
energies

Article

An Extended System Frequency Response Model
Considering Wind Power Participation in
Frequency Regulation

Yi Tang 1, Jianfeng Dai 1,*, Jia Ning 1, Jie Dang 2, Yan Li 3 and Xinshou Tian 3

1 Jiangsu Provincial Key Laboratory of Smart Grid Technology & Equipment, Southeast University,
Nanjing 210096, China; tangyi@seu.edu.cn (Y.T.); ningjia@seu.edu.cn (J.N.)

2 Technology Center of Central China Grid, Wuhan 430077, China; dangchunqiu@163.com
3 State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems,

China Electric Power Research Institute, Beijing 100192, China; wq_seu@163.com (Y.L.);
tianxinshou@epri.sgcc.com.cn (X.T.)

* Correspondence: daijianfeng2012@126.com; Tel.: +86-25-8379-0617

Academic Editor: Marco Mussetta
Received: 22 September 2017; Accepted: 1 November 2017; Published: 8 November 2017

Abstract: With increasing penetration of wind power into the power system, wind power
participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic
frequency response characteristics of power systems. The traditional power system frequency
response (SFR) model, which only includes synchronous generators, is no longer suitable for power
systems with high penetrated wind power. An extended SFR model, based on the reduced-order
model of wind turbine generator (WTG) and the traditional SFR model, is presented in this paper.
In the extended SFR model, the reduced-order model of WTG with combined frequency control is
deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop
control system for the extended SFR model is carried out. Time-domain simulations using a test
system are performed to validate the effectiveness of the extended SFR model; this model can
provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for
a high-wind integrated power systems. The impact of additional frequency control parameters and
wind speed disturbances on the system dynamic frequency response characteristics are investigated.

Keywords: dynamic frequency response; combined frequency control; small signal analysis;
reduced-order model; extended SFR

1. Introduction

Wind power, as one of the most developed energy generation modes, has been increasing in
the modern power system, more conventional synchronous generators which enjoy the ability of
frequency support are replaced by wind turbine generators (WTGs). Unlike conventional synchronous
generators, WTGs are connected to the power grid through power electronic converters, and as a result,
the system frequency is decoupled from the rotor speed of the WTGs [1]. In addition, WTGs usually
operate over the maximum power point tracking curve so that there is no available reserve power.
Therefore, WTGs do not provide inherent inertia, and do not respond to system frequencies when
a disturbance occurs; they pose a great challenge to the frequency stability in a power system with
a high wind power penetration level [2–4]. Thus, WTGs should assist in system frequency regulation
to maintain the frequency stability of power systems with increased wind power.

To solve the frequency stability problem caused by decreased inertia in a power system with
increased wind power, a large amount of research has been conducted to enable wind power to
participate in system frequency regulation, so as to improve inertial response [5–16]. The most common
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idea is to establish a supplementary control loop between system frequency and an extra active power
reference; as a result, the coupling relation between frequency deviation and active power is established.
These methods can generally be divided into three control modes: virtual inertial control [5–8], power
reserve control [9–12], combined virtual inertial control and power reserve control [13–16]. The above
research can effectively improve the frequency control ability of wind turbines themselves. However,
relatively little literature focuses on the dynamic frequency response characteristics of wind power
integrated power systems [17,18]. A frequency domain model, including governors, networks and load
characteristics is developed in [17] to analyze the power system frequency response to wind power
fluctuations of different frequencies. The researchers in [18] develop an assessment method on the
impact of wind power injection on power system frequency deviations. However, the above studies
consider the wind turbine as a negative load, ignoring the internal dynamic response characteristics
of the wind turbine. Simultaneously, these are static frequency evaluation methods, and hence, it is
difficult to efficaciously reflect the dynamic frequency response characteristics of high-wind integrated
power systems. Recently, the research on dynamic frequency characteristics for traditional power
systems have received the attention of many researchers. A quintessential low-order system frequency
response (SFR) model is widely used in power system frequency analysis due to its simple and clear
calculation [19], which can effectively analyze and evaluate the frequency dynamics of power system
disturbances, and can help technology policy makers to develop relevant emergency control strategies
to maintain the frequency stability of the system.

With large-scale wind power into the grid, the traditional SFR model is no longer suitable for high
permeability wind power systems, research into the dynamic frequency response characteristics of
high-wind integrated power systems becomes a crucial subject to be studied. Hence, it is indispensable
to investigate the SFR model for power systems with high penetrated wind power. There are
three main contributions in this paper. Firstly, the combined frequency control strategy of WTG
based on the virtual inertia control and the pitch-control-based deloading control is introduced.
Secondly, the reduced-order model of WTG is deduced by employing small signal analysis theory,
and an extended SFR model that takes the wind power into account based on the reduced-order model
of WTG and the traditional SFR model. Afterwards, the stability of the extended SFR model is analyzed.
Finally, analytical tests and evaluations of the extended SFR model are given.

2. Primary Frequency Regulation of WTG

Here, the dynamic frequency control strategy of variable speed WTG based on combined virtual
inertia control and pitch-control-based deloading control is considered, as shown in Figure 1. Hw is the
inertia time constant of the wind turbine, ω is the rotor speed, Tm and Te are the mechanical torque and
the electromagnetic torque, respectively, Pe is the active power output of the WTG, ∆f is the frequency
deviation, ∆β is the pitch angle deviation, kw and Rw are the scale coefficients and the gain of the droop
setting, respectively, and kb is the scale factor.

2.1. Virtual Inertia Control

A general approach to enabling the WTG participating in the grid short-term frequency control
is virtual inertia control, which is adding an additional active power reference value associated with
system frequency variations. The quintessential additional virtual inertial frequency control scheme of
WTG is a proportional differential control as shown in Figure 1. Here ∆Pe1 can be expressed by

∆pe1 = −(kw
d∆ f
dt

+
1

Rw
∆ f ) (1)
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Figure 1. Frequency combination control strategy of wind turbine generators (WTGs). 

2.2. Pitch-Control-Based Deloading Control 

As shown in Figure 1, the WTG operates in the combination of Maximum power point tracking 
(MPPT) strategy and pitch-control-based deloading. The initial pitch angle is set as a fixed reference 
value βref according to the reserve power of the wind power. Therefore, at a given wind speed, rotor 
speed and pitch angle, wind turbines exhibit maximum power. The mechanical power equation of 
WTG extracted from the wind is expressed as 
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the wind turbine, λ is the tip-speed ratio and β is the blade pitch angle and ωm is the turbine rotor 
angular. 

When the wind turbine operates at maximum power, the corresponding tip speed ratio is the 
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Figure 1. Frequency combination control strategy of wind turbine generators (WTGs).

2.2. Pitch-Control-Based Deloading Control

As shown in Figure 1, the WTG operates in the combination of Maximum power point tracking
(MPPT) strategy and pitch-control-based deloading. The initial pitch angle is set as a fixed reference
value βref according to the reserve power of the wind power. Therefore, at a given wind speed, rotor
speed and pitch angle, wind turbines exhibit maximum power. The mechanical power equation of
WTG extracted from the wind is expressed as

Pt =
1
2

ρπr2v3
mCp(λ, β) (2)

With the tip speed ratio

λ =
ωm

vm
(3)

where ρ is the air density, r is blade length, vm is wind speed, Cp is the coefficient of performance of the
wind turbine, λ is the tip-speed ratio and β is the blade pitch angle and ωm is the turbine rotor angular.

When the wind turbine operates at maximum power, the corresponding tip speed ratio is the
optimal tip speed ratio, i.e., λnom. Accordingly, the per unit tip speed ratio is

λ =
ωm

vm
(4)

where ω and v are the per unit values of rotor speed and wind speed on base wind speed 12 m/s, respectively.
The per unit mechanical power and tip speed ratio can be written as

Pm =
ρπr2v3

mCp(λ, β)

2Pbase
= kpCpv3 (5)

With

kp =
ρπr2v3

mCp,max(λ, β)

2Pbase
(6)

where Pbase is the rated power of WTG and kp is scaling factor, and represents maximum turbine output
power under the base wind speed, Cp,max is the maximum value of power coefficient performance.

Hence, the per unit mechanical torque of wind turbine is

Tm =
kpCpv3

ω
(7)
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The values of per unit performance coefficient Cp (pu) and the per unit tip speed ratio λpu are 1
when the wind turbine operates at maximum power, thus the output torque of the wind turbine can be
written as

Tm =
kpv3

ω
(8)

And the equation of the generator torque at MPPT state can be written as

Te = kpω2 (9)

Under a certain wind speed, the WTG extracts the maximum mechanical power when the pitch
angle β is set to zero; the wind turbine has no reserve capacity available at this point. However,
when the pitch angle β is set to greater than zero, the coefficient of performance Cp, and thereby,
the mechanical power output will decrease. Therefore, when the maximum power point tracking
control and pitch angle control are adopted, the reserve power can be obtained, and the WTG is said
to be decoded. Here, the relation between the frequency deviation and the pitch angle change is
as follows:

∆β = kb∆ f (10)

2.3. Combined Frequency Control

For the combined frequency control in this paper, the virtual inertial control of the WTG can
quickly adjust the active power, and releases the kinetic energy stored in the rotating masses in a WTG
to provide temporary active support so as to arrest the frequency drop during the disturbance events,
thus improving the ability of the system to restrain frequency change. On the other hand, the use of
pitch-control-based deloading can increase the input mechanical power to participate in the system’s
long frequency regulation and reduce the steady-state deviation of frequency. Although the reserve
power control sacrificed part of the power of the WTG, the proper load shedding can avoid cutting
off the machine due to the wind power being higher than the load. Therefore, frequency regulation
strategy for the perfect wind farm should have these two capabilities simultaneously.

3. SFR Model for High-Wind Integrated Power System

Frequency response characteristics of a high-wind integrated power system are analyzed using
small signal analysis in this section, the reduced order dynamic model of WTG can be derived and
expressed in the form of small signal linearized transfer functions. Thus, the extended SFR model for
high-wind integrated power systems can be obtained. The reduced order dynamic model of WTG,
the extended SFR model and the system stability of a closed-loop system for the extended SFR model
are presented in this section.

3.1. Reduced Order Dynamic Model of WTG

The response of the frequency deviation of the WTG system is controlled by regulating
electromagnetic power Pe and mechanical power Pm of the WTG. When frequency perturbation occurs,
the electromagnetic power Pe is controlled by virtual inertial control to add the additional transient
power ∆Pe to the initial electromagnetic power, whereas the mechanical power Pm is controlled by
pitch angle control to add the increment of pitch angle ∆β to the initial pitch angle.

From (1), the change in electromagnetic torque with change in frequency for the virtual inertial
control method is calculated in the frequency domain:

∆Te1(s) =
∆Pe1

ω
= −(

1/Rw + kws
ω

)∆ f (s) (11)
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Similarly, from (9), the dynamic deloading torque based on pitch angle control can be considered
as a function of rotor speed, thus the change of dynamic deloading torque can be represented by the
variation of the rotor speed:

∆Te2(s) =
∂Te

∂ω
∆ω(s) (12)

Putting (9) into (12), the (12) can be modified as

∆Te2(s) = 2kpω∆ω(s) (13)

Adding (11) and (13), the total change in electrical torque when the frequency changes is expressed
as follows:

∆Te(s) = ∆Te1(s) + ∆Te2(s) = −(
1/Rw + kws

ω
)∆ f (s) + 2kpω∆ω(s) (14)

From (8), the linearized mechanical torque Tm can be considered as a function of the small changes
of frequency, wind speed and rotor speed, thus linearized mechanical torque Tm can be represented by
the variation of the frequency, wind speed and rotor speed:

∆Tm(s) = ∂Tm
∂ω ∆ω(s) + ∂Tm

∂v ∆v(s) + ∂Tm
∂ f ∆ f (s)

= ∂Tm
∂ω ∆ω(s) + ∂Tm

∂v ∆v(s) + ∂Tm
∂Cp

(
∂Cp
∂λ ∆λ(s) + ∂Cp

∂β
∂β
∂ f ∆ f (s))

(15)

Let kC =
∂Cp
∂λ and kβ =

∂Cp
∂β , the values of both are constant, and can be calculated from the

relational expression of Cp(λ, β).
Now, putting (8) and (10) in (15), the linearized mechanical torque Tm is derived and given in

Equation (16) as shown.

∆Tm(s) = (
kpkCv2

ω − kpv3CPre f
ω2 )∆ω(s) + (

3kpCPre f v2

ω − kpkCv2λre f
ω )∆v(s)

+
kpkβkbv3

ω ∆ f (s)
(16)

The power swing equation in terms of the unbalance torque ∆Te and ∆Tm can be expressed as in
frequency domain:

2Hws∆ω(s) = ∆Tm(s)− ∆Te(s) (17)

Putting (14) and (16) into (17), the relation between the change of rotor speed and the change of
frequency and wind speed is derived as follow

∆ω(s) =
(

3kpCPre f v2

ω − kpkCv2λre f
ω )∆v(s) + (

kpkβkbv3

ω +
1

Rw +kws
ω )∆ f (s)

2Hws + 2kpω − kpkCv2

ω +
kpv3CPre f

ω2

(18)

By inserting (18) into (14), the change in electrical power output can be written as

∆Pe(s) =
g

qs + 1
∆v(s)− as2 + bs + c

qs + 1
∆ f (s) (19)

where
q =

2Hwω2/kp
2ω3+v3CPre f −kCωv2

g =
3kpω3v2(3CPre f −kCλre f )

2ω3+v3CPre f −kCωv2

a =
2Hwω2/kpkw

2ω3+v3CPre f −kCωv2

b =
2Hwω2/Rwkp−3ω2kw
2ω3+v3CPre f −kCωv2 + kw

c = − 3ω2( 1
Rw +kpkβkbv2)

2ω3+v3CPre f −kCωv2 +
1

Rw

(20)
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3.2. Extended SFR Model

In the process of power system frequency response analysis and frequency stability control,
the system frequency response (SFR) model proposed by P.M. Anderson is a widely used equivalent
model method where the dynamic aggregation of multiple generators is performed [19]. When the
penetration rate of wind power is increasing, the system requires that the wind turbines have the
ability of frequency regulation, and the traditional SFR model is no longer suitable for a power system
with high penetrated wind power. Based on the reduced order dynamic model of WTG and the
traditional SFR model, the extended low-order linearized SFR model for the high-wind integrated
power system is proposed as shown in Figure 2. Similarly, the equivalent wind farm in this model
is the result of dynamic equivalent aggregation of all wind turbines. In Figure 2, TR and FH are the
equivalent turbine time constants and speed governor, respectively, R is the equivalent droop value,
H and D are the equivalent inertia constant and load-damping coefficient of the conventional power
system, respectively, and α is the wind power penetration level.
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From the above analysis, the extended SFR model is a multi-input and single output (MISO)
transfer function system compared with the traditional SFR model; the input signals are the change of
load ∆PL and the change of wind speed ∆v, and the output signal is the system frequency deviation
∆f, as shown in Figure 2. This means that the output of the extended SFR model is affected by the
change in load as well as wind speed. For the extended SFR model, synchronous generators and the
wind farm work together on frequency control to balance the external power disturbance (∆PL and
∆v). In this paper, it is assumed that the total generating capacity of the system remains fixed; the wind
turbines are connected to the grid to replace some of the conventional generators, and as a result,
the net inertial and damping coefficient of the power system is affected.

For MISO transfer function system, the superposition theorem can be used for analysis, namely
one disturbance at a time is considered [20]. It is considered that the disturbance of the wind speed
is set to zero when analyzing the impact of the load disturbance on the system frequency. Similarly,
the disturbance of the load is set to zero when analyzing the impact of the wind speed disturbance on
the system frequency. Combining Equation (20) and Figure 2, the transfer function expression of the
extended SFR model is

∆ f (s) = [∆PL(s) +
g

qs + 1
∆v(s)]

m0s2 + m1s + m2

n0s3 + n1s2 + n2s + n3
(21)
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where
m0 = qTR
m1 = q + TR
m2 = 1
n0 = αaTR + 2(1 − α)HqTR
n1 = (1 − α)[2H(q + TR) + DqTR] + (1 − α)FHqTR/R + α(a + bTR)

n2 = (1 − α)[2H + D(q + TR)] + (1 − α)(q + FHTR)/R + α(b + cTR)

n3 = (1 − α)D + (1 − α)/R + αc

(22)

For a sudden load disturbance and wind speed disturbance, they are usually represented as
a step function

∆PL(t) = ∆Pd(t)u(t)
∆v(t) = ∆vd(t)u(t)

(23)

where ∆Pd and ∆vd are the disturbance magnitude of the active load and wind speed per unit based
on the total installed capacity of the system and rated wind speed respectively, and u(t) is the unit
step function.

After the Laplace transform, the (23) can be expressed as

∆PL(s) =
∆Pd

s
∆v(s) = ∆vd

s
(24)

Putting (24) into (21), the transfer function expression of the extended SFR model can be written as

∆ f (s) = [
∆Pd

s
+

g
qs + 1

∆vd
s

]
m0s2 + m1s + m2

n0s3 + n1s2 + n2s + n3
(25)

According to the initial/final value theorem of the Laplace transform, the initial frequency change
rate (IFCR) and steady-state frequency deviation (SFD) can be obtained:

IFCR = lim
t=0+

d∆ f (t)
dt

= lim
s=+∞

s2∆ f (s) = ∆Pd
m0

n0
=

∆Pd
αkw + 2(1 − α)Hkp

(26)

SFD = lim
t=+∞

∆ f (t) = lim
s=0+

s∆ f (s) = (∆Pd + g∆vd)
m2

n3
=

∆Pd + g∆vd
(1 − α)D + (1 − α)/R + αc

(27)

From (26) and (27), it can be seen that the parameter kw of the virtual inertial control is a key factor
in influencing the IFCR, but has no inhibitory effect on SFD; and parameter Rw of the virtual inertial
control and parameter kb of the pitch-control-based deloading control have a positive effect on SFD,
but have no inhibitory effect on IFCR at all. Thus, the curves of IFCR under different parameter kw can
be plotted as in Figure 3, based on (26). It can be seen that the greater the load disturbance will lead to
a larger IFCR, and the IFCR decrease gradually with the increase of kw. Meanwhile, curves of IFCR
under different parameter kb can be also plotted as Figure 4, based on (27). It can be observed from
the Figure 4 that the greater the load disturbance will also lead to a larger SFD, and SFD decreases
gradually with the increase of kb.
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3.3. Stability Analysis of the Closed-Loop System

For the extended SFR model as shown in Figure 2, the loop of the wind farm involved in frequency
regulation is added in the conventional SFR model. Taking only load disturbances as an example
(∆vd = 0), the open-loop transfer function, where only the conventional generator participate in
frequency regulation, can be derived as follows:

TOL(s) =
∆ f (s)

∆PL(s)
=

− 1
(1−α)(2Hs+D)

1 + 1
(1−α)(2Hs+D)

(1−α)
R

1+FH TRs
1+TRs

(28)

The closed-loop transfer function, where the wind farm also participate in frequency regulation,
can be derived as follows:

TCL(s) =
∆ f (s)

∆PL(s)
=

1

(TOL(s))
−1 − α( as2+bs+c

qs+1 )
(29)

The bode plots of TOL(s) and TCL(s) are shown in Figure 5, and demonstrate that both systems
are stable, and the magnitude of TOL(s) is larger than the magnitude of TCL(s). This indicates that
the frequency deviation of the system is relatively large when the wind farm is not involved in
frequency regulation.
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The stability of the feedback control system is a prerequisite of its normal operation, and the gain
and phase margin are two main indices to judge stability in the control field. The gain and phase
margin can be obtained from the Bode diagrams of the open-loop transfer function of the closed-loop
system. For the closed-loop system, its poles are zeros of characteristic expressions [21,22]. According
to (28) and (29), the characteristic expression of the closed-loop system, with and without wind power
involved in frequency regulation, can be written as

1 +
(1 − α)(1 + FHTRs)

(1 − α)(2Hs + D)(1 + TRs)R
+

α( as2+bs+c
qs+1 )

(1 − α)(2Hs + D)︸ ︷︷ ︸
ϑW

= 0 (30)

1 +
1 + FHTRs

(2Hs + D)(1 + TRs)R︸ ︷︷ ︸
ϑG

= 0 (31)

where ϑW and ϑG are the open-loop transfer function for the closed-loop system, with and without
wind power involvement in frequency regulation (as shown in Figure 2), respectively.

The Bode plots of the systems of (30) and (31) are shown in Figure 6. It can be seen that both
systems (with and without wind farm involved in frequency regulation) are relatively stable, and the
larger gain and phase margins have been achieved when the loop of wind power involved in frequency
regulation is added to the system. The results indicate that wind power participating in frequency
regulation is more advantageous to system stability in areas with higher wind penetration.
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4. Verification of the Extended SFR Model

In order to verify the validity of the proposed extended SFR model, the IEEE-14 bus system is
chosen as a case study. The wiring diagram is shown in Figure 7; system total load power is 220 MW
and generator nodes are 1, 2, 3, 6 and 8. Using the unit substitution method, the 6# synchronous
generator is replaced by wind turbines to maintain the power flow balance of the system, the ratio of
wind turbine capacity to total generator capacity is 30%, namely α = 0.3, and it is assumed that the
wind turbines are replaced by a dynamic aggregate wind turbine generator [23,24]. The synchronous
generators are made of thermal power units, and both of them are equipped with a prime mover
governor system. The wind power adopts permanent magnet direct drive wind turbine, and the wind
turbine adopts the frequency regulation control strategy shown in Figure 1. The operating data and
parameters for the extended SFR model for the high-wind integrated power system, such as wind
turbine generators and traditional generators, are mentioned in Appendix A.Energies 2017, 10, 1797 11 of 19 
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Figure 7. Five machine fourteen bus test system.

For wind power generation, the output power of WTG is affected by wind speed. Therefore,
the impact of wind speed should not be neglected when analyzing the dynamic frequency response
of high-wind integrated power systems. However, the wind speed is uncontrollable, and the output
power of the WTG fluctuates with the fluctuation of the wind speed, so the resulting in frequency
fluctuates. In order to make wind speed closer to reality in the case study, the mathematical model of
stochastic fluctuating wind speed is applied, the wind speed is composed of base wind speed, gust
wind speed, ramp wind speed and noise wind speed [25,26], as shown in Figure 8. And it is assumed
that a 0.2 pu load disturbance occurs at t = 5 s in the simulation.
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Figure 8. Wind speed variations.

The system frequency response of the reduced-order model and the detailed time simulation
model of wind farms are depicted and compared in Figure 9. It can be seen that the curves of the
frequency obtained from the reduced-order model and time simulation model of wind farms are
in good agreement; the system frequencies of wind farms based on the reduced-order model are
accurately simulated in comparison to the time simulation model. That means the reduced-order
model can represent real time frequency dynamic response of the wind farm.

The system frequency response of the extended SFR model, the conventional SFR model and
the detailed time simulation model based on test system, as shown in Figure 7, are also depicted
and compared in Figure 10. Although the extended SFR model ignores the topological structure
of the network and cannot reflect the dynamic power of the branch, the initial frequency response,
the minimum frequency and the frequency steady-state value of the extended SFR model have higher
simulation accuracy. Compared with the whole time domain simulation results, the maximum error in
the frequency drop is less than 0.005 Hz, and the frequency steady value error is less than 0.006 Hz;
thus, the extended SFR model method can calculate the frequency response process of the system.
Compared with the conventional SFR model (proposed in [18]), the proposed extended SFR model
exhibits a smaller frequency nadir error and steady-state frequency error. It can also more efficaciously
reflect the dynamic response characteristics of wind turbines.
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The WTG responds to the system frequency by controlling electromagnetic torque Te or mechanical
torque Tm. The electromagnetic torque control in this paper refers to the virtual inertial control, and the
mechanical torque control is the pitch-control-based deloading control. Figure 11 shows the dynamic
frequency response and the additional power of the system with different torque control. Based on the
extended SFR model, it can be seen that the frequency dynamic characteristics after disturbance can be
improved when combined with Te control and Tm control; as a result, the minimum frequency and
the steady-state frequency value are improved. When only the Te control is applied in the extended
SFR model, the minimum frequency is 49.875 Hz, and the quasi steady state value is 49.925 Hz. When
the Tm control is added, the system minimum frequency is 49.885, and the steady-state frequency
value is 49.948 Hz. In addition, it can be seen that the control of adding Tm does not affect the initial
rate of frequency change (see the enlarged diagram in Figure 11). Figure 12 shows the additional
power-per-unit value of the WTG; after adding Tm control, the wind turbine can release a certain
reserve power according to the change of the frequency. This part of the reserve power accelerates the
rotor, thereby reducing the steady-state frequency deviation.
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Figure 12. Additional power response of WTG with different torque control.

From the analysis in Section 3, it is suggested that parameters of virtual inertia control, such
as kw, Rw and pitch-control-based deloading control kb, will affect the frequency dynamic response
characteristics of the power system. Therefore, in order to evaluate the impact of parameters kw,
Rw and kb on system specific frequency response, different values of parameter kw, Rw and kb are
considered in Figures 13–15. It is assumed that all load disturbances and wind speeds are the same in
the simulation scenario.

From Figure 13, it can be seen that kw has almost no impact on the steady-state frequency value of
the perturbed system, but affects the initial frequency change rate, the minimum frequency and the
arrival time of minimum frequency of the perturbed system. The minimum frequency is comparatively
higher when the value of kw is larger, and the initial frequency change rate becomes slower and
the arrival time of the minimum frequency is later at higher value of kw. That means the frequency
change rate is sensitive to the change of parameter kw; the simulation result is consistent with the
analysis of (26) and Figure 3. Also, as can be seen from Figure 14, Rw mainly affects the minimum
frequency; the minimum frequency is comparatively higher when the value of Rw is less; it has little
effect on the rate of the frequency change, and also has a slight effect on the steady-state frequency
value. This demonstrates that the inertial control of WTG can make a contribution to the frequency
stabilization, and the larger kw and smaller Rw can play a greater role. However, the improvement in
steady-state frequency deviation is not particularly good.
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The impact of parameter kb on frequency dynamic response is shown in Figure 15, where kb
represents the proportional relationship between the frequency deviation and the pitch angle deviation.
It can be seen that kb does not affect the initial frequency change rate, but has a greater impact on
the minimum frequency and the steady-state frequency values. With an increase of parameter kb,
the initial frequency change rate of each frequency response curve is coincident, and the minimum
frequency and the steady-state frequency values are higher. That means the minimum frequency and
the steady-state frequency values are sensitive to the change of parameter kb. That is mainly because
a higher kb setting will result in a larger reserve power controlled by pitch-control-based deloading
control. The simulation result is also consistent with the analysis of (27) and Figure 4.
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Figure 15. The impact of parameter kb on frequency dynamic response.

As mentioned above, the fluctuation of wind speed results into frequency variation. The impact
of initial operating wind speed v on frequency dynamic response is shown in Figure 16. It can be seen
that an increase in initial operating wind speed v improves the frequency dynamics, which can be
particularly reflected by the dynamic indices of the minimum frequency and the steady-state frequency
values. This is mainly because a higher initial operating wind speed v setting will also result in
a larger output power of WTG and the change of the reserve power controlled by pitch-control-based
deloading control.
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The above analysis is based on load disturbance. In fact, the wind speed may change suddenly in
the area where the wind resource fluctuates greatly. Meanwhile, according to Figure 2 and (25), sudden
disturbance of wind speed will also affect the dynamic response frequency. The step wind speed
model for WTG is considered as shown in Figure 17; it is also composed of base wind speed, gust
wind speed, ramp wind speed and noise wind speed in order to present more realistic results [25,26].
It is assumed that the initial average operating wind speed is 12 m/s, which is the rated wind speed.
The wind speed suddenly increased to 13 m/s at t = 50 s and suddenly decreased to 12.5 m/s at
t = 100 s, as shown in Figure 17. Meanwhile, assume that only the wind speed disturbance occurs
(∆Pd = 0). The frequency response and the active power response of the system under wind speed
conditions shown in Figure 17 are shown in Figures 18 and 19, respectively.
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Figure 17. Wind speed variations with sudden disturbance.

It can be observed from the Figure 18 that the frequency response trends are the same as the
wind speed; namely, the sudden increase in wind speed will increase the value of system frequency.
Conversely, the sudden decrease of wind speed will reduce the value of system frequency. But the
frequency response is smoother (i.e., dip value is less) with a sudden disturbance in wind speed as
compared to a sudden disturbance in load. That is mainly because the output power of WTG varies
with the change of wind speed. The transfer function expression between the wind speed variation
and output power variation of WTG is a first-order system as shown in Equation (21), which acts
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like a first-order low-pass filter, thus the inertial damping will be acted. Figure 19 shows that the
sudden change in wind speed will change the power of two parts: one is the output power of the WTG
itself (∆P1), and another is the power released by the wind turbine (∆P2) participating in frequency
regulation. It is worth mentioning that the change in direction of ∆P1 and ∆P2 is reversed, and the
magnitude of the change of ∆P2 is larger than ∆P1; thus, it is concluded that the variation of wind
speed will bring frequency deviation of the system.

In addition, the frequency response for varying values of wind speed v is shown in Figure 20,
it can be noticed that the dynamic response characteristics of frequency become worse when the wind
speed is more abrupt. The result is extremely similar to varying the parameter ∆Pd, the difference is
that the frequency response is smoother (i.e., dip value is less) than mentioned above.
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5. Conclusions

In this study, a linearized reduced-order model of WTG has been obtained by employing the
small signal analysis theory. Based on the reduced-order model of WTG and the traditional SFR model,
an extended SFR model, considering wind power participation in frequency regulation, is presented.
Compared to the time-simulation model, the extended SFR model not only has a higher simulation
accuracy for the dynamic frequency response index, but also can provide a simpler, clearer and faster
way to evaluate the dynamic frequency response characteristic for a high-wind integrated power
system during load and wind speed disturbances.

Based on the extended SFR model, the impact of additional frequency control parameters and
wind speed disturbances on the system dynamic frequency response characteristics are investigated.
The results indicate that higher values of parameters kw, kb and a lower value of parameter Rw

contribute to the improvement of dynamic frequency response characteristic and wind speed
disturbance. They also affect the dynamic frequency response characteristics of the system, making it
smoother (i.e., dip value is less) as compared to the sudden disturbance in load.
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Appendix A

WTG Parameters:

Rated power of WTG = 1.5 MW, Rated wind speed at 12 m/s, Hw = 5, ω = 0.8054, v = 0.875,
kp = 0.73, β = 4◦, Cpref = 0.9547, λref = 0.9986, kc = 0.0771, kβ = −0.1422, kw = 0.2, Rw = 0.05, kb = 600.

Traditional Power System Parameters:

H = 5, D = 1, TR = 7, FH = 0.3, R = 0.05.
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