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Abstract: Hybrid vehicles usually have several braking systems, and braking mode switches are
significant events during braking. It is difficult to coordinate torque fluctuations caused by mode
switches because the dynamic characteristics of braking systems are different. In this study, a new
type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided
into two types. The control strategy of type one is achieved by controlling the change rates of clutch
hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously
changing the target braking torque during different mode switch stages and controlling the motor to
participate in active coordination control. Finally, the torque coordination control strategy is modeled
in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in
reducing the braking torque fluctuation and vehicle shocks during braking mode switches.
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1. Introduction

Hybrid electric vehicles (HEVs) have attracted significant research attention because they can
effectively reduce fuel consumption and emissions [1–3]. HEVs usually have several braking systems
such as hydraulic and motor braking systems. Hydraulic braking systems can provide a stable and
efficient braking force for a vehicle, and motor braking systems make energy recovery possible, thus
expanding the driving range. Engine braking systems, which use engine drag resistance force during
braking, can reduce the wear on a hydraulic braking system, thus saving maintenance expenses [4,5].
There are several braking modes during braking because of the existence of different braking systems.
The different dynamic characteristics of hydraulic, motor, and engine braking systems cause torque
fluctuations during braking mode switch, which deteriorates the riding comfort and the vehicle safety.

Currently, existing research on mode switching is mostly concentrated with the driving and less
on the braking mode switch [6–8]. Zhang of Ji Lin University adopted a hierarchical control strategy
in braking mode switches, then he designed a coordinated controller, based on a forward-feedback
algorithm, to control the pneumatic braking system in order to compensate for errors of the motor
braking force [9]. Fu of Tsinghua University analyzed the dynamic characteristics of the motor and the
electronic vacuum booster (EVB) of a hybrid vehicle. The braking modes were divided into economic
braking mode, safe braking mode with low state of charge (SOC), and safe braking mode with high
SOC. Based on expected braking torque predictions, he proposed an electro-hydraulic coordinated
braking control strategy [10]. Zhu of Tongji University designed a brake force distribution correction
module and a motor force compensation module for transition conditions. These included hydraulic
brake force intervention conditions, hydraulic brake force evacuation conditions, and regenerative
brake force evacuation conditions with low speed. Those studies investigated the coordination control
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between the motor and the mechanical braking system [11]. However, they did not make full use of
the dynamic characteristics of the hydraulic, motor, and engine braking systems.

In this study, a new type of plug-in hybrid vehicle is taken as the research object, and the braking
force distribution control strategy, which involves the engine drag resistance force, is developed. It is
well known that the dynamic response of hydraulic braking systems is slow and stable, while the
response of motor braking systems is fast and accurate [12]. The control strategy uses the hydraulic
braking system to provide the required braking force, the motor to coordinate torque fluctuation, and
the clutch to coordinate the engine drag force as a response to the problems of torque fluctuation
during braking mode switch.

2. HEV Structure and Dynamic Model

2.1. HEV Structure

The structure of a plug-in hybrid vehicle, as shown in Figure 1, mainly includes an engine, an ISG
motor, a permanent magnet synchronous motor (PMSM), a dual clutch, and an infinitely variable
transmission (CVT). The front axle is driven by the engine and the integrated starter generator (ISG),
the rear axle is driven by the PMSM, and the dual clutch is mounted on both ends of the ISG motor.
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2.2. Dynamic Model

2.2.1. Motor Dynamic Model

The three-phase PMSM is a strongly coupled and multivariable nonlinear system [13]. In order to
accurately reflect the dynamic response characteristics of the motor during braking, a dynamic model
is established based on the mathematical model of the three-phase PMSM. In the synchronous rotating
coordinate system (d-q axis), the ideal PMSM voltage equation [14] is:{

ud = Rid + Ld
d
dt id −ωeLqiq

uq = Riq + Lq
d
dt iq + ωe(Ldid + ψ f )

(1)

The electromagnetic torque equation is:

Te =
3
2

pniq

[
id(Ld − Lq) + ψ f

]
(2)

where ud, uq respectively represent the stator voltage d-q axis component; id, iq respectively represent
the stator current d-q axis component; R is stator resistance; ωe is electrical angular velocity; Ld, Lq

respectively represent inductance d-q axis component; ψf is permanent magnet flux chain; pn is motor
pole pairs.
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2.2.2. Hydraulic Dynamic Model

The dynamic response characteristics of the hydraulic braking system are related to the hydraulic
system structural parameters, duty cycle and so on. However, building a precise model of the hydraulic
braking system is difficult and the required computational power is large. In order to simplify the
model and accurately reflect the dynamic characteristics of the hydraulic system, this study uses the
empirical first-order inertia link [15]: Th f = Pf

1
4 πD2

f R f BF f
1

sτ+1

Thr = Pr
1
4 πD2

r RrBFr
1

sτ+1

(3)

where Thf, Thr are the front and rear axle brake torque; Pf, Pr are cylinder pressures; Df, Dr are axle
cylinder diameter; Rf, Rr are brake operating radius; BFf, BFr are brake efficiency factors; τ is the
first-order system time constant, which can be obtained by experience; s is a variable.

As shown in Figure 2, the motor torque response is quick and accurate, the response time is
approximately 0.06 s, and the overshoot is 11.12%. Compared with the motor, in order to overcome
the brake clearance and cylinder pressurization, the hydraulic system’s torque response is slow but
stable and the response time is approximately 0.17 s. According to [16], the full starting time of the
driving brake is generally controlled within 0.2–0.3 s; thus, the dynamic response characteristics of the
hydraulic model constructed in this study satisfies this requirement.
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2.2.3. Engine Drag Model

When the engine is anti-dragged, the throttle is closed and the engine drag resistant torque is
related to the engine speed, as shown in Figure 3. Because the engine has multiple subsystem modules,
the establishment of the engine model is difficult. At the same time, this study does not consider
the problem of engine emissions. Therefore, this study uses the experimental modeling method to
establish the engine model, and the output response of the engine drag resistant torque is characterized
by a second-order transfer function:

TbICE =
ω2

n
s2 + 2ζωns + ω2

n
f (ne) (4)

where ωn is the natural frequency; ζ is the damping coefficient; ne is the engine speed; TbICE is the
engine drag resistant torque; s is a variable.
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3. Braking Force Distribution Strategy

The hybrid electric vehicle mentioned above is equipped with dual motors, and during braking,
the maximum strength of the motor brake ranges from 0.06 to 0.27 with the speed and CVT ratio
changing. Therefore, in order to recover as much energy as possible, this study puts forward
a brake force distribution strategy based on the motor braking capacity, while taking the engine
brake into consideration.

The braking force distribution curve is shown in Figure 4. V is the speed of the vehicle; Vmax and
Vmin are the maximum and minimum vehicle speeds allowed for regenerative braking; SOChigh is the
maximum state of charge allowed for regenerative braking; io1 and io2 are the transmission ratios of
final drive I and final drive II; icvt is the CVT transmission ratio; z is the braking strength; Fb_req is the
total braking force the driver demanded; Fbm_req, Fbh_req and FbICE_req are the target motor, hydraulic
and engine braking forces; Fbxf_req and Fbxr_req are the target braking forces of the front and rear axles
of the vehicle; Fbhf_req and Fbhr_req are the target hydraulic braking forces of the front and rear axles;
FbI_req and FbP_req are the target braking forces of ISG and PMSM; FbI_max and FbP_max are the maximum
braking forces that ISG and PMSM can provide in the current state; FbICE is the engine drag resistant
force; Fbm_max is the maximum braking force that the motor can provide; β is the ratio between front
axle and total braking force.

As seen in Figure 4, the point E is the intersection of line z = 0.4 and curve I while the point F is
the intersection of line z = 0.7 and curve I. Therefore, the β line consists of the OE and EF segments and
the braking strengths of A, B and C are:

z(A) =
io2FbP_max

G

z(B) = Fbm_max
G

z(C) = io2FbP_max(1+β1)
G

(5)

The required motor braking force is:

Fbm_req = icvtio1FbI_req + io2FbP_req (6)

The required hydraulic braking force is:

Fbh_req = Fbh f _req + Fbhr_req (7)

The required braking force is:
Fb_req = Gz (8)
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The detailed braking force distribution strategies are as follows:
When Vmin < V < Vmax and SOC < SOChigh:

(1) 0 < z ≤ z(B)

In this condition, braking force is completely provided by the regenerative braking force.
Fbh_req = 0, Fbm_req = Fb_req. The braking forces of ISG and PMSM are distributed as follows:

When 0 < z ≤ z(A),  FbI_req = 0

FbP_req =
Fb_req

io2

(9)

When z(A) < z ≤ z(B),  FbI_req =
Fb_req−io2FbP_max

icvtio1

FbP_req = FbP_max

(10)

(2) z(B) < z ≤ z(C)

In order to make full use of engine to brake, the braking force is provided by the motor and the
engine braking system. Therefore, Fbh_req = 0, Fb_req = Fbm_req + icvtio1FbICE.

FbICE_req = FbICE

FbI_req =
Fb_req−io2FbP_max

icvtio1
− FbICE

FbP_req = FbP_max

(11)

(3) z(C) < z ≤ z(F)

When z(C) < z ≤ z(F), the braking force is provided by the motor and the hydraulic braking
system. The target braking forces of the front and rear axles, distributed in accordance with line CEF
shown in Figure 4, are Fbxf_req and Fbxr_req. Therefore, FbICE = 0, Fb_req = Fbm_req + Fbh_req. The braking
forces of the motor and hydraulic braking system are:

FbI_req = FbI_max

FbP_req = FbP_max

Fbh f _req = Fbx f _req − icvtio1FbI_max

Fbhr_req = Fbxr_req − io2FbP_max

(12)
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When V > Vmax or V < Vmin or SOC≥ SOChigh or z > z(F), the braking force is completely provided
by the hydraulic braking system. The braking forces of the hydraulic braking system are: Fbh f _req = Fbx f _req

Fbhr_req = Fbxr_req

(13)

4. Coordinated Control Strategy for Braking Mode Switch

4.1. Kinetics Analysis of Braking Mode

According to the braking force distribution control strategy mentioned above, there are four main
braking modes: pure electric braking mode, motor and engine braking mode, motor and hydraulic
braking mode, and hydraulic braking mode. In order to facilitate the kinetic analysis, the hybrid
vehicle drive system model is simplified, as illustrated in Figure 5.
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where Je is moment of inertia of the engine; JISG is moment of inertia of the ISG; Jcvt is moment of inertia
of the CVT; JC1 is moment of inertia of the clutch I; JC2 is moment of inertia of the clutch II; JPMSM is
moment of inertia of the PMSM; Jw is moment of inertia of the wheel; JO1 is moment of inertia of the
final drive I; JO2 is moment of inertia of the final drive II; m is the vehicle mass; r is the tire radius.

(1) Pure Electric Braking Mode

When the motor is braking clutch I is engaged and clutch II is disconnected. The engine and the
hydraulic braking systems do not participate in the braking action and the required braking torque is
provided by the motor. The equivalent to the moment of inertia on the wheel is:

Jv = ((JISG + JC1) · icvt + JCVT) · iO1 + JO1 + JO2 + JPMSM · iO2 + Jw + mr2 (14)

The dynamic equation of braking is:
TbICE = 0
Tbh = 0

TbISG · icvt · iO1 + TbPMSM · iO2 = Jv
•

ωw

(15)

where TbICE is the engine drag resistance torque, Tbh is the hydraulic braking torque, TbISG is the ISG
braking torque, TbPMSM is the PMSM braking torque, and

.
ωw is the wheel angular acceleration.

(2) Motor and Engine Braking Mode
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When the motor and engine are involved in braking, clutches I and II are engaged. The required
braking torque is provided by the motor and the engine. At this time, the equivalent to the moment of
inertia on the wheel is:

Jv = ((Je + JISG + JC1 + JC2) · icvt + JCVT) · iO1 + JO1 + JO2 + JPMSM · iO2 + Jw + mr2 (16)

The dynamic equation of braking is:{
Tbh = 0

(TbISG + TbICE) · icvt · iO1 + TbPMSM · iO2 = Jv
•

ωw
(17)

(3) Motor and Hydraulic Braking Mode

During motor and hydraulic braking modes, clutch I is engaged and clutch II is disconnected.
The required braking torque is provided by the motor and the hydraulic braking system. At this time,
the equivalent to the moment of inertia on the wheel is:

Jv = ((JISG + JC2) · icvt + JCVT) · iO1 + JO1 + JO2 + JPMSM · iO2 + Jw + mr2 (18)

The dynamic equation of braking is:{
TbICE = 0

TbISG · icvt · iO1 + TbPMSM · iO2 + Tbh = Jv
•

ωw
(19)

(4) Hydraulic Braking Mode

During hydraulic braking mode, clutches I and II are disengaged and the required braking torque
is provided by the hydraulic braking system. The equivalent to the moment of inertia on the wheel is:

Jv = JCVT · iO1 + JO1 + JO2 + JPMSM · iO2 + Jw + mr2 (20)

The dynamic equation of braking is:
TbICE = 0
TbISG = TbPMSM = 0

Tbh = Jv
•

ωw

(21)

Based on the kinetics analysis of the braking mode, there are three types of braking torque that
need to be coordinated during braking mode switching. The motor, the hydraulic, and the engine
braking systems are three different systems with different dynamic response characteristics; therefore,
the sequences and moments of the three joint systems are different. Because mode switching is
completed instantaneously, the braking torque varies sharply during the intervention and exit from
braking. If there is no coordinated control, it will cause torque fluctuation and seriously worsen the
ride comfort of the vehicle.

4.2. Coordination Control Strategy for Mode Switch

According to whether or not the hydraulic braking system is involved in braking, the braking
mode-switch type is divided into two categories (Figure 6). Braking mode-switch coordination control
strategies are developed for the different braking mode-switch types.
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should switch or not. If mode switching happens, the vehicle controller determines the type of mode 
switch and then selects the corresponding coordination control strategy and controls the clutch, 
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Figure 6. Braking mode switch classification.

(1) Type one: braking mode switch without hydraulic braking system participation. In this type
of mode switching it is necessary to control the engagement of the clutch and the change rate of the
motor torque. Thus, the fluctuation caused by mode switch can be reduced.

(2) Type two: braking mode switch with hydraulic braking system participation. Due to the
different dynamic response characteristics of the motor and the hydraulic braking systems, this switch
mode is difficult to coordinate. The idea of coordinating control is to take full advantage of the
characteristics of the braking systems. The hydraulic system can provide large and stable torque,
and the motor braking system’s torque response is quick and accurate, reducing the fluctuation of
the vehicle.

The overall coordination control flow chart is shown in Figure 7. Tbm_req, Tbh_req and TbICE_req are
the target motor, hydraulic and engine braking torques allocated by the braking force control strategy.
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Figure 7. Flow chart of overall coordination control.

First, according to current speed, SOC, CVT ratio, and brake pedal, the braking force distribution
control strategy allocates the target motor, hydraulic and engine braking torques; then, according to
the braking mode boundary conditions the vehicle controller determines whether the braking mode
should switch or not. If mode switching happens, the vehicle controller determines the type of mode
switch and then selects the corresponding coordination control strategy and controls the clutch, motor
and hydraulic torques to reduce the mode switch fluctuation. Finally, the vehicle controller determines
whether the coordination control is completed, and if it is completed, the vehicle will enter a new
braking mode.
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4.2.1. Coordination Control Strategy of Type One

In this type of mode switch the motor braking torque and the engine drag resistance torque,
transmitted by clutch II, are the main sources of braking torque fluctuation. Therefore, the braking
torque fluctuation is coordinated by controlling the change rate of the clutch hold-down force and the
motor brake force. The torque transmitted by the dry clutch during slipping is:

Tc = sign(∆ω)
2
3

µF(t)Z
R3

0 − R3
1

R2
0 − R2

1
(22)

where ∆ω is the clutch angular velocity difference between the main and driven plate; sign is symbolic
function; µ is clutch friction factor, which is related to the surface temperature of the plates and ∆ω;
F(t) is the compression force of clutch plates; Z is the clutch friction pair number; R0, R1 are the clutch
outer and inner friction plate diameter.

The coordinated control flow chart of type one is shown in Figure 8, km and kc are the change
rates of motor brake torque and clutch hold-down force. Tbm and Tc are the actual torques of motor
and clutch and Tbm = TbISGicvtio1 + TbPMSMio2. Tb is the actual total brake torque.
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It is simple to control the motor brake force changing rate, however, it is hard to obtain the target
change rate of the clutch hold-down force. Moreover, it is assumed that the target change rate of the
total brake force is kreq. Thus: 

F(t) = F0 +
∫

kcdt

Tbm(t) = Tbm0 +
∫

kmdt

Tb(t) = Tb0 +
∫

kreqdt

(23)

where F0, Tbm0 and Tb0 are the initial values of the clutch hold-down force, the motor brake torque,
and the total brake force.

Then:
Tb(t) = Tbm(t) + Tcicvtio1 (24)

Derivation of the formula above gives:

kreq = km + aicvtio1kc (25)
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and:
a = sign(∆ω)µZR (26)

Therefore, the change rate of clutch hold-down force is:

kc =
kreq − km

aicvtio1
(27)

4.2.2. Coordination Control Strategy of Type Two

The dynamic response of the hydraulic braking system is slow and stable while the response of
the motor braking system is fast and accurate. The hydraulic brake system has been developed for
a long time, its technology is mature and stable, and its dynamic response characteristics have been
well researched [17]. Therefore, in order to make full use of the characteristics of the motor and the
hydraulic braking systems, the coordinated control process of braking mode switch is divided into
two stages; this is achieved by modifying the target braking torque.

The coordinated control flow chart of type two is shown in Figure 9, Tbm
′, Tbh

′ and TbICE
′ are

the modified target braking torques of the motor, the hydraulic and the engine braking system; Tbm0,
Tbh0 and TbICE0 are the initial torques of the motor, the hydraulic and the engine braking system
when mode is switched; Tc is the transmitted torque of the dry clutch. When mode switch happens,
the coordination control process is described as follows: during mode switching, the torques of the
motor, the hydraulic and the engine braking system are:

Tbm = Tbm0

Tbh = Tbh0

TbICE = TbICE0

(28)

At that moment, the coordinated control process of the braking mode switch enters into the first
stage: it keeps the brake torques of the motor and engine unchanged and modifies the target braking
torque of the hydraulic braking system to meet the driver demand. Therefore, the modified torques are:

Tbm
′ = Tbm0

Tbh
′ = Tb_req − Tbm0 − icvtio1TbICE0

TbICE
′ = TbICE0

(29)

Next, the vehicle controller determines whether Tb is equal to Tb_req, if Tb = Tb_req, the coordinated
control process enters into the second stage: it makes full use of the dynamic characteristics of the
motor braking system to coordinate the torque fluctuation and modifies the target braking torque of
the engine and the hydraulic braking system in order to reach the target value (Tbh_req and TbICE_req)

Tbm
′ = Tb_req − Tbh − icvtio1Tc

Tbh
′ = Tbh_req

TbICE
′ = TbICE_req

(30)

Finally, the vehicle controller evaluates whether Tbm = Tbm_req and TbICE = TbICE_req if so, the current
mode is substituted by a new braking mode.

A motor torque proportional-integral-derivative (PID) control algorithm was designed in order to
improve the hydraulic and clutch torque fluctuation and keep the total braking torque stable during
the second stage. The PID algorithm’s control structure is shown in Figure 10. The input is Tbm

′ which
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is the modified target braking torque of the motor while the output is Tbm which is the actual braking
torque of the motor.Energies 2017, 10, 1684  11 of 16 
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The PID control algorithm’s expression is:{
Tbm

′′ = Kpe(t) + Ki
∫

e(t)dt + Kd
d
dt e(t)

e(t) = Tbm
′ − Tbm

(31)

where e(t) is the PID deviation; Kp, Ki and Kd are the PID ratio, the integral and the differential factors.

5. Simulation Results and Analysis

In this study, the simulation model of a plug-in four-wheel drive hybrid vehicle was established
on the MATLAB/Simulink simulation platform. The parameters of the hybrid vehicle and the key
components are listed in Table 1. The effectiveness of the coordinated control strategy was studied by
comparing the results with and without a control strategy. In the simulation of the non-coordinated
control strategy, motor, hydraulic and clutch torques are not intervened during the braking mode
switch while the other parameters remained the same.
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Table 1. The parameters of vehicle and key components.

Components Parameters Value

Vehicle Mass/kg 1800

Engine Displacement/L 1.597
Peak power/Kw 69

ISG Peak power/Kw 28

PMSM Peak power/Kw 27

Battery Type of battery Lithium

In this paper, the forward simulation model of plug-in hybrid vehicle is established based on
MATLAB/Simulink, as illustrated in Figure 11. The vehicle simulation model is composed of ISG
model, PMSM model, battery model, hydraulic braking system model and the controller model.
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The hybrid vehicle’s brake mode-switch types in this study are complex and numerous and
it would require a lot of computational power for the simulation analysis of each brake mode
switch. Therefore, this study simulated several typical braking mode-switch conditions to verify
the effectiveness of the coordinated control strategy. The typical braking mode-switch conditions
were as follows: (1) motor braking mode to motor and engine braking mode; (2) motor braking mode
to motor and hydraulic braking mode; (3) motor and engine braking mode to motor and hydraulic
braking mode; (4) motor and hydraulic braking mode to hydraulic braking mode. This paper takes
the urgent situation into consideration, therefore, the step type of target braking force is set, and the
simulation results were as follows: when the vehicle speed was 60 km/h and the braking strength was
changed from 0.05 to 0.2, the braking mode was switched, at 0.2 s, from the motor brake to the motor
and engine brake (Figure 12). In the model without coordination the motor quickly reached the target
braking torque due to its rapid response characteristics. The dramatic change of the motor torque
had a great impact on the ride comfort of the vehicle, the vehicle jerk caused by the motor reached
86.06 m/s3. Because the clutch was engaged in a slower time than the motor response, it took longer
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time for it to reach the target value. In the model with coordination, due to fact that the change rate of
the motor was limited, the impact caused by the motor torque was significantly improved and the
value of vehicle jerk was less than 15.18 m/s3. Therefore, the coordinated control strategy significantly
improved the vehicle’s ride comfort.

As shown in Figure 13, when the braking strength is changed from 0.1 to 0.3, the braking mode is
switched from the motor brake to the motor and hydraulic brake. In the results without coordination
the hydraulic system response was slower and the hydraulic braking system reached the target braking
torque after the motor, therefore, it had a large impact on the vehicle. In the results with coordination
the vehicle fluctuation was significantly improved by coordinating the motor and the hydraulic braking
torque. However, a small fluctuation occurred at 0.42 s because the motor did not have enough ability
to coordinate the change of the hydraulic braking torque. The jerk of a small fluctuation was less than
1.57 m/s3 and the effect of the coordinated control is pretty good.
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Figure 14 shows that the braking mode changes from motor and engine brake to motor and
hydraulic brake. During mode switch, the engine exits the anti-drag brake, and the hydraulic system
is involved in braking. Figure 14a shows that the total braking torque fluctuation without coordination
is very intense. Meanwhile, the torque fluctuation with coordination is smaller.

When the mode is switched from motor and hydraulic brake to hydraulic brake (Figure 15),
the motor exits the regenerative brake mode, the motor braking torque drops suddenly and the
hydraulic braking torque rises slowly. The vehicle jerk without coordination can reach 138.4 m/s3 and
the ride comfort is seriously worsened. However, the jerk with coordination is less than 95 m/s3.
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6. Conclusions

In this study, a new type of plug-in hybrid was taken as the research object and the braking force
distribution strategy which takes the engine drag resistance torque into consideration was put forward.
The types of braking mode switches were divided into two types, aimed at the problem of torque
fluctuation during the braking mode switch. Two coordinated control strategies which correspond to
the two types were developed by analyzing the clutch and the characteristics of the hydraulic and the
motor braking systems. The coordination control strategy of type one was achieved by controlling
the change rates of the clutch hold-down force and the motor braking force. By comparing the
characteristics of the motor and the hydraulic braking systems, it was found that the dynamic response
of the hydraulic braking system is slow and stable, while the response of the motor braking system
is fast and accurate. Therefore, the strategy of type two was coordinated by modifying the target
braking torque during the braking mode switch. Meanwhile, control of the motor braking system
was utilized to actively improve the torque fluctuation and a motor torque PID control algorithm was
designed for this purpose. Finally, a coordination control strategy simulation was performed on the
MATLAB/Simulink platform; the simulation results showed that the coordination control strategy can
effectively reduce the vehicle jerk under specific road conditions during a typical braking mode switch.
These promising results are meaningful for further research on the torque coordination of the braking
mode switch.
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