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Abstract: One of the most crucial prerequisites for effective wind power planning and operation in 

power systems is precise wind speed forecasting. Highly random fluctuations of wind influenced 

by the conditions of the atmosphere, weather and terrain result in difficulties of forecasting 

regardless of whether it is short-term or long-term. The current study has developed a method to 

model wind speed data predictions with dependence on seasonal wind variations over a particular 

time frame, usually a year, in the form of a Weibull distribution model with an artificial neural 

network (ANN). As a result, the essential dependencies between the wind speed and seasonal 

weather variation are exploited. The proposed model utilizes the ANN to predict the wind speed 

data, which has similar chronological and seasonal characteristics to the actual wind data. This 

model was applied to wind speed databases from selected sites in Malaysia, namely Mersing, 

Kudat, and Kuala Terengganu, to validate the proposed model. The results indicate that the 

proposed hybrid artificial neural network (HANN) model is capable of depicting the fluctuating 

wind speed during different seasons of the year at different locations. 

Keywords: wind speed forecasting; artificial neural network; Weibull model; Malaysia 

 

1. Introduction 

Wind power is the most promising renewable energy and is one of the fastest developing electric 

generating technologies in the whole world [1]. Consequently, the pervasiveness of wind power in 

power systems has increased over the years. Figure 1 shows the global installed wind power capacity 

around the world, between 2000 and 2015. By the end of 2015, a total of 432.419 MW of capacity had 

been installed worldwide [2]. 

Wind power has an interesting resource potential as well as technology and is extensively 

utilized when considering energy mix options. Analysis of wind data characteristics and accurate 

wind power potential assessment at a given location is an imperative requirement before making a 

decision for the installation of a wind energy conversion system (WECS), as well as for assessing 

plans for connecting these projects with electrical power grids, or applications in remote areas.  

For the effective development of wind power, the first measure for the electric utility is to 

conduct an adequate survey of wind availability. However, reliable wind speed data specifically for 

wind resource estimation is difficult to obtain [3,4]. Therefore, particular wind speed models are 

developed from the available wind speed data records that have been previously collected. 
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Figure 1. Global cumulative installed wind capacities 2000–2015 [2]. 

To predict wind speed, several approaches have been examined which can be categorized into 

four types [5]: (a) physical models; (b) statistical models; (c) artificial models; and (d) spatial 

correlation models. Each type of prediction model has its own specific characteristics. Compared to 

physical models, statistical models are typically simple and more appropriate for small farms [6]. The 

performance of hybrid models is usually better than that of single models, in wind speed forecasting 

[7]. This paper proposes a hybrid model that is a combination of the statistical model and the artificial 

neural network (ANN), which can effectively predict wind speed.  

Wind speed forecasting has been investigated in some studies as reported [8,9]. The artificial 

neural network (ANN) is a potential technology in wind speed prediction. Li et al. [10] employed 

three types of feed-forward neural networks for accurate wind speed forecasting. Li et al. [11] 

developed an ANN-based methodology that provides a one-step-ahead prediction, and it 

demonstrated commendable performance in situations where there was no violent wind data 

oscillation. 

A statistical time series analysis model involves constructing a model that is a representation of 

a time series; with this model, it is possible to predict the future values only from the distribution of 

past wind speed data values, and based on these distributions it can determine the special parameters 

of these distributions. According to Fortuna et al. [12], the time series data are characterized by time-

varying data. The major time series clustering approaches can be categorized into three major groups, 

depending upon whether they work directly with raw data, indirectly with features extracted from 

the raw data, or indirectly with models built from raw data. Therefore, a significant assumption in 

the building of the time series model is stationary as a stationary time series can conveniently be 

reproduced by its mean value, standard deviation or variance. 

In numerous recent studies, the Weibull distribution has been considered for expressing annual 

mean wind speed variation [13]. It represents various distribution characteristics when its parameter, 

shape and scale are appropriately tuned [14]. Therefore, the Weibull model can be applied for 

modeling wind speed changes and for forecasting future wind speeds [15,16]. 

The conventional modeling (statistical) approach is to fit the probability distribution to a given 

probability density function (PDF) model, and project statistical factors such as mean and variance 

[17]. However, these models do not have time variation properties and exclude cross-dependencies 

between other meteorological data. This current study has developed a method to model the wind 

speed data with dependence on seasonal wind variations over a particular time frame, usually a year, 

in the form of the Weibull model with ANN. As a result, the essential dependencies between the 

wind speed and seasonal weather variations are exploited. Both models were developed from three 

databases from three different sites in Malaysia, namely Mersing, Kudat, and Kuala Terengganu. The 

main objective was to compare the impact of the various meteorological variables on the performance 

of the Weibull model to determine whether it gave more efficient results. The results indicate that the 
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proposed hybrid artificial neural network (HANN) model is capable of depicting the fluctuating 

wind speed during seasons of the year for different locations. 

2. Related Work 

2.1. Weibull Distribution 

The Weibull model is only used with time series data, which is the normal distribution for the 

data, but with no representation of monsoon wind speed and seasonal weather components, as it is 

stationary. The time series wind speed model is a series of numerical observations from values of a 

wind speed measurement. These are normally regular observations (hours, days, months, years), but 

the sampling generated may be irregular or not, and as such, there is a need to predict the wind speed 

for the next hour or day. Therefore, the Weibull model is a suitable representation of the wind speed 

data distribution but is inadequate in simulating wind speed during the wind power potential 

models or for reliability assessment models [18], etc. The most obvious disadvantage of the Weibull 

probabilistic model is that the chronological characteristics of wind speed and its impact on wind 

power output are not reflected, thus the Weibull model is unable to consider both diurnal and 

seasonal wind speed variations [19]. 

In various recent studies, the Weibull distribution has been employed to represent the hourly 

variation of average wind speed over a year. At a specific wind site, the available electricity generated 

by a wind turbine depends on the mean wind speed and its standard deviation. Since yearly variation 

of annual mean wind speed is difficult to predict, wind speed variation can be well characterized in 

terms of a PDF [20]. The Weibull probability distribution function can be explained by the following 

Equation (1):  

𝑓(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
𝑘−1

exp[− (
𝑣

𝑐
)
𝑘

] (1) 

where f(v) is the probability of occurrence of wind speed v(v ≥ 0); c(c ˃ 0) is the Weibull scale 

parameter; and k(k ˃ 0) is the Weibull shape parameter. The complementary cumulative Weibull 

distribution function F(v) gives the probability of the wind speed exceeding the value v. The 

expression is given by the following Equation (2): 

𝐹(𝑣) = exp[− (
𝑣

𝑐
)
𝑘

] (2) 

The cumulative distribution function F(v) of the speed v gives the fraction of time (or probability) 

that the wind speed is equal or lower than v. Thus the cumulative distribution F(v) is the integral of 

the probability density function. It is also given by: 

𝐹(𝑣) = 1 − exp[− (
𝑣

𝑐
)
𝑘

] (3) 

In order to model the wind speed, the most commonly used method in power system simulation 

for random variable generation is the inverse transform of PDF [1]. Thus, the wind speed is simulated 

by combining the Weibull distribution and random variables.  

Assume: 

𝑈 = 𝐹(𝑣) = 1 − exp[− (
𝑣

𝑐
)
𝑘

] (4) 

where U is the uniformly distributed random variable between [0, 1]. Using the inverse transform 

method as shown in Equation (5): 

𝑣 = 𝑐[−ln(1 − 𝑈)
1
𝑘] (5) 

Since any (1 − U) also represents a random variable uniformly distributed between [0, 1], then 

Equation (5) can be simplified: 

𝑣 = 𝑐[−ln(𝑈)
1
𝑘] (6) 
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Therefore, the speed of wind v can be generated artificially using Equation (6). 

2.2. Description of the ANN Model 

An ANN comprises some very simple and closely interconnected processors known as neurons 

[21], which are connected by weighted links that transmit signals from one neuron to another. Each 

link has an associated numerical weight. A neural network learns through repeated adjustments of 

these weights. The computational capabilities depend on the connection weights, network design, 

and training algorithms. An ANN has been used in various scientific and technological fields such as 

in predicting various environmental parameters including wind speed for wind power estimation 

[22]. An ANN derives information from data for the development of a complex relationship between 

input and output. Following the multiplication of the input variables by connection weights and the 

products, biases are added and passed through transfer functions to generate the output. The ANN 

is determined by the architecture, existing function, and training algorithms. The architecture 

influences its connection pattern among the neurons. In the process of training, the values of 

connection weights and biases are brought up to date to reduce the mean square of output error. 

3. Proposed Model 

The proposed model effectively integrates the Weibull model and ANN technique for short term 

wind speed prediction. The purpose of the HANN model is to improve the performance of the 

Weibull model to a level of high accuracy. In such hybrid methods, variations of seasonal 

characteristics are considered. 

3.1. Description of the ANN Prediction Model 

The input of the ANN model for wind speed prediction is the time series wind speed data 

generated by the Weibull model. In addition to direction, hour, day, month, and wind speed, as 

presented in Figure 2, the wind speed data values are taken from the MMD database.  

 

Figure 2. An ANN architecture for the hourly wind speed prediction. 

The ANN fitting tool is employed to predict hourly wind speed for different sites. The fitting 

tool comprises a two-layer feedforward neural network. The Levenberg–Marquardt (LM) algorithm 

is utilized in static fitting problems for training, which is done automatically with scaled conjugate 

gradient even if the dataset is very large and performance is measured by employing mean square 
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error and regression analysis. The output and target data are mapped in the range of -1 to 1. The data 

are randomly separated into 60% training, 20% testing and 20% validation. The training data adjusts 

the network weight based on error. The validation data evaluates network generalization and halts 

training when generalization ceases to improve. The testing data does not affect training and 

provides an independent indicator of network performance during and after training. The hidden 

layer neurons are obtained with the following expression: 

𝐻𝑛 =
𝐼𝑛 + 𝑂𝑛

2
+ √𝑆𝑛 (7) 

where Hn and Sn are the numbers of hidden layer neurons and number of data samples used in the 

ANN model, and In and On are the number of input and output parameters [23].  

The training automatically ceases when generalization stops improving as demonstrated by an 

increase in the mean square error of the validation data samples. Repeated training times produce 

varying results because of the different initialization of connection weights. 

3.2. Description of the Weibull Distribution Model 

Weibull distribution can be shaped to represent many distributions by changing its parameters, 

as long as they are positive. The value of the scale parameter c of Weibull is close to the mean wind 

speed in actual data, and due to this, the Weibull distribution is a reasonable fit for data. Very often, 

when the k value is less or equal to two, both the Weibull and Rayleigh distributions are useful for 

representing the wind speed data distribution [24]. Weibull distribution can be used to model wind 

speed by properly setting the scale and shape to fit the given experimental data. 

Many numerical methods are employed to estimate the values of the shape parameters k and 

scale c. The Empirical Method (EM) is used in this paper for estimating the Weibull parameters. The 

empirical method is considered a special case of the moment method, which can be obtained using 

its standard deviation and the mean wind speed, where the Weibull parameters c and k are given by 

the Equations (8) and (9) as shown below [25]: 

𝑘 = (𝜎 ⊽⁄ )
−1.089

 (8) 

𝑐 =
⊽

┌(1 + 1
𝑘⁄ )

 (9) 

where 𝜎 is the standard deviation; ⊽ is the mean wind speed; ┌ is the gamma function; and k can 

be determined easily from the values for 𝜎 and ⊽, which are computed from the wind speed data 

set provided. Once k is obtained from the solution of the above numerical expression, the scale factor 

c can be calculated by the above equation. 

The following are the major steps used in implementing the procedures for the simulation of the 

wind speed: 

1. Set the Weibull distribution parameters’ shape and scale. 

2. Generate a uniformly distributed random number U between [0, 1]. 

3. Generate the random variable with the inverse transform of the modified cumulative Weibull 

distribution function as in Equation (3). 

4. Generate the artificial wind speed v with Equation (6). 

Applying the Weibull distributed function using Equation (6), with the Weibull parameters c 

and k, which are deduced from the specific wind site. The simulated artificial wind speed profile for 

a given period can be conducted. From the simulation, it can be seen that the wind speed generated 

by the Weibull model is constantly changing; strong winds and weak winds are rare.  

3.3. Procedures for the Integrated Model 

In this model, the HANN algorithm is trained with the help of the historical wind speed data 

from a specific site. All simulation works and coding was performed using various software such as 

Matlab (neural net fitting tools) and WRPLOT View 7.0 © 1998–2011 Lakes Environmental software. 



Energies 2017, 10, 1744 6 of 17 

 

Figure 3 shows the overall procedures involved in the simulation and prediction of the wind speed 

data by using the HANN model, which can be summarized in three steps as follows:  

 Firstly, the fitting of the Weibull parameters to randomly create the hourly wind speed. 

 Secondly, applying the ANN to intensify the hourly wind speed data to match the characteristics 

of the actual wind speed data. 

 Thirdly, the period of prediction is based on the required period of time generated. 

 

Figure 3. Flowchart of the hybrid model for wind speed prediction. 

3.4. Analysis of the Prediction Error 

To assess the proposed HANN model, two error statistics were taken into consideration, the 

mean absolute percentage error (MAPE) and root mean square error (RMSE) [26]. The MAPE 

indicates the accuracy in fitting time series values in statistics, in particular, trending. The wind speed 

prediction accuracy is established by MAPE, which characteristically presents accuracy as a 

percentage, and is defined by the formula [27]: 

MAPE =
1

𝑛
∑

𝑦𝑖(𝐴𝑁𝑁) − 𝑦𝑘(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑦𝑘(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

𝑛

𝑡=1
 (10) 

where n is the total number of input and output pairs used for training; 𝑦𝑖(𝐴𝑁𝑁) is the forecast wind 

speed for one hour; and 𝑦𝑘(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) is the actual wind speed for one hour.  

A MAPE < 10% indicates high prediction accuracy, 10% ≤ MAPE ≤ 20% indicates good 

prediction, 20% ≤ MAPE ≤ 50% implies acceptable prediction, and MAPE ≥ 50% implies inaccurate 

prediction [23]. On the other hand, RMSE demonstrates the efficiency of the developed ANN in 

projecting future individual values, a large positive RMSE indicates a considerable deviation in the 

predicted value from the real value. 
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4. Wind Data Characteristics at Selected Locations in Malaysia 

Malaysia is in the equatorial region in South East Asia, between northern latitude 1° N and 6° N 

and eastern longitude from 100° E to 109° E. The wind that blows across peninsular Malaysia is 

influenced by two monsoon seasons, namely the southwest monsoon from May to September, and 

the northeast monsoon from November to March. The two monsoons are interspersed by two short 

inter-monsoon periods [28]. 

The data for this study were gathered from the Malaysia Meteorological Department (MMD). 

The data records comprise over three years of hourly mean surface wind speed and direction from 1 

January 2013 until 31 December 2015, at three locations in Malaysia. Table 1 presents the description 

of the selected regions in Malaysia which consists of latitudes, longitudes, and the elevation of the 

anemometer. 

Table 1. Description of the measured wind speed stations in regions in Malaysia. 

Station Latitude Longitude Altitude (m) 

Mersing 2°27′ N 103°50′ E 43.6 

Kuala Terengganu 5°23′ N 103°06′ E 5.2 

Kudat 6°55′ N 116°50′ E 3.5 

In this study, the recorded hourly time series surface wind data in Mersing, Kudat, and Kuala 

Terengganu for the year 2015 were analyzed statistically. The monthly average wind speed values 

and the standard deviations for each site were calculated. The results of the mean wind speed is 

tabulated in Table 2. 

Table 2. Monthly mean wind speed and standard deviation of three sites in Malaysia. 

Month/Year 2015 
Mersing Kudat Kuala Terengganu 

⊽ 𝝈 ⊽ 𝝈 ⊽ 𝝈 

January 4.10 1.2809 3.08 1.2838 2.45 1.1840 

February 4.13 1.4205 3.01 1.1849 2.21 1.1179 

March 3.16 1.2627 3.13 1.1191 1.97 1.0388 

April 2.59 0.9805 2.68 1.1232 1.80 0.8997 

May 2.44 1.0748 2.09 1.3086 1.87 0.7819 

June 2.74 1.2152 2.14 1.4235 1.71 0.8050 

July 2.87 1.3338 2.54 1.6326 1.71 0.8031 

August 3.02 1.4429 2.58 1.6159 1.81 0.8053 

September 2.69 1.2636 2.04 1.3367 1.65 0.7898 

October 2.64 1.1998 2.46 1.4856 1.63 0.8696 

November 2.23 0.9127 2.11 1.1661 1.68 0.9186 

December 3.31 1.5967 2.73 1.1498 2.42 1.3789 

Annual mean 2.99 1.2487 2.55 1.3192 1.91 0.9494 

To obtain a clearer picture of the actual wind speed of these three locations, the hourly variation 

of wind speed distribution is presented. Figure 4 shows the hourly wind speed recorded in Mersing, 

Kudat, and Kuala Terengganu throughout the year 2015. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Hourly mean wind speed variation at (a) Mersing; (b) Kudat; and (c) Kuala Terengganu 

throughout the year 2015. 

The wind rose is helpful in determining the predominant wind of a location during the time 

period. On the basis of the observed wind speed data, the frequencies (%) are plotted in the chart 

with respect to the cardinal point to indicate the wind direction. It is evident that the direction of 

wind speed blowing in the same sites for years is characterized by a considerable stability, which is 

shown in Figure 5. The most likely wind direction for all the years and sites in Malaysia were 

prevailing winds blowing from a southwesterly to northeasterly direction.  
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(a) 

 

(b) 

 

(c) 

Figure 5. Wind rose of the studied sites. (a) Mersing; (b) Kudat; and (c) Kuala Terengganu. 
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5. Results and Discussion 

5.1. Weibull Parameter Results 

The estimation of wind speed data for the year 2015 at Mersing, Kudat, and Kuala Terengganu 

using a Weibull distribution is presented in this section. Consequently, the scale parameters were 

computed corresponding to the wind speed of the particular month in terms of the shape parameters 

of the month. The calculation of both Weibull parameters is shown in Table 3 for Mersing, Kudat, 

and Kuala Terengganu for the year 2015.  

From the results, it can be observed that the value scale parameter c of Weibull is close to the 

actual mean wind speed. This is true as the Weibull distribution is a reasonable fit to the wind speed 

data. This analysis suggests that the Weibull distribution is the best distribution and offers a very 

beneficial model to predict potential wind energy. 

Table 3. The values of the Weibull parameter estimation by Empirical Method at Mersing, Kudat, and 

Kuala Terengganu based on hourly wind speed data for the year 2015. 

Month/Year 2015 
Mersing Kudat Kuala Terengganu 

K C K C K C 

January 3.5527 4.5565 2.5979 3.4733 2.2034 2.7615 

February 3.1998 4.6146 2.7640 3.3863 2.0979 2.4923 

March 2.7192 3.5570 3.0682 3.5049 2.0084 2.2239 

April 2.8760 2.9018 2.5796 3.0197 2.1309 2.0350 

May 2.4439 2.7535 1.6682 2.3432 2.5826 2.1043 

June 2.4242 3.0904 1.5626 2.3866 2.2781 1.9356 

July 2.3027 3.2382 1.6193 2.8379 2.2806 1.9329 

August 2.2365 3.4115 1.6677 2.8927 2.4141 2.0404 

September 2.2803 3.0409 1.5864 2.2758 2.2342 1.8656 

October 2.3599 2.9784 1.7338 2.7634 1.9767 1.8341 

November 2.6516 2.5146 1.9072 2.3776 1.9279 1.8924 

December 2.2129 3.7389 2.5681 3.0789 1.8415 2.7191 

Average 2.60 3.37 2.11 2.86 2.16 2.15 

5.2. Weibull Model for the Prediction and Simulation of Wind Speed 

The Weibull results for simulated wind speed data are illustrated in Figures 6–9, in which are 

represented a comparison of hourly wind speed data generated using the Weibull model and real 

wind speed data. Figures 6–9 show the simulation of wind speed time-series data with c = 3.37, and 

k = 2, for wind data collected at the Mersing site in 2015. As expected, this wind speed data is not 

similar to the actual wind speed data, which implies a very low predictability.  

Firstly, Figure 9 shows a comparison between the measured data collected at the Mersing site 

for the year 2015 at a height of 43.6 m, with wind speed data generated by the Weibull model. From 

Figure 9, it can be seen that for the first two months, January and February (Mersing/2015), the 

simulated wind speed is not identical to the measured data for this location for the one-year data. 

While the average wind speed for the months of January and February, as shown in Table 2, is around 

4.10 m/s and 4.13 m/s, respectively, the value of c, which represents the average wind speed for the 

Weibull model is around 3.37 m/s, as shown in Table 3. The difference between the values of mean 

wind speed and c value, suggests that the Weibull model does not take into consideration the seasonal 

variations in calculations during the year. 

To avoid inaccuracy in the wind speed data created from the Weibull model, especially for the 

forecast of the wind speed data during the seasons which have higher wind speed, particularly 

during monsoon season, the HANN model was used to correct the wind speed data according to 

seasonal variations of wind speed during the year for the Mersing site. 
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Figure 6. Comparison between real wind speed data and simulated wind speed data from the Weibull 

model for two weeks at Mersing in 2015. 

 

Figure 7. Comparison between real wind speed data and simulated wind speed data from the Weibull 

model for two months at Mersing in 2015. 

 

Figure 8. Comparison between real wind speed data and simulated wind speed data from the Weibull 

model for six months at Mersing in 2015. 

 

Figure 9. Comparison between real wind speed data and simulated wind speed data from the Weibull 

model for one year at Mersing in 2015. 



Energies 2017, 10, 1744 12 of 17 

 

5.3. Implementation of the ANN Model and HANN Model for Validation of the Results 

The proposed HANN model was applied to test the generated wind speed data from the Weibull 

model at the Mersing site. Figures 10 and 11 show simulated wind speed data for the first two weeks 

in January and the first two months of the year, for wind speed data at Mersing in 2015.  

 

Figure 10. Comparison between measured and predicted wind speed for two weeks at Mersing in 

2015, for validation of the HANN model. 

 

Figure 11. Comparison between measured and predicted wind speed for two months at Mersing in 

2015, for validation of the HANN model. 

Hourly wind speed data were used in this study to test the proposed HANN algorithm. 

Historical wind speed data collected from the Mersing site in 2015 were used as the input for the 

prediction-alone ANN algorithm in the training and in the test phases. Figures 12 and 13 show the 

simulated wind speed data for the first two weeks in January and the first two months of the year, 

for wind speed data at Mersing in 2015. 
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Figure 12. Comparison between measured and predicted wind speed for two weeks at Mersing in 

2015, for validation of the ANN model. 

 

Figure 13. Comparison between measured and predicted wind speed for two months at Mersing in 

2015, for validation of the ANN model. 

The proposed HANN model was compared with the ANN model and Weibull model. This 

comparison demonstrated that the HANN model presents lower RMSE and MAPE for different 

horizons. The results of the proposed methods were compared in terms of MAPE and RMSE, for the 

Weibull model, ANN model, and HANN model, as shown in Table 4. The values of MAPE and RMSE 

for two weeks from the first month of January, and two months of the year in Mersing in 2015, were 

0.014 and 0.081, 0.065 and 0.259, respectively. The results from the HANN model for the simulation 

of the Mersing wind speed data showed high prediction accuracy. 

Table 4. Statistical errors generated by the Weibull model, ANN model, and HANN model. 

Mersing 

Model 
Two-Week Two-Month 

MAPE RMSE MAPE RMSE 

Weibull model 0.880 1.650 1.575 2.429 

ANN model 0.032 0.205 0.104 0.485 

HANN model 0.014 0.081 0.065 0.259 

Figures 14–16 show the predicted wind speed data for the entire three years from 2013 to 2015 

for the Mersing, Kudat, and Kuala Terengganu sites in Malaysia using the ANN model. 
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Figure 14. Comparison between measured and predicted hourly wind speed data for six months at 

Mersing, for validation of the ANN model. 

 

Figure 15. Comparison between measured and predicted hourly wind speed data for six months at 

Kudat, for validation of the ANN model. 

 

Figure 16. Comparison between measured and predicted hourly wind speed data for six months at 

Kuala Terengganu, for validation of the ANN model. 

The results of the prediction of the wind speed using the proposed HANN model are plotted in 

Figures 17–19. These results show the predicted wind speed data for the entire three years from 2013 

to 2015, for the Mersing, Kudat, and Kuala Terengganu sites in Malaysia. The statistical errors 

obtained by using two models for predicting the wind speed data are presented in Table 5. 
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Figure 17. Comparison between measured and predicted hourly wind speed data for six months at 

Mersing, for validation of the HANN model. 

 

Figure 18. Comparison between measured and predicted hourly wind speed data for six months at 

Kudat, for validation of the HANN model. 

 

Figure 19. Comparison between measured and predicted hourly wind speed data for six months at 

Kuala Terengganu, for validation of the HANN model. 

Table 5. Statistical errors generated by the ANN model and the proposed HANN model. 

Model 
Mersing Kudat Kuala Terengganu 

MAPE RMSE MAPE RMSE MAPE RMSE 

ANN model 16.4% 0.492 20.3% 0.483 19.9% 0.426 

HANN model 6.06% 0.048 8.06% 0.039 8.01% 0.034 
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From Table 5, it can be seen that the MAPE values for the six months of the year at Mersing, 

Kudat, and Kuala Terengganu using the ANN model were 16.4%, 20.3%, and 19.9%, respectively. 

The percentage values of the MAPE are within (10% ≤ MAPE ≤ 20%), which indicates good prediction 

for the six months wind speed data for the three sites [23]. 

Meanwhile, the MAPE values for the first six months of the year in Mersing, Kudat, and Kuala 

Terengganu using the HANN model, were 6.06%, 8.06%, and 8.01%, respectively. The percentage 

values of the MAPE are within (MAPE < 10%), which indicates high prediction accuracy for the six 

months wind speed data for the three sites. 

The results of the simulation demonstrate that the proposed method is appropriate for 

forecasting both the hourly and daily wind series. The results obtained show that reasonable and 

good wind speed predictions can be made with the two parameters of the Weibull model and ANN 

model, respectively. However, using the HANN model produced more accurate results. 

6. Conclusions 

The current study developed a method to model the wind speed prediction while considering 

seasonal wind variations over a particular time frame, in the form of a hybrid model consisting of the 

Weibull and ANN model. Procedures for the prediction and simulation of the wind speed using a 

hybrid model are as follows: firstly, the fitting of the Weibull parameters to create hourly wind speed 

randomly; and secondly, applying the ANN to intensify the hourly wind speed data to match the 

characteristics of the actual wind speed data. Consequently, the forecasted errors of wind values are 

lower than those generated using only the Weibull model. 

This model has been applied to wind speed data for sites in Malaysia, namely Mersing, Kudat, 

and Kuala Terengganu, to validate the proposed method. The results indicate that the proposed 

HANN model is capable of depicting the fluctuating wind speed during different seasons of the year 

for different locations. As a result, the essential dependencies between the wind speed and seasonal 

weather variations are exploited. The results show that the predicted wind speed data has similar 

chronological and seasonal characteristics to the actual wind data. 

Recommendations for future studies include employing the proposed model with probabilistic 

methods for a reliability assessment of power systems with wind power integration. 
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