study. The battery parameters are estimated in real time,
and the battery faults are diagnosed by comparing the algorithms of AUKF and UKF in this case.
The test bench consists of a BTS-4000 battery test device, an auxiliary data acquisition channel,
a BLH-100 incubator, and an upper PC and monitor software, as shown in Figure 4. The battery
type that we have chosen for the experiment is WX-1413320 LiFeOy. The specification of the battery is
listed in Table 2.

fy test device

Upper PC

Figure 4. Battery testing bench.

Table 2. Specification of LiFePO4 Power Battery.

Rated Capacity 20 Ah

Max Charge Voltage 3.65V

Min discharge Voltage 25V
Charge Rate 1C
Continuous discharge Rate 3C

The hybrid pulse power characterization (HPPC) test is implemented off-line to identify the T
and Ry at different temperatures and SoCs. Seen from Figure 5, the results show that R increases
with the decreasing temperature, while T varies slightly with the variation of temperature, which is
similar to those in [27]. During the fault simulation, the actual value of parameters can be obtained
from the real temperature and SoC according to the relationship in Figure 5. Therefore, the validation
of AUKEF is confirmed. The Federal Urban Driving Schedule (FUDS) is chosen for the battery charge
and discharge test and the current profiles are plotted in Figure 6. The sampling time is 1 s, and the test
time is 3600 s. The algorithm initial values are set as follows: initial SoC sy = 0.8, polarization voltage
Up0) = —0.03 V.. The parameters are chosen from the identification results in 20 °C: Rg = Rp = 1m(),
Cp = 30KF.



Energies 2017, 10, 1810 9of 14

3.0 T T Y T T T v T v T 60 T T T T Y T y T v T
L s = S0C=0.9
25t —E Ao L e S0C-0.7
L ——80C=0.7 | A 50C=05
o 20} —a—S0C=0.5 | 40 - SOC=0.3 ]
2 | ——50C=0.3 ® —4—50C-0.1 -
S 15f 30C= S o =
<15 ——S0C=0.1 ol ,‘;‘h-— " |
10} A N e S
05}
L 1 " Il M 1 L Il " 1 0 L | 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
TIC tIc
() (b)

Figure 5. Off-line identification results of two parameters. (a) Ohmic Resistances Rp; (b) Time constant 7.

0 500 1000 1500 2000 2500 3000 3500
time (s)

Figure 6. Battery current profile during Federal Urban Driving Schedule (FUDS) cycles.

5.1. Diagnosis of Slow-Varying-Type Fault

For simulating the slow-varying-type fault, we dropped the ambient temperature from 50 °C
to 5 °C in the incubator over a time of 0-3600 s. The measured voltage value is shown in Figure 7.
The results of comparison among the estimated values Ry gained using the algorithm of AUKE,
the estimated values R gained using the algorithm of UKF, and the real values, are plotted in Figure 8a.
It shows that the trend of R given by AUKEF is the same as the real value. Both algorithms are
effective and insensitive with initial values during the estimation before 1000 s. After 3600 s, the AUKF
estimation value reaches 2.88 m() with a relative error of 15.3%, while the UKF estimation value
reaches 1.62 m() with a relative error of 43.8% which shows poor tracking ability. It indicates that the
algorithm of AUKF has better robustness than UKF.

3.35 E
|
3.30F |, E
> |
= 325} "
3.20}
3.15F ]
0 1000 2000 3000
time (s)

Figure 7. Terminal voltage of battery with parameter slow-varying fault.
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The AUKF and UKF have different estimation trends of time constant T after 800 s, as shown in
Figure 8b. The relative estimation error of T from using the AUKEF after 3600 s is 30.8% compared with
the real value of 7. The high error is due to the relatively low ECM accuracy, poor identifiability of
polarization resistance and polarization capacitance, etc. However, the UKF estimation is divergent
after 800 s.

To further discuss the tracking ability of AUKEF, the comparison of terminal voltage estimation
error ¢ of the battery between the two algorithms is plotted in Figure 8c. The adaptive fading
factor in AUKF can adjust the covariance matrices and makes the residual sequences orthogonal.
Thus, the absolute value of ¢ could be restricted within 15 mV, while the residual ¢ estimated by
UKEF is divergent and is fluctuating obviously after 2000 s. The maximum residual reaches 40 mV,
which indicates that the UKEF is less effective than the AUKF.

3.0 T 120 T T T
—— AUKF —— AUKF
250 g UKF 1000 o UKE ., Wy
. 20f —&— Real Value 80} —#&— Real Value ’M.-' b
£ 4 »
< 15} o ® ° e} ® ]
g j @ L4 .«-.
1.0p 40} o ® - i
osf RS S &2 B = S Sblh
0.0 - : - 0 - : - ]
0 1000 2000 3000 0 1000 2000 3000
time (s) time (s)
(a) (b)
25 AUKF . . = 30 UKF
20F
10F "
2 2 WMWMW Wil'
w ud 10F | I
20k
_aof
-25 i L i _40 [
“o 1000 2000 3000 0 1000 2000 3000

time (s) time (s)

(©)

Figure 8. Estimation results of parameter slow-varying type fault. (a) Comparison of Ohmic resistance
estimation; (b) Comparison of time constant estimation; (c) Comparison of voltage residual.

For evaluating the parameter diagnosis, an example is taken as follows. By setting the data
window N = 50, normal parameter 0% = (ZO,O.S)T, and thresholds ¢! = (202, 12)T, the diagnosis
results for the slow-varying-type fault are listed in Table 3. It shows that the AUKF-based diagnosis
method diagnoses the contact fault at 2311 s, which is faster than the UKF-based algorithm of 3585 s
by 78.4%. Moreover, the UKF-based algorithm misdiagnoses the contact fault at 1748 s while the
AUKEF one gives a normal result. Therefore, the AUKF-based diagnosis has better accuracy and is
more reliable than that of UKF.
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Table 3. Diagnosis Result of Slow-Varying-Type Fault.

Contact Fault Diffusion Fault
It
em AUKF UKF AUKF UKF
Detection time/s 2311 3585 - 1748
Diagnosis result Faulty Faulty Normal Normal
Real fault situation Fault (1960 s) Normal

5.2. Diagnosis of Abrupt Type Fault

To simulate the parameter of an abrupt-type fault, the battery cell was maintained in a 50 °C
constant temperature for 1500 s through the incubator. Then, we cooled it down to 5 °C and maintained
the temperature until 3600 s. The terminal voltage profile is shown in Figure 9. Seen from Figure 10a,
the estimated value Ry by using each of the two algorithms—AUKF and UKF—converges to 0.7 m()
before 1300 s. Compared with the real value of 0.61 m(), the relative error is 14.3%. After 1800 s,
the UKF shows poor tracking ability on the abrupt-type fault. The estimated value of AUKF and UKF
reaches to 2.57 m() and 1.74 m(), with relative error of 8.4% and 26.6%, respectively. The estimated
value T by using each of the two algorithms converges to 19 s with a relative error of 25% before 1300 s.
Being the same as the diagnosis results of the slow-varying-type fault, the AUKF converges around
18s while the UKF is still divergent, and the final relative errors of AUKF and UKF are 16.9% and 372%,
respectively, as shown in Figure 10b.

For the abrupt-type fault, the distinct residual comparison between the AUKF and the UKF is
presented in Figure 10c. It indicates residual € increases abruptly after 1300 s. The AUKF can rapidly
adjust € within 15 mV, while the UKF will continue to enlarge the residual after 1300 s, and the residual
reaches near 30 mV after 2500 s. The trend of divergence shows that the UKF is invalid in such a case.

Figure 9. Terminal voltage of battery with abrupt-type fault.
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25}  —E—AUKF —8— AUKF o
@ UKF 100f —@— UKF .0
o 2.0p —&— Real Value . 8ot RealValye '
= s
= 15} 60 o ® ]
1.0 a0t 7 |
P-- - - r‘.._ -
o.srl 2k SRR A A
, ; \ 0 . . .
0.9; 1000 2000 3000 0 1000 2000 3000
time (s) time (s)
(@) (b)
AUKF UKF
30} : sal ]
20} -
> 10t | | | I . ] - Ll | | : | |
2 om0 s
10 | - rf -10f] | _ .
20H 1 20} - 1
op ' | -30f
40} . . . ] i
0 1000 2000 3000 0 1000 2000 3000
time (s) time (s)

(©)

Figure 10. Estimation results of parameter abrupt-type fault. (a) Comparison of estimated ohmic
resistance; (b) Comparison of estimated time constant; (c) Comparison of voltage residual.

The diagnosis settings are the data window N = 100 and the threshold &> = (57, 0.12)T.
The diagnosis results are listed in Table 4. The contact fault is detected at 1715s by the AUKF, while the
UKF misdiagnoses the fault as normal. For the diffusion type of fault, the AUKF misdiagnoses the
normal as fault at 1380 s, while the UKF diagnoses it as normal. The misdiagnosis by AUKF is due
to the fact that the single fading factor is unable to adjust each state variable independently. Because
of the effect of the estimated value Ry, a large fluctuation in the estimated value T happens at 1400 s.
This problem could be solved by introducing multiple fading factors [22].

Table 4. Diagnosis result of Parameter Abrupt-Type Fault.

Item Contact Fault Diffusion Fault
AUKF UKF AUKF UKF
Detection time/s 1715 - 1380 -
Diagnosis result Faulty Normal Faulty Normal
Real fault situation Fault (1300 s) Normal

In general, the diagnosis method based on AUKEF for Li-ion battery faults offers great advantages
in accuracy, reliability, and computational effort over the one based on UKF.

6. Conclusions

This paper proposes an adaptive unscented Kalman filter based parameter estimation algorithm
and fault diagnosis method for Li-ion batteries. The parameters estimated by the adaptive unscented
Kalman filter are utilized to diagnose two types of parameter fault—slow-varying-type faults and
abrupt-type faults—through defining some fault threshold values. The experimental results show that
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the algorithm of the adaptive unscented Kalman filter has better tracking ability and higher accuracy
on battery fault parameters than the unscented Kalman filter. Therefore, the adaptive unscented
Kalman filter based diagnosis method proposed in this paper has better effectiveness in diagnosis,
higher reliability, and more moderate computational effort. The methodologies of this paper can be
extended to different battery types and battery packs for diagnosing the faults of battery systems. It is
worth exploring such an extension for providing a relatively new train of thought for real-time fault
diagnosis of complex battery systems.
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