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Abstract: A lithium-Ion battery is a typical degradation product, and its performance will deteriorate
over time. In its degradation process, regeneration phenomena have been frequently encountered,
which affect both the degradation state and rate. In this paper, we focus on how to build
the degradation model and estimate the lifetime. Toward this end, we first propose a multi-phase
stochastic degradation model with random jumps based on the Wiener process, where the multi-phase
model and random jumps at the changing point are used to describe the variation of degradation
rate and state caused by regeneration phenomena accordingly. Owing to the complex structure
and random variables, the traditional Maximum Likelihood Estimation (MLE) is not suitable
for the proposed model. In this case, we treat these random variables as latent parameters, and then
develop an approach for model identification based on expectation conditional maximum (ECM)
algorithm. Moreover, depending on the proposed model, how to estimate the lifetime with fixed
changing point is presented via the time-space transformation technique, and the approximate
analytical solution is derived. Finally, a numerical simulation and a practical case are provided
for illustration.

Keywords: life prognostics; multi-phase degradation; Expectation Conditional Maximization
algorithm; regeneration phenomena; Bayesian rule

1. Introduction

Lithium-Ion battery as an important power source, has been widely used in our life and other
industrial systems [1,2]. However, the performance of the battery will deteriorate with aging, which is
embodied in the fading of its state of health (SOH) [3,4]. As a result, the remaining useful life
(RUL) will be reduced, and further its deterioration may lead to an accident and even cause a huge
loss. As such, it is meaningful to investigate how to estimate the lifetime and remaining useful
life of Lithium-Ion battery. As an essential part of prognostic and health management (PHM),
lifetime or remaining useful life (RUL) estimation can provide an effective information for maintenance
decision to avoid the accident caused by its failure and reduce the safety risk [5–7]. So far, the methods
of the lifetime estimation have been widely researched and gained momentum [8,9]. Especially,
as analyzed by jardine [10], stochastic data-driven method has been widely investigated and applied
to many degradation systems since it only relies on the available observed data and statistical
models. Moreover, compared with other data-driven method, the stochastic data-driven method
can capture the random dynamics and uncertainty of degradation processes. Therefore, we mainly
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concentrate on how to build a new stochastic data-driven model to describe the degradation trajectory
of the Lithium-Ion battery and further estimate the lifetime and RUL based on the proposed model.

As to lifetime estimation for battery, the common way is to model the process of SOH, and then
estimate and predict the RUL based on the proposed degradation model. It is well-known that the capacity
fading of the battery can reflect its degradation of the SOH [3,11]. As a result, many researchers pay more
attention to modeling the capacity degradation, and doing lifetime and RUL estimation based on the
proposed model. For example, Tang et al. utilized Wiener process to describe the degradation process
of battery and then predicted the RUL [12]. Hu et al. [13] and Dalal et al. [14] introduced how to model
the degradation process of lithium-ion battery based on Kalman filter and particle filtering accordingly.
Saha et al. proposed a relevance-vector-machines-based approach to evaluate the health state of battery [15].
To improve the long term prediction performance of the traditional AR model, Song et al., proposed an
iterative nonlinear degradation-autoregressive model (IND-AR) model for RUL estimation of the spacecraft
lithium-ion battery [16]. Panchal et al. had completed some degradation tests of batteries by using real
world drive cycles collected from an electric vehicle, and further analyzed the impact of various discharge
rates on electrical performance of the battery [17,18]. Especially, Pecht and his team performed many
degradation tests for lithium-ion battery and obtained large amounts of degradation data, and then achieve
a lot of valuable results depending on it [3,19,20]. However, there are still numerous problems needing to
be further investigated in the future.

Capacity regeneration phenomena, also called the self-recovery phenomena in some other
paper, means that the degradation capacity of the battery shows a sudden recovery after testing
rest [21]. Such the regeneration phenomena will not only influence the degradation modeling
but also the prediction of the lifetime (or RUL). Thus, it is meaningful to take consideration
of regeneration phenomena into SOH prognostics and lifetime estimation of lithium-ion battery.
So far, this issue has not been solved well and only a few of the researchers have focused on it.
Liu et al. analyzed the mechanism of regeneration phenomena, and proposed a combination
Gaussian process functional model to capture both degradation trend and regeneration [11].
Similarly, He et al. firstly used Wavelet analysis method to decouple global degradation trend,
regeneration and fluctuations, and then modeled these three processes based on Gaussian process
regression [22]. Orchard et al. formulated the state space model to describe the degradation
process and then predicted the SOH via the particle filtering [21,23]. Although these works had
considered the influence of regeneration phenomena on the degradation state, they did not pay
attention to the variation of degradation rate caused by the regeneration phenomena. In fact,
when the regeneration phenomenon appears, the degradation rate will be changed as will, which affects
the results of lifetime and RUL estimation. Qin et al. built the relationship between the rest time
and the regeneration phenomenon, and adopted Gaussian process to predict the global trend [24],
where the state recovery caused by regeneration phenomenon was defined as a function of the rest
time. Recently, Zhang et al. proposed a general degradation model for stochastic degrading systems
with state recovery, and applied it into batteries’ degradation [25]. In [25], the two-state semi-Markov
process was used to model the state switch i.e., the appearance of regeneration phenomena, and then
the issue was transformed into the lifetime prediction under the random operating process. However,
in these two works [24,25], the state recovery was regarded as the fixed value or fixed function so that
its randomness and uncertainty was not taken into consideration. Therefore, regeneration phenomena
provide a challenge for degradation modeling and lifetime prognostics.

In this paper, we attempt to deal with such the problem from the perspective of stochastic
process and statistic analysis. First, we first proposed a multi-phase degradation with random jumps
based on the Wiener process to describe the degradation process with regeneration phenomena.
Second, we develop an approach for model identification based on expectation conditional maximum
(ECM) algorithm to overcome the limitations of the traditional Maximum Likelihood Estimation
(MLE) and Expectation Maximum (EM) algorithm owing to the complex structure and random
variables. Third, we derive the approximate solution of lifetime estimation under the concept
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of the first passage time (FPT) via the time-scale transformation and the law of total probability. Finally,
to illustrate the applicability and effectiveness of our method, a numerical example and a practical
case of the battery are provided.

The remainder of the paper is organized as follows. In Section 2, the motivating example
and problem formulation are introduced, and the general multi-phase degradation model with
random jumps is formulated. Section 3 includes the main results of lifetime estimation. In Section 4,
how to realize model identification is given. Two illustrative examples are presented to illustrate and
demonstrate the proposed model in Section 5. This paper is concluded in Section 6.

2. Motivation and Problem Formulation

2.1. Motivation Example

As discussed in the literature [3,11,26], the capacity of the battery will be likely to recover
after the battery rests during the charge/discharge procedure. For example, the following Figure 1a
shows a set of testing data of lithium-ion battery (i.e., CS2-34) collected by the Center for Advanced Life
Cycle Engineering (CALCE) of Maryland University, where the battery is prismatic and its capacity is
1100 mAh. What should be noted is that its charging profile is a standard constant current/constant
voltage protocol with a constant current rate of 0.5 C until the voltage reaches 4.2 V, and then 4.2 V is
sustained until the charging current drops to below 0.05 A. From the degradation data, several aspects
should be noticed,

(1) In the testing data from CALCE, the rest time lasts several and even more hours, which is
caused by the pause between two continuous charge/discharge tests. Therefore, we classify
the degradation process of the battery into several phases according to the rest time.

(2) The rest time does not only lead to regeneration phenomenon i.e., degradation state recovery but also
unchanging and further deterioration. In Figure 1c, the blue lines denote the differences of the
degradation data at the point of rest time, and the red lines represent the differences at other points,
which are collected from the other four batteries CS2-35, CS2-36, CS2-37, CS2-38. It is interesting to
note that the statistical histograms of these two differences data are distinguished obviously, including
their means and variances. In another word, all regeneration phenomena occur at the rest time, but it
does not mean that each testing rest leads to regeneration phenomenon.

(3) When a regeneration phenomenon occurs, not only the degradation state will increase suddenly,
but also the degradation rate changes as shown in Figure 1b, which is the enlarged figure
of Figure 1a for better illustration. It is noteworthy that the degradation rate will first increase
heavily after a regeneration phenomenon appears, and then decrease gradually and finally return
to that at the end of the previous phase.

However, most researchers only focus on parts of these three aspects, and few of them take a full
consideration of the above three aspects for degradation modeling and lifetime estimation. So, it is
essential to build an appropriate degradation model to satisfy such three features, and then estimate
the lifetime and RUL based on the proposed model. As such, we attempt to propose a multi-phase
degradation model with random jumps to handle all characters of such the state-recovery degradation
trajectory, which is formulated as follows.
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Figure 1. The degradation trajectory of the battery. (a) The degradation of battery capacity;
(b) The regeneration phenomena in the degradation process; (c) The degradation difference between
the rest time and others.
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2.2. Formulation and Degradation Modeling

In this paper, we focus on the degradation model based on the stochastic process and statistical
analysis. Let X(t) denote the degradation process and then the lifetime, and then RUL under the concept
of the FPT can be expressed as [9,27],

T = inf{t : X(t) ≥ ξ |X(0) ≤ ξ } (1)

where ξ denotes the failure threshold which is usually defined as a constant value and determined
by engineering practical condition. Then we make fT(t) represent the probability density function
(PDF) of the lifetime and FT(t) denote the cumulative distribution function (CDF). In addition, the RUL
usually draws more attention for an operating system. As usual, the RUL under the concept of the FPT
is often defined as,

Lk = inf{lk : X(tk + lk) ≥ ξ |X(tk) ≤ ξ } (2)

where lk is the remaining useful life with PDF flk (t) and CDF Flk (t) at time tk.
In order to attain the lifetime and RUL estimation under the concept of the FPT, it is essential

to establish an appropriate degradation model to fit the degradation trajectory. It is noted that if
the regeneration phenomena occur, both the degradation state and rate will be affected and changed.
As discussed before, the regeneration phenomenon is mainly related to the testing rest. In this paper,
we treat the influence of testing rest as the non-fatal random shock, which will change the degradation
state and rate randomly. Hence, inspired by multi-phase degradation model as many literatures [25,28],
we propose a novel multi-phase degradation model with random jumps as follows,

X(t) = X0(t) +
N(t)

∑
i=1

Xi(t) (3)

where X(t) denotes the degradation process, X0(t) represents the traditional continuous degradation
process without the effect of the testing rest, Xi(t) reflects the change of degradation state and rate
caused by i-th testing rest. In this way, the degradation process can be classified into N(t) + 1 phases
and each rest time can be regarded as the changing point, when there are N(t) times of testing rest.
It is defined that the all changing point time is prearranged and τi denotes the current time of the i-th
changing point. Then, Equation (3) can be written as follows,

X(t) =



X0(t) 0 < t < τ1

X0(t) + ∑1
i=1 Xi(t) τ1 ≤ t < τ2

X0(t) + ∑2
i=1 Xi(t) τ2 ≤ t < τ3

...
X0(t) + ∑nτ

i=1 Xi(t) τnτ − 1 ≤ t < τnτ

(4)

where τnτ denotes total times of the changing points, i.e., τnτ = N(tmax).
It is noteworthy that the continuous degradation trajectory of battery is not monotone, which makes

the degradation models based on the monotone stochastic process (such as Gamma process [29], Inverse
Gaussian process [30] and so on) not suitable. In this case, due to the non-monotonicity of the degradation
process, we adopt Wiener process to describe the continuous degradation process X0(t), and it holds the
following form,

X0(t) = x0 + µt + σBB(t) (5)

where x0 is the initial value, t is the time, B(t) is the standard Brownian motion, µ and σB are purely
time-dependent drift and diffusion coefficients.
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Furthermore, based on the characters of the practical degradation data and inspired by the definition
in [25,31], the negative exponential model is adopted to reflect the influence of the regeneration,

Xi(t)=

{
−λ1e−λ2(t−τi)+λ3 t− τi ≥ 0
0 t− τi < 0

(6)

where τi denotes the time when the i-th testing rest occurs, λ = [λ1, λ2, λ3] represents the parameters.
It is worth mentioning that λ1 + λ3 reflects the sudden change of the degradation state caused
by the testing rest, and λ2 describes its effect on the degradation rate. In order to better describe
the randomness of the regeneration phenomena, it is assumed that λ1 and λ3 follow Gaussian
distribution i.e., N(µ1, σ2

1 ) and N(µ3, σ2
3 ).

Next, we will discuss how to derive the RUL estimation under the of the FPT for such the proposed
multi-phase degradation model.

3. Remaining Useful Life Estimation under the Concept of the FPT

In this section, we concentrate on how to attain the RUL estimation under the concept of the FPT.
It is noted that the derivation of the FPT is affected by the form of N(t). In this case, for simplicity
we assume that the occurrence time of the rest time is prearranged and it is defined as a fixed value.
We define that there are nτ times of rest time, i.e., N(tmax) = nτ . From Figure 2b, it could be found that
the degradation rate will be increased suddenly and then recover gradually. As such, the following
assumption is given,

Assumption 1. It is assumed that each changed rate will recover to the initial value at the end of each
degradation phase. That is to say, in Equation (6) −λ1e−λ2(t−τi) will approach to 0 and have no impact on the
(i + 1)-th phase, and only the effect of λ3 is accumulated.

It is noted that due to the random jump caused by the regeneration phenomena, so the estimated
PDF of the lifetime or RUL are not continuous at the changing point. Under this consideration,
we will calculate the form of the lifetime under the concept of the FPT separately in different
intervals subject to the degradation phase, i.e., (0, τ1), [τi−1, τi) and [τnτ ,+∞), where i = 2, 3, ...nτ .
Under the concept of the FPT, T ∈ (0, τ1) means that the FPT of the degradation process only belongs
to (0, τ1), as well as [τi−1, τi) and [τnτ ,+∞). For example, if T ∈ [τi−1, τi), for ∀t < τi−1 the degradation
X(t) < ξ. Therefore, we will attempt to derive the PDF of lifetime T in different intervals, i.e., (0, τ1),
[τi−1, τi) and [τnτ ,+∞), where i = 2, 3, ...nτ .

First of all, we focus on the simplest case, i.e., T ∈ (0, τ1). It is noteworthy that fT(t) is only determined
by the first degradation phase. Thus, we can easily obtain the expression of fT(t) through the property of
the Wiener process.

fT(t) =
1√

2πσ2
Bt3

exp

[
− (ξ − x0 − µt)2

2σ2
Bt

]
, 0 < t < τ1 (7)

where x0 denotes the initial value and it is often set as 0 for simplicity.
However, it is not easy to derive the fT(t) at other intervals i.e., [τi−1, τi) and [τnτ ,+∞) directly.

In order to derive fT(t) at other intervals i.e., [τi−1, τi) and [τnτ ,+∞), we first assume that xτi denotes
the degradation state at the changing point (or the rest time) τi. Furthermore, let τ−i be the left limit
of τi, as well as xτ−i

.

Remark 1. It is worth mentioning that xτ−i
represents the degradation state at time t = τ−i . In fact, the real

xτ−i
cannot be known and xτ−i

should be a random variable which is determined by the degradation models
of the first i phases. Due to the influence of the rest time, it is noted that the left limit xτ−i

is not equal to xτi .
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Then, under this assumption, degradation model at interval [τi−1, τi) and [τnτ ,+∞) can be written
as follows,

X(t) = xτ−i
+ X0(t− τi) + Xi(t)

= xτ−i
+ µ(t− τi) + σBB(t− τi)− λ1e−λ2(t−τi)+λ3

(8)

where if the degradation belongs to [τnτ ,+∞), xτ−i
= xτnτ

.

In this way, we can find that the degradation model at each phase except the first phase is nonlinear.
To obtain the FPT of the nonlinear degradation model, following Lemma 1 based on the time-scale
transformation is introduced,

Lemma 1. [27]: If the degradation model is defined as x0 + s(t) + σB(t), its approximate PDF of lifetime can
be obtain as follows,

fT(t) ∼=
1√
2πt

[
S(t)

t
− dS(t)

dt

]
exp

[
−S2(t)

2t

]
(9)

where S(t) = ξ−x0−s(t)
σB

. In this way, we can easily obtain the approximate PDF of lifetime with fixed λ1 and λ3

according to the conclusion of Lemma 1.

fT(t) ∼=
1√
2πt

 ξ − xτ−i
+ λ1e−λ2(t−τi) + (t− τi)λ2λ1e−λ2(t−τi) − λ1 − λ3

σB(t− τi)


× exp

− (ξ − xτ−i
− µ(t− τi) + λ1e−λ2(t−τi) − λ1 − λ3)

2

2σ2
B(t− τi)

 (10)

where t ∈ [τi−1, τi) or [τnτ ,+∞). As discussed before, λ1, λ3, and xτ−i
are random variables. To better illustrate,

it is assumed that the PDFs of λ1, λ3, and xτ−i
are p(λ1), p(λ3), and g(xτ−i

). It is noted that g(xτ−i
) represents

the transition probability from x0 to xτ−i
under the concept of the FPT. In this way, the approximate PDF

of the lifetime can be obtained according to the law of total probability as shown in following equation.

fT(t) ∼=
∫ +∞

−∞

∫ +∞

−∞

∫ ξ

−∞

1√
2π(t− τi)

 ξ − xτ−i
+ λ1e−λ2(t−τi) + (t− τi)λ2λ1e−λ2(t−τi) − λ1 − λ3

σB(t− τi)


× exp

− (ξ − xτ−i
− µ(t− τi) + λ1e−λ2(t−τi) − λ1 − λ3)

2

2σ2
B(t− τi)

 p(λ1)p(λ3)g(xτ−i
)dxτ−i

dλ1dλ3

(11)

where t ∈ [τi−1, τi) or [τnτ ,+∞), λ1 and λ3 follow Gaussian distribution, but xτ−i
is unknown. It is worth

mentioning that the PDFs of the lifetime exhibits in a form of the triple integration corresponding to three
random variables, i.e., xτ−i

, λ1, and λ3.

In order to obtain the PDF of lifetime, we must attain the PDF of xτ−i
. What should be noticed

that g(xτ−i
) can be also regarded as the transition probability under an absorbing boundary ξ.

Unfortunately, the analytical form of g(xτ−i
) is hard to calculate owing to the nonlinear degradation

model and the random jumps. Here we introduce an approximate way to deal with it.
Define p(xτ−i

) as the transition probability from x0 to xτ−i
without the absorbing boundary.

Then depending on the proposed degradation model and the property of the Wiener process, we can
obtain the form of p(xτ−i

) as shown in following equation,

p(xτ−i
) =

1√
2π[σ2

Bτi + (i− 1)2σ2
3 ]

exp

[
−
(xτ−i

− µτi − (i− 1)µ3)
2

2σ2
Bτi + (i− 1)2σ2

3

]
(12)
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where we let τ−i = τi for simplicity, but xτ−i
6= xτi . Then, we use p(xτ−i

) to replace g(xτ−i
) for deriving

the lifetime estimation in Equation (11). In this case, by combing the results of Equations (7) and (11),
we can obtain the approximate PDF of lifetime as follows,

fT(t) =
1√

2πσ2
Bt3

exp

[
− (ξ − x0 − µt)2

2σ2
Bt

]
, t ∈ (0, τ1) (13)

fT(t) ∼=
∫ +∞

−∞

∫ +∞

−∞

∫ ξ

−∞
p(λ1)p(λ3)p(xτ−i

)
ξ − xτ−i

− λ1e−λ2(t−τi) + (t− τi)λ2λ1e−λ2(t−τi) − λ3√
2πσ2

B(t− τi)3

× exp

− (ξ − xτ−i
− µ(t− τi) + λ1e−λ2(t−τi) − λ3)

2

2σ2
B(t− τi)

 dxτ−i
dλ1dλ3, t ∈ [τi−1, τi) or [τnτ ,+∞)

(14)

where i = 2, 3, ..., nτ . In Equation (14), there are triple integrals needing to solve, which is similar
to Equation (11) owing to three random variables. In order to simplify this integral, we introduce
the following Theorem 1 based on the property of Gaussian distribution.

Theorem 1. It is defined that z1 ∼ N(µz1 , σz1) and z2 ∼ N(µz2 , σz2) are two independent Gaussian random
variables, and A1, A2, B1, B2, C, and D are fixed value. Then let Z = [z1, z2], we can have the following results,

EZ

[
exp

(
−0.5A1z2

1 − 0.5A2z2
2 + B1z1 + B2z2 + Cz1z2 − 0.5D

)]
=

σ̃z1 σ̃z2

√
1− ρ2

σz1 σz2

exp

(
A1σ2

z1
+ 1

2σ2
z1

µ̃2
z1
+

A2σ2
z2
+ 1

2σ2
z2

µ̃2
z2
− Cµ̃z1 µ̃z2 − 0.5E

)
EZ

[
z1 exp

(
−0.5A1z2

1 − 0.5A2z2
2 + B1z1 + B2z2 + Cz1z2 − 0.5D

)]
=

σ̃z1 σ̃z2

√
1− ρ2

σz1 σz2

µ̃z1exp

(
A1σ2

z1
+ 1

2σ2
z1

µ̃2
z1
+

A2σ2
z2
+ 1

2σ2
z2

µ̃2
z2
− Cµ̃z1 µ̃z2 − 0.5E

)
EZ

[
z2 exp

(
−0.5A1z2

1 − 0.5A2z2
2 + B1z1 + B2z2 + Cz1z2 − 0.5D

)]
=

σ̃z1 σ̃z2

√
1− ρ2

σz1 σz2

µ̃z2exp

(
A1σ2

z1
+ 1

2σ2
z1

µ̃2
z1
+

A2σ2
z2
+ 1

2σ2
z2

µ̃2
z2
− Cµ̃z1 µ̃z2 − 0.5E

)
EZ

[
z1z2 exp

(
−0.5A1z2

1 − 0.5A2z2
2 + B1z1 + B2z2 + Cz1z2 − 0.5D

)]
=

σ̃z1 σ̃z2

√
1− ρ2

σz1 σz2

(µ̃z1 µ̃z2 − ρσz1 σz2)exp

(
A1σ2

z1
+ 1

2σ2
z1

µ̃2
z1
+

A2σ2
z2
+ 1

2σ2
z2

µ̃2
z2
− Cµ̃z1 µ̃z2 − 0.5E

)

(15)

where

µ̃z1 =
(B1σ2

z1
+ µz1)(A2σ2

z2
+ 1) + (B2σ2

z2
+ µz2)Cσ2

z1

(A1σ2
z1
+ 1)(A2σ2

z2
+ 1)− C2σ2

z1
σ2

z2

µ̃z2 =
(B2σ2

z2
+ µz2)(A1σ2

z1
+ 1) + (B1σ2

z1
+ µz1)Cσ2

z2

(A1σ2
z1
+ 1)(A2σ2

z2
+ 1)− C2σ2

z1
σ2

z2

ρ2 =
C2σ2

z1
σ2

z2

(A1σ2
z1
+ 1)(A2σ2

z2
+ 1)

E =
Dσ2

z1
σ2

z2
+ µ2

z1
σ2

z2
+ µ2

z2
σ2

z1

σ2
z2

σ2
z1

σ̃z1 σ̃z2 =
ρ

C
√

1− ρ2

(16)
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Proof. See Appendix A.
In this way, we can solve the integral with λ1 and λ3 in Equation (14) depending on the results

of Theorem 1 and then Equation (14) can be rewritten as follows,

fT(t) ∼=
∫ ξ

−∞
ρp(xτ−i

)
ξ − xτ−i

+ µ̃1

[
(−1 + λ2t− τiλ2)e−λ2(t−τi)

]
− µ̃3

C′
√

2πσ2
B(t− τi)3

× exp

(
A′1σ2

1 + 1
2σ2

1
µ̃2

1 +
A′3σ2

3 + 1
2σ2

3
µ̃2

3 − C′µ̃1µ̃3 − 0.5E′
)

dxτ−i
, t ∈ [τi−1, τi) or [τnτ ,+∞)

(17)

where

µ̃1 =
(B′1σ2

1 + µ1)(A′3σ2
3 + 1) + (B′3σ2

3 + µ3)C′σ2
1

(A′1σ2
1 + 1)(A′3σ2

3 + 1)− C′2σ2
1 σ2

3

µ̃3 =
(B′3σ2

3 + µ3)(A′1σ2
1 + 1) + (B′1σ2

1 + µ1)C′σ2
3

(A′1σ2
1 + 1)(A′3σ2

3 + 1)− C′2σ2
1 σ2

3

ρ′2 =
C′2σ2

1 σ2
3

(A′1σ2
1 + 1)(A′3σ2

3 + 1)

E′ =
D′σ2

1 σ2
3 + µ2

1σ2
3 + µ2

3σ2
1

σ2
3 σ2

1

A′1 =
e−2λ2(t−τi)

σ2
B(t− τi)

B′1 =
−e−λ2(t−τi)

(
ξ − xτ−i

− µ(t− τi)
)

σ2
B(t− τi)

A′3 =
1

σ2
B(t− τi)

B′3 =
ξ − xτ−i

− µ(t− τi)

σ2
B(t− τi)

C′ =
e−λ2(t−τi)

σ2
B(t− τi)

D′ =

[
ξ − xτ−i

− µ(t− τi)
]2

σ2
B(t− τi)

(18)

However, it is not easy to obtain the analytical form of the above integrals. Fortunately, only univariate
integral needs to be calculated, which can be solved by many numerical methods such as trapezoidal
approximations, parabolas approximations, and Rhomberg integration.

It is noted that the time of the changing point is prearranged and known under the assumption,
i.e., N(t) is prearranged. In practice, the rest time may not be provided or known in advance, and it is
unknown and random. In this case, we define the PDF of each changing point as p(τi). Then, we can
obtain the PDF of the lifetime based on the law of total probability.

fRT(t) =
∫ ∫

...
∫

fT(t)p(τ1)p(τ2)...p(τnτ )dτ1dτ2dτnτ (19)

where fT(t) denotes the PDF of the lifetime with fixed changing point. In this way, the results
under the prearranged changing point can be extended to the random case. For example, Zhang et al. [25]
utilized the semi-Markov model (SMM) to reflect the degradation phase switch, and then generated the
distribution of each changing time. Owing to the limitation of space, we do not further investigate how to
formulate the framework of mode transitions (i.e., the rest time) in this paper.

Now, we have completed the lifetime estimation based on the proposed multi-phase degradation
model. In order to facilitate the application of our approach, we should discuss how to identify
the model based on the collected data.
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Figure 2. The simulated degradation trajectories generated from the proposed model. (a) The degradation
trajectory with fixed regeneration; (b) The degradation trajectory with random regeneration; (c) The degradation
trajectory with negative rate and fixed regeneration; (d) The degradation trajectory with negative rate and
random regeneration.

4. Parameter Estimation Based on the ECM Algorithm

In this section, we mainly focus on the model identification. Firstly, we attempt to formulate
the likelihood function based on the property of the Wiener process.

We define that X = [x0, x1, ..., xk] denotes the degradation data at time [t0, t1, ..., tk]. For simplicity,
we tranform X = [x0, x1, ..., xk] into X0:k = [x1,1, x1,2, ...x1,N1 , x2,1, x2,1, ..., x2,N2 , ...xi,j, ..., xnτ ,Nnτ

],

where xi,j represents the j-th observation at i-th phase, and thus k + 1 =
nτ

∑
i=1

Ni.

It is assumed that λ1 and λ3 are fixed, then the increment of observation data can be written as,

∆xi,j=


µ∆ti,j+σBB(∆ti,j) i = 1
µ∆ti,j − λ1+λ3+σBB(∆ti,j) i = j, i 6= 1

µ∆ti,j − λ2λ1
∫ ti,j

ti,j−1
e−λ2(τ−ti)dτ + σBB(∆ti,j) i 6= j, i 6= 1

(20)

where i = 1, 2, ...nτ .
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However, due to the uncertainty of λ1 and λ3, it is hard to formulate the likelihood function,
and further the analytical solution of likelihood function cannot be obtained. As such, it is difficult
to estimate the parameters via the traditional maximum likelihood estimation (MLE). In this case,
it is natural to treat λ1 and λ3 as latent variables and adopt EM algorithm or its extended method
for parameter estimation. It is well-known that two steps are included in the EM algorithm, i.e.,
E-step and M-step. Then we will introduce how to realize the model identification according to such
two steps.

E-step: Let [λ1, λ3] represent the latent variables. Then, if the latent variables are known, we can
obtain the likelihood function as shown in Equation (21),

l(Θ|X0:k, λ2:nτ ) =
nτ

∏
i=2

Ni

∏
j=2

1√
2πσ2

B∆ti,j

exp

−
(

∆xi,j − µ∆ti,j − λ2λ1
∫ ti,j

ti,j−1
e−λ2(τ−ti)dτ

)2

2σ2
B∆ti,j


+

nτ

∏
i=2

1√
2πσ2

B∆ti,j

exp

[
−
(

xi,1 − xi−1,Ni−1 − µ∆ti,j+λ1 − λ3
)2

2σ2
B∆ti,j

]
+

nτ

∏
i=2

1√
2πσ2

1

exp

[
− (λ1 − µ1)

2

2σ2
1

]

+
nτ

∏
i=2

1√
2πσ2

3

exp

[
− (λ3 − µ1)

2

2σ2
3

]
+

N1

∏
j=2

1√
2πσ2

B∆ti,j

exp

[
−
(
x1,j − x1,j−1 − µ∆ti,j

)2

2σ2
B∆ti,j

]
(21)

where Θ = [µ, σB, λ2, µ1, µ3, σ1, σ3] denotes all parameters and λ2:nτ is the observation of [λ1, λ3].
Next, we calculate the conditional expectation of complete-data likelihood function,

Q(Θ|Θ̂(m)
k ) = E

λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[ln p(X0:k, λ2:nτ |Θ)]

= E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

− nτ

∑
i=2

Ni

∑
j=2

(∆xi,j − µ∆ti,j + λ1,ie
−λ2ti,j − λ1,ie

−λ2ti,j−1)
2

2σ2
B∆ti,j

−
nτ

∑
i=2

(xi,1 − xi−1,Ni−1 − µ∆ti,j + λ1,i − λ3)
2

2σ2
B∆ti,j

−
N1

∑
j=2

(x1,j − x1,j−1 − µ∆ti,j)
2

2σ2
B∆ti,j

+
nτ

∑
i=2

Ni ln
1√

2πσ2
B∆ti,j

+
nτ

∑
i=2

ln
1√

2πσ2
1

−
nτ

∑
i=2

(λ1,i − µ1)
2

2σ2
1

+
nτ

∑
i=2

ln
1√

2πσ2
3

−
nτ

∑
i=2

(λ3,i − µ3)
2

2σ2


(22)

where Θ̂
(m)
k represents the all estimates in the m-th step based on X0:k.

It is noteworthy that λ1 and λ3 follow the Gaussian distribution and we only need to derive
the expressions of E

λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ1,i], E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ3,i], E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ2
1,i], E

λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ2
3,i],

and E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ1,iλ3,i]. In practice, the interval time is usually defined as a fixed value, thus we let

∆ti,j = ∆t for simplicity. Then, based on the Bayesian rule, following results for deriving Q(Θ|Θ̂(m)
k )

can be obtained,
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E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ1,i] = µλ1 , E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ3,i] = µλ3 , E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ2
1,i] = µ2

λ1
+ σ2

λ1

E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ2
3,i] = µ2

λ3
+ σ2

λ3
, E

λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ1,iλ3,i] = µλ1 µλ3 − ρσλ1 σλ3

µλ1=

(
µ̂
(m)
1 σ̂

2,(m)
B ∆t−σ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )(xi,j−xi,j−1−µ̂(m)∆t)−σ̂

2,(m)
1 (xi,1−xi−1,Ni−1

−µ̂(m)∆t)

)(
σ̂

2,(m)
3 +σ̂

2,(m)
B ∆t

)
σ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)
−σ̂

2,(m)
1 σ̂

2,(m)
3

−

(
σ̂

2,(m)
3 (xi,1−xi−1,Ni−1

−µ̂(m)∆t)+σ̂
2,(m)
B ∆tµ̂(m)

3

)σ̂
2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1


σ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)
−σ̂

2,(m)
1 σ̂

2,(m)
3

µλ3=

(
σ̂

2,(m)
3 (xi,1−xi−1,Ni−1

−µ̂(m)∆t)+σ̂
2,(m)
B ∆tµ̂(m)

3

)σ̂
2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t


σ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)
−σ̂

2,(m)
1 σ̂

2,(m)
3

−

(
µ̂
(m)
1 σ̂

2,(m)
B ∆t−σ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )(xi,j−xi,j−1−µ̂(m)∆t)−σ̂

2,(m)
1 (xi,1−xi−1,Ni−1

−µ̂(m)∆t)

)
σ̂

2,(m)
3σ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)
−σ̂

2,(m)
1 σ̂

2,(m)
3

σ2
λ1
=

(
σ̂

2,(m)
3 +σ̂

2,(m)
B ∆t

)
σ̂2,m

1 σ̂
2,(m)
B ∆tσ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)
−σ̂

2,(m)
1 σ̂

2,(m)
3

σ2
λ3
=

σ̂
2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 t−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

σ̂2,m
3 σ̂

2,(m)
B ∆tσ̂

2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)
−σ̂

2,(m)
1 σ̂

2,(m)
3

ρ=
σ̂
(m)
1 σ̂

(m)
3√√√√√

σ̂
2,(m)
1

Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )

2

+σ̂
2,(m)
1 +σ̂

2,(m)
B ∆t

(σ̂
2,(m)
3 +σ̂

2,(m)
B ∆t

)

(23)

Proof. See Appendix B.
In this way, the expression of Q(Θ|Θ̂(m)

k ) has been attained. Then the next step is to maximize Q(Θ|Θ̂(m)
k ).

M-step: In order to maximize Q(Θ|Θ̂(m)
k ), the direct way is to make

∂Q(Θ|Θ̂(m)
k )

∂Θ
= 0 and then

solve such the equation. In this way, we can obtain some solutions,

µ̂
(m+1)
1 =

nτ
∑

i=2
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ1,i]

nτ−1

µ̂
(m+1)
3 =

nτ
∑

i=2
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ3,i]

nτ−1

σ̂
2,(m+1)
1 =

N
∑
i
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ2
1,i]−

N
∑
i
E2

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ1,i]

nτ−1

σ̂
2,(m+1)
3 =

N
∑
i
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ2
3,i]−

N
∑
i
E2

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ3,i]

nτ−1

(24)

where the expressions of E
λ1,λ3

∣∣∣X0:k,Θ̂(m)
k

[λ1,i], Eλ1,λ3

∣∣∣X0:k,Θ̂(m)
k

[λ3,i], Eλ1,λ3

∣∣∣X0:k,Θ̂(m)
k

[λ2
1,i], Eλ1,λ3

∣∣∣X0:k,Θ̂(m)
k

[λ2
3,i],

andE
λ1,λ3

∣∣∣X0:k,Θ̂(m)
k

[λ1,iλ3,i] can be found in Equation (23). It is noted that µ̂
(m+1)
1 , µ̂

(m+1)
3 , σ̂

(m+1)
1 , and σ̂

(m+1)
3

are global optimal solutions for maximizing Q(Θ|Θ̂(m)
k ).

However, only µ1, µ3, σ1, and σ3 can be derived with an analytical forms, and other parameters

i.e., µ, σB, and λ2 cannot be attained owing to the complexity of
∂Q(Θ|Θ̂(m)

k )

∂Θ
= 0. If we choose
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some of the heuristic optimization methods to deal with it, not only is the existence and convergence
of optimization for parameters estimating hard to analyze, but also the online capability will be poor.
Under this consideration, we utilize the ECM algorithm to simplify the issue [32,33]. According to the
ECM algorithm, we firstly fix λ2 and then derive the results of µ and σB, i.e., we treat λ

(m)
2 as the real

value of λ2 in this step. In this way, we can obtain analytical solutions of µ and σB as shown in follows,

µ̂(m+1) =

nτ

∑
i=2

Ni
∑

j=2
(xi,j − xi,j−1)(e

−λ̂
(m)
2 ti,j − e−λ̂

(m)
2 ti,j−1)+

N1
∑

j=2
(x1,j − x1,j−1)(

nτ

∑
i=1

Ni − 1
)

∆t

+

nτ

∑
i=2

(
xi,1 − xi−1,Ni−1+E

λ1,λ3|X0:k ,Θ̂(m)
k

[λ1,i]−E
λ1,λ3|X0:k ,Θ̂(m)

k
[λ3,i]

)
(

nτ

∑
i=1

Ni − 1
)

∆t

+

nτ

∑
i=2

E
λ1,λ3|X0:k ,Θ̂(m)

k
[λ1,i]

Ni
∑

j=1
(xi,j − xi,j−1)(e

−λ̂
(m)
2 ti,j − e−λ̂

(m)
2 ti,j−1)(

nτ

∑
i=1

Ni − 1
)

∆t

(25)

σ̂
2,(m+1)
B = −

nτ
∑

i=1

Ni
∑

j=2
(xi,j−xi,j−1)

2+kµ̂2,(m+1)∆t+
nτ
∑

i=2
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ2
1,i]

[
Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )2+1

]
( nτ

∑
i=1

Ni−1
)

∆t

+
2

nτ
∑

i=2
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ1,i]

[
Ni
∑

j=2
(xi,j−xi,j−1)(e

−λ
(m)
2 ti,j−e−λ

(m)
2 ti,j−1 )−µ̂(m+1)∆t−λ̂

(m+1)
3

]
−2

nτ
∑

i=2

Ni
∑

j=2
(xi,j−xi,j−1) µ̂(m+1)∆t( nτ

∑
i=1

Ni−1
)

∆t

−
2µ̂(m+1)∆t

nτ
∑

i=2
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ1,i]
Ni
∑

j=2
(e−λ̂

(m)
2 ti,j−e−λ̂

(m)
2 ti,j−1 )+2µ̂(m+1)∆t

N1
∑

j=2
(x1,j−x1,j−1)( nτ

∑
i=1

Ni−1
)

∆t

+

nτ
∑

i=2

(
xi,1−xi−1,Ni−1

)2
+2

nτ
∑

i=2

(
xi,1−xi−1,Ni−1

)(
E

λ1,λ3 |X0:k ,Θ̂(m)
k

[λ1,i]−λ̂
(m+1)
3 −µ̂(m+1)∆t

)
+2Nλ̂

(m+1)
3 µ̂(m+1)∆t( nτ

∑
i=1

Ni−1
)

∆t

(26)

where k =
nτ

∑
i=1

Ni − 1,

Then next step is to derive λ̂
(m+1)
2 via maximizing Q(λ̂2|µ̂(m+1), σ̂

2,(m+1)
B , λ̂

(m+1)
3 , µ̂

(m+1)
1 , σ̂

2,(m+1)
1 ,

µ̂
(m+1)
3 , σ̂

2,(m+1)
3 ), which can be formulated as,

λ̂
(m+1)
2 = arg max

λ2

E
λ1,λ3|X0:k ,Θ̂(m)

k

[
ln p(X0:k, λ1, λ3|Θ̂

(m+1)
k )

]
= arg min

λ2

{
nτ

∑
i=2

Ni
∑

j=2
E

λ1,i |X0:k ,Θ̂(m)
k

[
λ2

1,i

] (
e−λ2ti,j − e−λ2ti,j−1

)2
− 2µ̂(m+1)∆t

nτ

∑
i=2

Ni
∑

j=2
(xi,j − xi,j−1) +

2
nτ

∑
i=2

(
E

λ1,i |X0:k ,Θ̂(m)
k

[
λ1,i

]) Ni
∑

j=2

[(
e−λ2ti,j − e−λ2ti,j−1

) (
xi,j − xi,j−1 − µ̂(m+1)∆t

)]
+

nτ

∑
i=2

Ni
∑

j=2

(
µ̂2,(m+1)∆t2 + ∆x2

i,j

)} (27)

In this way, compared with the traditional EM algorithm, ECM algorithm can reduce the number
of parameters for optimization from 4 to in every M-step, which decreases the computing complexity
and save the time.

4.1. Implementation Procedure

In order to make the present results more feasible for engineering applications, a step-by-step
procedures of the proposed approach with respect to model identification are developed in this
subsection and summarized as shown in Table 1.
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Table 1. The implementation procedures of model identification.

Algorithm Procedure:

Step 1. Collect the degradation data X0:k, and then obtain the occurrence number of rest time, i.e., nτ ;
Step 2. Transform X0:k into X0:k = [x1,1, x1,2, ...x1,N1 , x2,1, x2,1, ..., x2,N2 , ...xi,j, ..., xnτ ,Nnτ

] according to nτ ,
and then obtain the difference of total observed data ∆Xi,j, where xi,j represents the j-th
observation at i-th phase;

Step 3. Regard λ1 and λ3 as the latent variables, and formulate the complete-data likelihood as shown

in Equation (21). Let m = 0, and give the initial value Θ̂
(m)
k .;

Step 4. Calculate the conditional expectation of Equation (21), and then attain Q(Θ|Θ̂(m)
k ) as shown

in Equation (22), where Θ̂
(m)
k denotes the estimates of all parameters at m-th iteration;

Step 5. Fix λ2 = λ
(m)
2 , and obtain the estimates of other parameters via maximizing Q(θ|θ̂(m)

k , λ
(m)
2 ),

where θ denotes all parameters except λ2. Then the results θ̂
(m+1)
k can be found

in Equations (24)–(26);
Step 6. Fix θ = θ(m), and derive λ

(m)
2 via maximizing Q(λ2|θ̂

(m+1)
k , λ

(m)
2 ), which can be found

in Equation (27);
Step 7. Let m = m + 1, and repeat Step 4 to Step 6 until the estimates Θ̂

(m)
k becomes convergence.

Then such Θ̂
(m)
k can be treated as the final estimates of Θ.

Following the above procedures, the proposed method can be established for model identification
based on ECM algorithm.

5. Case Study

In this section, two examples are provided: (1) a numerical simulation is adopted to verify
the accuracy of parameter estimation and the PDF of RUL; (2) The actual degradation data of battery is
used to illustrate the feasibility of the proposed model.

5.1. Numerical Example

In this subsection, we concentrate on how to verify the reasonability and effectiveness of our
theory, including the result of the approximate analytical lifetime estimation and the approach
of parameter identification. Firstly, we will illustrate the method of lifetime estimation via comparing
our results with those from Markov Chain Monte Carlo (MCMC). In this paper, two cases are taken
into account: the fixed jump at the changing point and the random jump at the changing point.
For the first case, we let µ = 0.01, σB = 0.1, λ1 = −5, λ3 = 1, and λ3 = −0.02. For another case,
we let µ = 0.01, σB = 0.1, µ1 = −5, µ3 = 0, σ1 = 3, σ3 = 1, and λ2 = −0.02. According to the given
parameters, we can further generate the degradation trajectories as shown in following Figure 2a,b.
It is assumed that the failure threshold ξ is set at 60. It is interesting to be noted that if we make
y(t) = ξ − x(t), the y(t) is similar to the practical degradation data as shown in Figure 1, where x(t)
denotes degradation path we generated based on the proposed degradation model in Equation (3).
In this way, the degradation can be transformed into the degradation process with initial value y0 = 60
and threshold ξ = 0, and its degradation rate become negative. What should be noticed that such
the transformation does affect the lifetime estimation under the concept of the FPT.

In addition, we adopt the MCMC to generate 1,000,000 sets of degradation trajectories based on
our proposed model as shown in Equation (4) and collect their FPTs as the result of lifetime. Here these
FPTs are regarded as the lifetime and then they will be compared with our theoretical results for
illustration. In this way, we can obtain the results of our method and the MCMC separately, and the
following Figure 3 shows the comparisons of the two aforementioned cases. The blue line denotes the
results of the MCMC, and the red lines represent the results of our approach, and the green dotted
lines are the results of the traditional way that ignores the influence of the regeneration. From the
comparison as shown in Figure 3, we can notice that the results of our method are similar to those
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of the MCMC. It is interesting to be noteworthy that the deviations of lifetime estimation with fixed
regeneration (or jump) are smaller than those with random regeneration owing to the uncertainty
and randomness of λ1 and λ3. In addition, we can find that the deviation of the traditional method
is obvious, especially the estimated PDFs at the changing points. Thus, it could be concluded that
our method can do lifetime estimation for the proposed degradation model under the concept of the
FPT efficiently.
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Figure 3. The comparison of lifetime estimation. (a) The comparison of PDFs with fixed jumps; (b) The comparison
of PDFs with random jumps.

Next, we will introduce how to realize model identification based on our algorithm. According to
the proposed method in Section 4, we generate 10 degradation trajectories with 10 times random
regeneration phenomena, where the parameters are set as those in the above case 2 and the each
degradation phase lasts 1000 time steps. In this case, all data can be converted to 100 phases. Based on
the proposed approach, we can attain the parameters’ estimates as following table shown.

From Table 2, we find that our results approach the true value, which verifies the effectiveness of
our method. It is worth mentioning that the initial value of all parameters are set as µ = 1, σB = 5,
µ1 = 1, µ3 = 4, σ1 = 0.1, σ3 = 10, and λ2 = −0.1. To better illustrate, we display each iteration of
parameter estimation based on ECM algorithm as follows.

It could be found that the estimates of the all parameters can converge to the estimated value
quickly with around 10 steps of iteration in Figure 4. It means that the online capability of the proposed
method is good and acceptable.

Therefore, the numerical example can illustrate our approach in theory. Next we will apply our
method into the practical case for showing its practical application.

Table 2. The parameters estimation with different sample size.

Sample Size µ σB µ1 µ3 σ1 σ3 λ2

2 n = 2 0.0205 0.149 4.541 −0.289 2.898 1.491 0.0204
3 n = 5 0.0148 0.072 4.516 −0.214 2.720 1.428 0.0210
4 n = 10 0.0101 0.095 4.987 0.261 2.789 1.342 0.0196
5 True value 0.0100 0.100 5.000 0.000 3.000 1.000 0.0200
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Figure 4. The iterations of estimated parameters based on ECM algorithm. (a) The iteration of µ̂;
(b) The iteration of σ̂B; (c) The iteration of µ̂1; (d) The iteration of µ̂3; (e) The iteration of σ̂1;
(f) The iteration of σ̂3; (g) The iteration of λ̂2.

5.2. Practical Example

In this case, we choose the testing data of Li-Ion battery collected by the Center for Advanced Life
Cycle Engineering (CALCE) of Maryland University to verify our approach [3,34]. Here, we choose
the CS2 battery to verify our method. It is noted that such the battery is prismatic and its cathode is
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LiCoO2. Its constant current rate is 0.5 C until the voltage reaches 4.2 V and then 4.2 V is sustained
until the charging current drops to below 0.05 A. To better illustrate this, a set of degradation data is
chosen to identify the model i.e., CS2-34, and its estimated parameters are provided for RUL estimation.
According to the proposed method for model identification, the estimates of the all parameters are
obtained as µ = −4.393× 10−04, σB = 0.0032, µ1 = −0.0354, µ3 = −0.0158, σ1 = 0.0181, σ3 = 0.0089,
and λ2 = 0.0812. From the parameters’ estimates, it is noted that −µ1 + µ3 > 0 and it obviously larger
than µ∆t and the increment of the degradation data. That is to say, the regeneration phenomenon
does exist in the degradation process, and the testing rest is a non-negligible factor of the regeneration
phenomenon. Moreover, λ2 < 0 means that the degradation rate will suddenly increase and then
gradually recover.

Next, based on the parameters’ estimates, we try to illustrate the RUL estimation based
on the proposed method. It is well-known that a certain percentage of the rated capacity is treated
as the soft failure threshold of the battery. In this paper, we set the failure threshold at 70% of the rated
capacity to better illustrate the effect caused by the regeneration phenomena, i.e., the failure threshold
ξ = 0.8. Furthermore, what should be noticed is that the rest time of this degradation process is
known. In another word, the changing time has been prearranged. In this way, combining the prior
value of parameters and the failure threshold, we can obtain the PDFs of RUL for CS2-34 as shown
in following Figure 5. What should be noticed is that the estimated RUL is a random distribution
rather than a fixed value. So we choose the mean square error (MSE) to reflect the error as shown
in Figure 5b.
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Figure 5. The comparison of the estimated RUL. (a) The comparison of expectation of RUL; (b) The MSE
of estiamted RUL.

From Figure 5, we can find that compared to the traditional method the results of our method can
approach the true RUL with smaller estimated bias, since we take full consideration of the influence
of such the regeneration phenomena. It is noted that if the regeneration phenomena are ignored,
the estimated RUL will be influenced by the random jumps heavily, and the result will be overestimated
owing to the state recovery, i.e., the estimated RUL become longer. In contrast, because our method
has fully considered the effects of the regeneration phenomena on both degradation state and rate,
the results of our method could be less affected. In order to better illustrate, we compare the PDFs
of our method and the traditional method at the beginning and end of a degradation phase accordingly.
The following Figure 6 shows that the PDFs of estimated RUL at cycle time 568 and 569.
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Figure 6. The comparison of PDFs of the estimated RUL at two different cycle. (a) The PDFs of RUL
at cycle 568; (b) The PDFs of RUL at cycle 569.

It is noticed that the estimated bias between our result and traditional method at the cycle time
568 is smaller than cycle time 569. That is to say, the result of the traditional method may have
much more bias at the beginning of the degradation phase since it is susceptible to the regeneration
phenomena. Therefore, it can be concluded that the regeneration will influence the lifetime and RUL
estimation, and the traditional method cannot deal with it well. On contrary, our method can not only
reflect the degradation trajectory but also achieve more accurate estimated result, which illustrates
the advantage and effectiveness of our approach.

6. Conclusions

In this paper, we mainly concentrate on how to model the degradation process with state-recovery
phenomena. Under this consideration, we propose a multi-phase degradation with random jumps
to describe such the degradation trajectory. In the proposed model, we classify the degradation
process into several phases according to the rest time, and take a full account of the uncertainty
of regeneration phenomena. Then we develop a model identification method based on the ECM
algorithm to deal with complex likelihood function and the random latent variables. Furthermore,
according to the proposed degradation model, we derive the lifetime estimation based on the time-scale
transformation and law of total probability, and then obtain an approximate solution with the form
of an single integral. To better illustrate our method, both numerical example and the practical example
of CALCE batteries are adopted for demonstration.

Although the proposed method can better describe the degradation with regeneration phenomena
and provide accurate lifetime estimation, there are still some problems needing to be investigated
in the future. First, in this paper, we assume the rest time is prearranged, but the appearance of the rest
time may be random and uncertain in practice. As such, in future work, we will try to formulate
a framework of random operating state switches (i.e., the rest time), and then extended our approach
for lifetime or RUL estimation to the stochastic case. Second, the changing degradation rate caused
by the regeneration phenomena is a fixed value in our model. In fact, the changing degradation
rate (i.e., the degradation rate at every phase) should exist difference between different degradation
phases. Maybe, the random rate which can describe the phase-to-phase variability is more suitable.
Third, it is noteworthy that the environmental temperature of the testing data we adopted does not
change heavily so that we ignore its influence in this paper. However, the ambient temperature often
change constantly in practice, which will affect the batteries’ degradation rate and fluctuation. We will
continue to investigate such these issues in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

RUL Remaining useful life
MLE Maximum Likelihood Estimation
EM Expectation maximum
ECM Expectation conditional maximum
SOH State of health
PHM Prognostic and health management
FPT First passage time
CALCE Center for Advanced Life Cycle Engineering
PDF Probability density function
CDF Cumulative distribution function
SMM Semi-Markov model
MCMC Markov Chain Monte Carlo

Notation

T The lifetime
Lk The RUL at time tk
X(t) The whole degradation process
X0(t) The continuous degradation process without the effect of the regeneration phenomenon
Xi(t) The changing degradation process caused by the i-th testing rest
N(t) The occurrence number of testing rest at time t
τi The occurrence time of i-th testing rest
τnτ Total times of the testing rest
µ The drift coefficient
σB The diffusion coefficient
B(t) The standard Brownian motion
x0 The initial value of degradation process
λ = [λ1, λ2, λ3] The parameters of the model of the regeneration phenomenon
µ1, σ2

1 The mean and variance of λ1
µ3, σ2

3 The mean and variance of λ3

ξ The failure threshold
fT(t) The PDF of the lifetime
xt The degradation state at time t
xt− The left limit of xt

xi,j The j-th observation at i-th phase
∆xi,j The difference of xi,j
∆ti,j The difference of t
s(t), S(t) Two functions of the time t
g(xτ−i

) The transition probability from x0 to xτ−i
under the concept of the FPT

p(λ1), p(λ3) The PDFs of λ1 and λ3

Ez[·] Take the expectation of z
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Θ The all parameters of the proposed model
Θ̂ The estimate of Θ

Θ̂(m) The estimate of Θ at the m-th iteration
X The all degradation observation data

Appendix A

It is defined that z1 ∼ N(µz1 , σz1) and z2 ∼ N(µz2 , σz2) are two independent Gaussian random
variables with PDFs f (z1) and f (z2) accordingly, and A1, A2, B1, B2, C, and D are fixed value.

Firstly, we will calculate the EZ
[
exp

(
−0.5A1z2

1 − 0.5A2z2
2 + B1z1 + B2z2 + Cz1z2 − 0.5D

)]
EZ

[
exp

(
−0.5A1z2

1 − 0.5A2z2
2 + B1z1 + B2z2 + Cz1z2 − 0.5D

)]
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∫ ∞
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∫ ∞
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where we can utilize the method of completing the square to obtain the solutions of µ̃z1 , µ̃z2 , and E.
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It is noted that exp
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be regarded as a PDF of bivariate normal distribution. Then according to the bivariate normal
distribution, we can further obtain,
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Then based on the property of the bivariate normal distribution, the following solutions can
be derived,
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In this way, the proof has been completed.

Appendix B

It is noted that λ1,i and λ3,i in Equation (22) can be regarded as the observations of λ1 and λ3.
According to λ1 ∼ N(µ1, σ1) and λ3 ∼ N(µ3, σ3), we can further derive E

λ1,λ3

∣∣∣X0:k,Θ̂(m)
k

[ln p(X0:k, λ2:nτ |Θ)]

based on the property of the bivariate normal distribution. The detailed derivation procedure is displayed
as follows,
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In this way, we can further obtain,

Q(Θ|Θ̂(m)
k ) = E

λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[ln p(X0:k, λ2:nτ |Θ)]

= E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

− nτ

∑
i=2

Ni

∑
j=2

(∆xi,j − µ∆ti,j + λ1,ie
−λ2ti,j − λ1,ie

−λ2ti,j−1)
2

2σ2
B∆ti,j

−
nτ

∑
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(A6)

In the above equation, we should calculate E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ1,i], E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ3,i],

E
λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ2
1,i], Eλ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ2
3,i], and E

λ1,λ3

∣∣∣X0:k ,Θ̂(m)
k

[λ1,iλ3,i]. Under such the consideration,

we firstly derive the expression of p(λ1,i, λ3,i|X0:k, Θ̂(m)). It is worth mentioning that λ1,i and λ3,i
are only relevant to Xi. Therefore, we can have p(λ1,i, λ3,i|X0:k, Θ̂(m)) = p(λ1,i, λ3,i|Xi, Θ̂(m)).
According to the Bayesian rule, we can obtain,
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p(λ1,i, λ3,i|X0:k, Θ̂(m)) = p(λ1,i, λ3,i|Xi, Θ̂(m))

∝ p(Xi|λ1,i, λ3,i, Θ̂(m))π1(λ1,i)π3(λ3,i)

∝ exp

 Ni

∑
j=2
−
(xi,j − xi,j−1 − µ(m)∆ti,j + λ1,ie
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(m)
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1


(A7)

What should be noticed is that due to λ1 ∼ N(µ1, σ1) and λ3 ∼ N(µ3, σ3), the p(λ1,i, λ3,i|X0:k, Θ̂(m))

can be transformed as the PDF of bivariate normal distribution. In this case, based on the method of
completing square, we can derive the expression of p(λ1,i, λ3,i|X0:k, Θ̂(m)) as follows,

p(λ1,i, λ3,i|Xi, Θ̂(m)) ∝ exp

(
−
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λ3
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2 − 2σλ1
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)
(A8)

where
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Further, based on the property of bivariate normal distribution, E
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derive the expression of p(λ1,i, λ3,i|X0:k, Θ̂(m)). It is worth mentioning that λ1,i and λ3,i are only relevant to
Xi. Therefore, we can have p(λ1,i, λ3,i|X0:k, Θ̂(m)) = p(λ1,i, λ3,i|Xi, Θ̂(m)) can be derived as follows,
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In this way, the proof has been completed.
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